Heterogeneous Hypergraph Variational Autoencoder for Link Prediction

Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many applications such as social media, bioinformatics and recommendation systems. Most existing methods focus on homogeneous settings and consider only low-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 44; číslo 8; s. 4125 - 4138
Hlavní autoři: Fan, Haoyi, Zhang, Fengbin, Wei, Yuxuan, Li, Zuoyong, Zou, Changqing, Gao, Yue, Dai, Qionghai
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many applications such as social media, bioinformatics and recommendation systems. Most existing methods focus on homogeneous settings and consider only low-order pairwise relations while ignoring either the heterogeneity or high-order complex relations among different types of nodes, which tends to lead to a sub-optimal embedding result. This paper presents a method named Heterogeneous Hypergraph Variational Autoencoder (HeteHG-VAE) for link prediction in heterogeneous information networks (HINs). It first maps a conventional HIN to a heterogeneous hypergraph with a certain kind of semantics to capture both the high-order semantics and complex relations among nodes, while preserving the low-order pairwise topology information of the original HIN. Then, deep latent representations of nodes and hyperedges are learned by a Bayesian deep generative framework from the heterogeneous hypergraph in an unsupervised manner. Moreover, a hyperedge attention module is designed to learn the importance of different types of nodes in each hyperedge. The major merit of HeteHG-VAE lies in its ability of modeling multi-level relations in heterogeneous settings. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed method.
AbstractList Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many applications such as social media, bioinformatics and recommendation systems. Most existing methods focus on homogeneous settings and consider only low-order pairwise relations while ignoring either the heterogeneity or high-order complex relations among different types of nodes, which tends to lead to a sub-optimal embedding result. This paper presents a method named Heterogeneous Hypergraph Variational Autoencoder (HeteHG-VAE) for link prediction in heterogeneous information networks (HINs). It first maps a conventional HIN to a heterogeneous hypergraph with a certain kind of semantics to capture both the high-order semantics and complex relations among nodes, while preserving the low-order pairwise topology information of the original HIN. Then, deep latent representations of nodes and hyperedges are learned by a Bayesian deep generative framework from the heterogeneous hypergraph in an unsupervised manner. Moreover, a hyperedge attention module is designed to learn the importance of different types of nodes in each hyperedge. The major merit of HeteHG-VAE lies in its ability of modeling multi-level relations in heterogeneous settings. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed method.Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many applications such as social media, bioinformatics and recommendation systems. Most existing methods focus on homogeneous settings and consider only low-order pairwise relations while ignoring either the heterogeneity or high-order complex relations among different types of nodes, which tends to lead to a sub-optimal embedding result. This paper presents a method named Heterogeneous Hypergraph Variational Autoencoder (HeteHG-VAE) for link prediction in heterogeneous information networks (HINs). It first maps a conventional HIN to a heterogeneous hypergraph with a certain kind of semantics to capture both the high-order semantics and complex relations among nodes, while preserving the low-order pairwise topology information of the original HIN. Then, deep latent representations of nodes and hyperedges are learned by a Bayesian deep generative framework from the heterogeneous hypergraph in an unsupervised manner. Moreover, a hyperedge attention module is designed to learn the importance of different types of nodes in each hyperedge. The major merit of HeteHG-VAE lies in its ability of modeling multi-level relations in heterogeneous settings. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed method.
Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many applications such as social media, bioinformatics and recommendation systems. Most existing methods focus on homogeneous settings and consider only low-order pairwise relations while ignoring either the heterogeneity or high-order complex relations among different types of nodes, which tends to lead to a sub-optimal embedding result. This paper presents a method named Heterogeneous Hypergraph Variational Autoencoder (HeteHG-VAE) for link prediction in heterogeneous information networks (HINs). It first maps a conventional HIN to a heterogeneous hypergraph with a certain kind of semantics to capture both the high-order semantics and complex relations among nodes, while preserving the low-order pairwise topology information of the original HIN. Then, deep latent representations of nodes and hyperedges are learned by a Bayesian deep generative framework from the heterogeneous hypergraph in an unsupervised manner. Moreover, a hyperedge attention module is designed to learn the importance of different types of nodes in each hyperedge. The major merit of HeteHG-VAE lies in its ability of modeling multi-level relations in heterogeneous settings. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed method.
Author Wei, Yuxuan
Gao, Yue
Zhang, Fengbin
Zou, Changqing
Fan, Haoyi
Li, Zuoyong
Dai, Qionghai
Author_xml – sequence: 1
  givenname: Haoyi
  orcidid: 0000-0001-9428-7812
  surname: Fan
  fullname: Fan, Haoyi
  email: isfanhy@gmail.com
  organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
– sequence: 2
  givenname: Fengbin
  surname: Zhang
  fullname: Zhang, Fengbin
  email: zhangfengbin@hrbust.edu.cn
  organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
– sequence: 3
  givenname: Yuxuan
  surname: Wei
  fullname: Wei, Yuxuan
  email: weiyuxua19@mails.tsinghua.edu.cn
  organization: School of Software, BRNist, THUICBS, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Zuoyong
  orcidid: 0000-0003-0952-9915
  surname: Li
  fullname: Li, Zuoyong
  email: fzulzytdq@126.com
  organization: Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China
– sequence: 5
  givenname: Changqing
  orcidid: 0000-0001-8264-6849
  surname: Zou
  fullname: Zou, Changqing
  email: aaronzou1125@gmail.com
  organization: Sun Yat-sen University, Guangzhou, China
– sequence: 6
  givenname: Yue
  orcidid: 0000-0002-4971-590X
  surname: Gao
  fullname: Gao, Yue
  email: kevin.gaoy@gmail.com
  organization: School of Software, BRNist, THUICBS, Tsinghua University, Beijing, China
– sequence: 7
  givenname: Qionghai
  orcidid: 0000-0001-7043-3061
  surname: Dai
  fullname: Dai, Qionghai
  email: qhdai@tsinghua.edu.cn
  organization: Department of Automation, BRNist, THUICBS, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33587699$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PHDEQhi1EBAfJHwhStFIamr147PXHlCe-DumiUJC0lvHNEsPe-uLdLfj32fuAgoJqmud5NTPvCTtsU0uMfQU-BeD44_5u9vN2KriAqeQKJcgDNhGgeYkCxSGbcNCitFbYY3bSdU-cQ6W4PGLHUiprNOKEXc6pp5weqaU0dMX8ZU35Mfv13-KPz9H3MbW-KWZDn6gNaUm5qFMuFrF9Lu4yLWPYEJ_Zp9o3HX3Zz1P2-_rq_mJeLn7d3F7MFmWQCvoS5GaDWkIwdb1EXivBK5TcoEYw6H3gD0FqA7aqtTXeWg2BDKHWpIwhecrOd7nrnP4N1PVuFbtATeO32ztRIQehtKlG9Ps79CkNebxlpLQVCGiMGKlve2p4WNHSrXNc-fziXv8zAnYHhJy6LlPtQuy3X-mzj40D7jZVuG0VblOF21cxquKd-pr-oXS2kyIRvQkoVaWwkv8Bd36SNg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIFS_2025_3529321
crossref_primary_10_1109_TPAMI_2025_3535763
crossref_primary_10_1109_JIOT_2024_3484996
crossref_primary_10_1007_s40747_022_00964_7
crossref_primary_10_1155_2021_4699420
crossref_primary_10_1109_TSC_2023_3319713
crossref_primary_10_1109_TPAMI_2023_3331389
crossref_primary_10_3389_fmed_2022_840319
crossref_primary_10_1016_j_neunet_2022_08_028
crossref_primary_10_1088_2632_2153_adf375
crossref_primary_10_3389_fmed_2025_1549491
crossref_primary_10_1109_TKDE_2024_3488375
crossref_primary_10_1016_j_jmsy_2024_06_011
crossref_primary_10_1016_j_ress_2023_109304
crossref_primary_10_1109_JSEN_2023_3319537
crossref_primary_10_1109_TCYB_2022_3181810
crossref_primary_10_1109_TMI_2023_3313778
crossref_primary_10_1109_TCSS_2023_3260118
crossref_primary_10_1109_TPAMI_2021_3132503
crossref_primary_10_1109_ACCESS_2024_3398555
crossref_primary_10_1002_int_22683
crossref_primary_10_1145_3494567
crossref_primary_10_1109_TPAMI_2022_3178156
crossref_primary_10_1007_s10489_024_05945_6
crossref_primary_10_1016_j_procs_2024_09_313
crossref_primary_10_1109_TBDATA_2024_3442549
crossref_primary_10_1145_3703156
crossref_primary_10_1109_ACCESS_2022_3204284
crossref_primary_10_1016_j_ins_2024_120453
crossref_primary_10_1109_TAI_2024_3524984
crossref_primary_10_1109_TCAD_2023_3343228
crossref_primary_10_1016_j_patcog_2023_109818
Cites_doi 10.1109/ICDM.2015.91
10.1109/ICDM.2018.00104
10.1145/3308558.3313562
10.1109/TKDE.2017.2730207
10.1145/3097983.3098036
10.1145/3018661.3018735
10.1145/3366423.3380027
10.1109/TKDE.2018.2833443
10.1109/TKDE.2018.2819980
10.1093/bioinformatics/bty294
10.1109/IJCNN.2019.8851893
10.1145/2339530.2339729
10.1145/3308558.3313635
10.1609/aaai.v34i04.6178
10.1145/2623330.2623732
10.1609/aaai.v32i1.11573
10.1109/TKDE.2017.2754499
10.1109/CVPR.2010.5540012
10.1145/3219819.3220006
10.1145/3178876.3186152
10.1109/TIT.2019.2940246
10.1145/3132847.3132953
10.1038/nature06830
10.1007/s10479-011-0841-3
10.1109/TKDE.2016.2598561
10.1016/j.physa.2010.11.027
10.1109/TIP.2018.2862625
10.1609/aaai.v32i1.11266
10.14778/3402707.3402736
10.1007/BF02289026
10.1145/2783258.2783307
10.1109/TNNLS.2018.2869747
10.1145/2939672.2939754
10.1145/1935826.1935914
10.1109/TPAMI.2020.3039374
10.1145/2736277.2741093
10.1145/3292500.3330961
10.1002/asi.20591
10.1016/S0378-8733(03)00009-1
10.1007/978-3-319-93417-4_38
10.7551/mitpress/7503.003.0205
10.1609/aaai.v32i1.11782
10.1609/aaai.v31i1.10805
10.1145/2020408.2020575
10.1609/aaai.v33i01.33013558
10.1109/TKDE.2017.2733530
10.1103/PhysRevE.82.036106
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3059313
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 4138
ExternalDocumentID 33587699
10_1109_TPAMI_2021_3059313
9354594
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Tsinghua University Initiative Scientific Research Program
  grantid: 20197020003
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2020J02024
  funderid: 10.13039/501100003392
– fundername: National Natural Science Foundation of China
  grantid: U1701262; 61972187; 61172168
  funderid: 10.13039/501100001809
– fundername: Fuzhou Science and Technology Project
  grantid: 2020-RC-186
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RNI
RZB
VH1
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-130014f31c7ffd90f52049307969179aac0bc367184f687a8861ce7e966e577e3
IEDL.DBID RIE
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000820522100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 10:27:02 EDT 2025
Mon Jun 30 04:19:32 EDT 2025
Wed Feb 19 02:28:38 EST 2025
Sat Nov 29 05:16:00 EST 2025
Tue Nov 18 22:33:42 EST 2025
Wed Aug 27 02:23:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-130014f31c7ffd90f52049307969179aac0bc367184f687a8861ce7e966e577e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8264-6849
0000-0001-7043-3061
0000-0003-0952-9915
0000-0001-9428-7812
0000-0002-4971-590X
PMID 33587699
PQID 2682919772
PQPubID 85458
PageCount 14
ParticipantIDs proquest_journals_2682919772
pubmed_primary_33587699
ieee_primary_9354594
proquest_miscellaneous_2490125674
crossref_citationtrail_10_1109_TPAMI_2021_3059313
crossref_primary_10_1109_TPAMI_2021_3059313
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
Probst (ref67) 2020; 21
ref59
ref14
ref58
ref53
ref11
Liu (ref44)
ref55
ref10
ref54
Kipf (ref36)
ref17
Sankar (ref70)
ref19
ref18
Salha (ref40)
You (ref43)
Li (ref64)
ref51
Socher (ref3)
ref48
ref47
ref49
Chami (ref45)
ref8
ref7
ref9
Hamilton (ref41)
ref4
ref6
ref5
Davidson (ref37)
ref34
ref31
ref30
ref33
ref32
Zhang (ref13)
ref2
ref1
Berge (ref52) 1985
ref39
Veličković (ref42)
ref38
Kingma (ref69)
Yadati (ref62)
ref71
ref73
Nickel (ref15)
Bordes (ref50)
ref24
ref68
ref23
ref26
ref25
ref20
ref22
ref21
ref65
Kingma (ref28)
ref27
ref29
Scheinerman (ref66) 2011
Kipf (ref35) 2017
Ganea (ref46)
Nickel (ref72)
Zhao (ref16)
Li (ref63)
Chien (ref60)
ref61
References_xml – ident: ref33
  doi: 10.1109/ICDM.2015.91
– volume-title: Proc. NIPS Workshop Bayesian Deep Learn.
  ident: ref36
  article-title: Variational graph auto-encoders
– ident: ref25
  doi: 10.1109/ICDM.2018.00104
– start-page: 926
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Reasoning with neural tensor networks for knowledge base completion
– start-page: 5165
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Link prediction based on graph neural networks
– ident: ref22
  doi: 10.1145/3308558.3313562
– start-page: 4868
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref45
  article-title: Hyperbolic graph convolutional neural networks
– ident: ref29
  doi: 10.1109/TKDE.2017.2730207
– year: 2017
  ident: ref35
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 5345
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Hyperbolic neural networks
– ident: ref19
  doi: 10.1145/3097983.3098036
– ident: ref26
  doi: 10.1145/3018661.3018735
– ident: ref49
  doi: 10.1145/3366423.3380027
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref69
  article-title: Adam: A method for stochastic optimization
– ident: ref8
  doi: 10.1109/TKDE.2018.2833443
– volume-title: Proc. Workshop Graph Representation Learn. 33rd Conf. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Keep it simple: Graph autoencoders without graph convolutional networks
– ident: ref2
  doi: 10.1109/TKDE.2018.2819980
– ident: ref6
  doi: 10.1093/bioinformatics/bty294
– start-page: 6338
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref72
  article-title: Poincaré embeddings for learning hierarchical representations
– ident: ref34
  doi: 10.1109/IJCNN.2019.8851893
– ident: ref7
  doi: 10.1145/2339530.2339729
– start-page: 2466
  volume-title: Proc. 22nd Int. Conf. Artif. Intell. Statist.
  ident: ref60
  article-title: $HS^{2}$HS2: Active learning over hypergraphs with pointwise and pairwise queries
– start-page: 4072
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref16
  article-title: Leveraging node attributes for incomplete relational data
– ident: ref58
  doi: 10.1145/3308558.3313635
– ident: ref38
  doi: 10.1609/aaai.v34i04.6178
– start-page: 2787
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref50
  article-title: Translating embeddings for modeling multi-relational data
– ident: ref10
  doi: 10.1145/2623330.2623732
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref42
  article-title: Graph attention networks
– start-page: 7134
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref43
  article-title: Position-aware graph neural networks
– ident: ref51
  doi: 10.1609/aaai.v32i1.11573
– ident: ref4
  doi: 10.1109/TKDE.2017.2754499
– start-page: 1179
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref15
  article-title: Reducing the rank in relational factorization models by including observable patterns
– volume-title: Graphs and Hypergraphs
  year: 1985
  ident: ref52
– ident: ref55
  doi: 10.1109/CVPR.2010.5540012
– ident: ref20
  doi: 10.1145/3219819.3220006
– ident: ref27
  doi: 10.1145/3178876.3186152
– ident: ref59
  doi: 10.1109/TIT.2019.2940246
– ident: ref18
  doi: 10.1145/3132847.3132953
– ident: ref5
  doi: 10.1038/nature06830
– ident: ref73
  doi: 10.1007/s10479-011-0841-3
– ident: ref65
  doi: 10.1109/TKDE.2016.2598561
– ident: ref9
  doi: 10.1016/j.physa.2010.11.027
– start-page: 2308
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref63
  article-title: Inhomogeneous hypergraph clustering with applications
– ident: ref57
  doi: 10.1109/TIP.2018.2862625
– ident: ref24
  doi: 10.1609/aaai.v32i1.11266
– ident: ref48
  doi: 10.14778/3402707.3402736
– start-page: 856
  volume-title: Proc. 34th Conf. Uncertainty Artif. Intell.
  ident: ref37
  article-title: Hyperspherical variational auto-encoders
– ident: ref31
  doi: 10.1007/BF02289026
– ident: ref47
  doi: 10.1145/2783258.2783307
– ident: ref56
  doi: 10.1109/TNNLS.2018.2869747
– start-page: 3014
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref64
  article-title: Submodular hypergraphs: P-Laplacians, cheeger inequalities and spectral clustering
– start-page: 1024
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Inductive representation learning on large graphs
– ident: ref12
  doi: 10.1145/2939672.2939754
– ident: ref32
  doi: 10.1145/1935826.1935914
– ident: ref54
  doi: 10.1109/TPAMI.2020.3039374
– volume-title: Fractional Graph Theory: A Rational Approach to the Theory of Graphs
  year: 2011
  ident: ref66
– volume: 21
  start-page: 1
  issue: 78
  year: 2020
  ident: ref67
  article-title: Harmless overfitting: Using denoising autoencoders in estimation of distribution algorithms
  publication-title: J. Mach. Learn. Res.
– ident: ref11
  doi: 10.1145/2736277.2741093
– ident: ref21
  doi: 10.1145/3292500.3330961
– ident: ref1
  doi: 10.1002/asi.20591
– ident: ref30
  doi: 10.1016/S0378-8733(03)00009-1
– ident: ref39
  doi: 10.1007/978-3-319-93417-4_38
– volume-title: Proc. Workshop Representation Learn. Graphs Manifolds
  ident: ref70
  article-title: Dynamic graph representation learning via self-attention networks
– ident: ref53
  doi: 10.7551/mitpress/7503.003.0205
– ident: ref68
  doi: 10.1609/aaai.v32i1.11782
– ident: ref17
  doi: 10.1609/aaai.v31i1.10805
– ident: ref14
  doi: 10.1145/2020408.2020575
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref28
  article-title: Auto-encoding variational bayes
– start-page: 8230
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Hyperbolic graph neural networks
– ident: ref61
  doi: 10.1609/aaai.v33i01.33013558
– start-page: 1509
  volume-title: Proc. 33rd Conf. Neural Inf. Process. Syst.
  ident: ref62
  article-title: HyperGCN: A new method for training graph convolutional networks on hypergraphs
– ident: ref23
  doi: 10.1109/TKDE.2017.2733530
– ident: ref71
  doi: 10.1103/PhysRevE.82.036106
SSID ssj0014503
Score 2.671871
Snippet Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4125
SubjectTerms Bioinformatics
Fans
Graph theory
Graphs
Heterogeneity
Heterogeneous information network
hyperedge attention
hypergraph
link prediction
Network analysis
Network topology
Nodes
Predictions
Predictive models
Recommender systems
Semantics
Stochastic processes
Task analysis
Topology
variational inference
Title Heterogeneous Hypergraph Variational Autoencoder for Link Prediction
URI https://ieeexplore.ieee.org/document/9354594
https://www.ncbi.nlm.nih.gov/pubmed/33587699
https://www.proquest.com/docview/2682919772
https://www.proquest.com/docview/2490125674
Volume 44
WOSCitedRecordID wos000820522100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VigEGCi2PQqmCxAZtkzi247ECqjJQdSioW5Q4joSEGtQHv587NwkMgMQWKY4T3SN3n8--D-Bausqk0k_RkQxHgKITulI9ybgIdSYwKQks2YScTML5XE1rcFudhTHG2M1npk-Xtpaf5npDS2UDxTDeq2AHdqSU27NaVcUg4JYFGTMY9HCEEeUBGVcNZtPh0yNCQd_rM2Kw84g8hzGOPwLb8vUrHlmCld9zTRtzRo3_fe0hHBS5pTPcGsMR1MyiCY2St8Ep3LgJ-9-aELbgfkw7YnI0JJNvVs4YgenStrF2XhBHF2uFznCzzqnnZYoTYZ7rEIZ1pksq89CIY3gePczuxr2CW6GnGfeIgZ5kljFPyyxLlZtxH7ECOrwSCOBUHGs30Uxg5AoyEco4DIWnjTSIjgyX0rATqC_yhTkDh2sdZCkPkzgRgU585WoeGFR0lmpMDtI2eKWEI100Hif-i7fIAhBXRVZBESkoKhTUhpvqmfdt240_R7dI_NXIQvJt6JSKjArPXEW-CH3lYdbrt-Gquo0-RYWS2Eo6QkiKcZsLiVOcbg2gmru0m_Of33kBez4dkLBbBDtQXy835hJ29cf6dbXsouHOw6413E95ruXa
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6Fh0R7gPIoTRvAlXprA_Y-vceIh4IKUQ4p4ray12sJCcUoD34_Mxvb9ACVerPk9dqah2e-nd35AH7o2PhCswIdyUsEKC6nK9PXXKrUlQqTEhHIJvRolN7fm3EHfrVnYbz3YfOZP6XLUMsvKrekpbIzwzHeG7EGG1IIlqxOa7U1AyEDDzLmMOjjCCSaIzKxOZuMB7fXCAZZcsqJwy4h-hzOJf4KQtPX14gUKFbezzZD1Lna-b_v_QTbdXYZDVbmsAsdP92DnYa5IaodeQ8-_tWGcB8uhrQnpkJT8tVyHg0Rms5CI-voDpF0vVoYDZaLirpeFjgRZroRodhoPKNCD404gD9Xl5PzYb9mV-g7LhPioCeZlTxxuiwLE5eSIVpAlzcKIZzJMhfnjiuMXaJUqc7SVCXOa4_4yEutPf8M69Nq6r9AJJ0TZSHTPMuVcDkzsZPCo6rLwmF6UHQhaSRsXd16nBgwHm2AILGxQUGWFGRrBXXhZ_vM06rxxj9H75P425G15LvQaxRpa9-cW6ZSZhLMe1kXvre30auoVJIFSVsEpRi5pdI4xeHKANq5G7v5-vY7T2BrOLm9sTfXo9_f4AOj4xJhw2AP1hezpT-CTfe8eJjPjoP5vgAqYeg5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Hypergraph+Variational+Autoencoder+for+Link+Prediction&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Fan%2C+Haoyi&rft.au=Zhang%2C+Fengbin&rft.au=Wei%2C+Yuxuan&rft.au=Li%2C+Zuoyong&rft.date=2022-08-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=44&rft.issue=8&rft.spage=4125&rft_id=info:doi/10.1109%2FTPAMI.2021.3059313&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon