Understanding axon guidance: are we nearly there yet?

During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) Jg. 145; H. 10
1. Verfasser: Stoeckli, Esther T
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 15.05.2018
Schlagworte:
ISSN:1477-9129, 1477-9129
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
AbstractList During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
Author Stoeckli, Esther T
Author_xml – sequence: 1
  givenname: Esther T
  orcidid: 0000-0002-8485-0648
  surname: Stoeckli
  fullname: Stoeckli, Esther T
  email: esther.stoeckli@imls.uzh.ch
  organization: University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland esther.stoeckli@imls.uzh.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29759980$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA_d-AOkSzcdc5Mm6XUjMviCATfOuqTp7Vhp07FpdfrvHXAEV-c78HHgzNnEt54YuwS-BJGIm4K-lqAgAXXCZpAYEyMInPzjKZuH8ME5l9qYMzYVaBRiymdMbXxBXeitLyq_jey-9dF2qArrHd1GtqPomyJPtqvHqH-nQx-pvztnp6WtA10cc8E2jw9vq-d4_fr0srpfx04q6GMQJUpyDg0K1GQgFSUQlM6UhvMcSp3kwiYmd4pAckRXGJ1Ki5pr4RIlFuz6d3fXtZ8DhT5rquCorq2ndgiZ4BJFqlHJg3p1VIe8oSLbdVVjuzH7uyp-ALgzVPw
CitedBy_id crossref_primary_10_1016_j_cell_2023_05_040
crossref_primary_10_1002_adhm_202100874
crossref_primary_10_1016_j_preteyeres_2021_101039
crossref_primary_10_1146_annurev_neuro_083021_110015
crossref_primary_10_1016_j_canlet_2020_02_021
crossref_primary_10_3389_fneur_2023_1082625
crossref_primary_10_1038_s41467_021_22517_1
crossref_primary_10_3390_biology10070577
crossref_primary_10_1016_j_conb_2020_07_005
crossref_primary_10_1038_s41598_024_75278_4
crossref_primary_10_15252_embj_2020106798
crossref_primary_10_4103_1673_5374_257517
crossref_primary_10_3390_psych6010009
crossref_primary_10_1242_jcs_261244
crossref_primary_10_3389_fgene_2023_1181775
crossref_primary_10_1038_s41467_024_44863_6
crossref_primary_10_1016_j_stem_2024_09_017
crossref_primary_10_1002_dvdy_523
crossref_primary_10_1038_s41467_022_30116_x
crossref_primary_10_3390_ijms21103566
crossref_primary_10_1096_fj_202403229R
crossref_primary_10_1093_g3journal_jkac100
crossref_primary_10_1016_j_ijbiomac_2023_127586
crossref_primary_10_3390_ijms26157361
crossref_primary_10_1093_hmg_ddaa199
crossref_primary_10_1002_dneu_22749
crossref_primary_10_1080_13102818_2021_1964382
crossref_primary_10_1080_22221751_2020_1818631
crossref_primary_10_1016_j_ydbio_2019_07_015
crossref_primary_10_1115_1_4067670
crossref_primary_10_1007_s11064_023_03971_3
crossref_primary_10_1038_s41467_020_19521_2
crossref_primary_10_1523_JNEUROSCI_1390_21_2022
crossref_primary_10_1242_dev_201671
crossref_primary_10_1038_s41593_025_01937_y
crossref_primary_10_1038_s41598_020_71875_1
crossref_primary_10_4103_1673_5374_251300
crossref_primary_10_1016_j_gde_2020_05_011
crossref_primary_10_1016_j_neuroscience_2020_04_038
crossref_primary_10_1515_sjpain_2022_0094
crossref_primary_10_1002_advs_202410081
crossref_primary_10_1186_s12915_022_01393_1
crossref_primary_10_1038_s41596_021_00638_7
crossref_primary_10_3389_fcell_2021_668175
crossref_primary_10_1038_s41467_024_45825_8
crossref_primary_10_3390_toxics11080710
crossref_primary_10_1073_pnas_1921878117
crossref_primary_10_1146_annurev_cellbio_120219_035210
crossref_primary_10_1016_j_jhazmat_2020_124111
crossref_primary_10_1167_iovs_61_3_11
crossref_primary_10_1371_journal_pone_0241150
crossref_primary_10_1016_j_cell_2021_01_001
crossref_primary_10_1186_s12864_020_07106_8
crossref_primary_10_3390_genes12050632
crossref_primary_10_4103_1673_5374_373663
crossref_primary_10_1016_j_ydbio_2022_04_007
crossref_primary_10_1038_s41598_024_67400_3
crossref_primary_10_3389_fnmol_2021_717170
crossref_primary_10_1002_cne_25107
crossref_primary_10_1038_s41583_019_0244_z
crossref_primary_10_3390_jdb6040024
crossref_primary_10_1096_fba_2025_00064
crossref_primary_10_1016_j_conb_2020_12_016
crossref_primary_10_1242_dev_199717
crossref_primary_10_1016_j_devcel_2024_09_005
crossref_primary_10_1016_j_ydbio_2022_02_002
crossref_primary_10_1038_s41583_019_0168_7
crossref_primary_10_15252_emmm_202012878
crossref_primary_10_1016_j_ygcen_2020_113475
crossref_primary_10_1038_s41467_021_26971_9
crossref_primary_10_3390_antiox10010098
crossref_primary_10_1016_j_semcdb_2022_06_014
crossref_primary_10_1111_jnc_14900
crossref_primary_10_1016_j_expneurol_2024_114715
crossref_primary_10_1002_advs_202502291
crossref_primary_10_1038_s41598_024_59504_7
crossref_primary_10_3389_fncir_2023_1113023
crossref_primary_10_1016_j_biopsych_2020_04_025
crossref_primary_10_1523_JNEUROSCI_2251_20_2021
crossref_primary_10_3389_fncom_2020_588224
crossref_primary_10_1098_rsob_250026
crossref_primary_10_1016_j_tox_2021_152991
crossref_primary_10_1186_s13064_022_00165_5
crossref_primary_10_1038_s41467_022_33799_4
crossref_primary_10_1098_rsob_220359
crossref_primary_10_1016_j_cobme_2020_05_009
crossref_primary_10_3389_fncel_2023_1241957
crossref_primary_10_1002_ntls_20220021
crossref_primary_10_1016_j_bbapap_2021_140656
crossref_primary_10_1111_febs_15897
crossref_primary_10_3390_toxics9120348
crossref_primary_10_3389_fcell_2021_657623
crossref_primary_10_3390_ijms22105143
crossref_primary_10_3389_fncir_2022_911023
crossref_primary_10_1091_mbc_E23_09_0364
crossref_primary_10_1242_dev_196055
crossref_primary_10_1002_pat_70003
crossref_primary_10_2183_pjab_95_026
crossref_primary_10_1016_j_cdev_2022_203800
crossref_primary_10_3390_biom15071032
crossref_primary_10_1016_j_stem_2020_08_014
crossref_primary_10_3390_ijms21010168
crossref_primary_10_1186_s12933_023_01824_5
crossref_primary_10_3390_brainsci14020155
crossref_primary_10_3390_gels10020116
crossref_primary_10_1038_s41467_020_16947_6
crossref_primary_10_1242_dev_188797
crossref_primary_10_1371_journal_ppat_1011070
crossref_primary_10_7554_eLife_52160
crossref_primary_10_1016_j_neuroscience_2022_08_005
crossref_primary_10_3389_fcell_2019_00119
crossref_primary_10_1177_0271678X20961852
crossref_primary_10_1038_s41467_025_62299_4
crossref_primary_10_1016_j_jbc_2021_100877
crossref_primary_10_1016_j_pneurobio_2020_101916
crossref_primary_10_1242_jcs_259234
crossref_primary_10_3389_fphar_2021_718679
crossref_primary_10_1016_j_fct_2022_113394
crossref_primary_10_1002_bies_70050
crossref_primary_10_1242_dev_184069
crossref_primary_10_3389_fnmol_2019_00270
crossref_primary_10_1097_PSY_0000000000001147
crossref_primary_10_1016_j_semcdb_2022_07_001
crossref_primary_10_3390_biomedicines11061731
crossref_primary_10_3390_cells10010118
crossref_primary_10_3390_ijms241914998
crossref_primary_10_1007_s11010_023_04691_6
crossref_primary_10_3389_fimmu_2023_1206906
crossref_primary_10_1002_hipo_23417
crossref_primary_10_7554_eLife_64773
crossref_primary_10_1146_annurev_neuro_070918_050208
crossref_primary_10_1007_s10565_021_09618_9
crossref_primary_10_3389_fcell_2025_1612555
crossref_primary_10_1016_j_conb_2018_08_004
crossref_primary_10_3389_fcell_2021_692888
crossref_primary_10_7554_eLife_96041
crossref_primary_10_1093_cercor_bhad243
crossref_primary_10_1186_s13578_022_00864_w
crossref_primary_10_3389_fncel_2018_00447
crossref_primary_10_1007_s00018_018_2981_y
crossref_primary_10_4103_NRR_NRR_D_24_00684
crossref_primary_10_7554_eLife_64767
crossref_primary_10_1038_s41583_020_00415_7
crossref_primary_10_1073_pnas_2207433119
crossref_primary_10_1038_s41467_025_61318_8
crossref_primary_10_1016_j_gene_2021_145607
crossref_primary_10_1016_j_bbrc_2020_11_119
crossref_primary_10_1016_j_molcel_2018_11_013
crossref_primary_10_1002_adfm_202003542
crossref_primary_10_3390_ijms21145170
crossref_primary_10_1002_aisy_202400055
crossref_primary_10_1126_science_aba3203
crossref_primary_10_1091_mbc_E23_01_0003
crossref_primary_10_3389_fneur_2024_1513132
crossref_primary_10_3389_fncir_2023_1155195
crossref_primary_10_1016_j_conb_2020_09_003
crossref_primary_10_1016_j_devcel_2023_07_012
crossref_primary_10_1016_j_exer_2022_109054
crossref_primary_10_1016_j_jhazmat_2021_125836
crossref_primary_10_1371_journal_pbio_3002710
crossref_primary_10_1111_ejn_15742
crossref_primary_10_1038_s41536_020_0096_1
crossref_primary_10_7554_eLife_48718
crossref_primary_10_7554_eLife_96041_3
crossref_primary_10_1016_j_ydbio_2018_12_005
crossref_primary_10_1186_s12864_019_6110_6
crossref_primary_10_1016_j_pneurobio_2024_102575
crossref_primary_10_1016_j_tem_2021_05_004
crossref_primary_10_1242_dev_202788
crossref_primary_10_3390_cells10051215
crossref_primary_10_1002_2211_5463_13076
crossref_primary_10_1002_cns3_2
crossref_primary_10_1002_dvdy_459
crossref_primary_10_1016_j_biomaterials_2025_123329
crossref_primary_10_1016_j_ydbio_2024_04_001
crossref_primary_10_3389_fnmol_2021_759404
ContentType Journal Article
Copyright 2018. Published by The Company of Biologists Ltd.
Copyright_xml – notice: 2018. Published by The Company of Biologists Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1242/dev.151415
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
ExternalDocumentID 29759980
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
ABZEH
ACGFS
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
NPM
O9-
OK1
P2P
R.V
RCB
RHF
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XSW
7X8
ID FETCH-LOGICAL-c351t-12f93ecc979296e7182f1e1fc7f700b1f64b2a47bc5e13099cd7683a96062c452
IEDL.DBID 7X8
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438949400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1477-9129
IngestDate Sun Nov 09 13:55:45 EST 2025
Wed Feb 19 02:43:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Guidance cues
Local translation
MicroRNA
Vesicular transport
Axon guidance
Neural development
Language English
License 2018. Published by The Company of Biologists Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-12f93ecc979296e7182f1e1fc7f700b1f64b2a47bc5e13099cd7683a96062c452
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8485-0648
OpenAccessLink https://dev.biologists.org/content/develop/145/10/dev151415.full.pdf
PMID 29759980
PQID 2039286953
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2039286953
pubmed_primary_29759980
PublicationCentury 2000
PublicationDate 20180515
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 20180515
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2018
SSID ssj0003677
Score 2.6410515
SecondaryResourceType review_article
Snippet During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Animals
Axon Guidance - physiology
Axons - metabolism
Cell Movement - physiology
Growth Cones - metabolism
Humans
Mice
Nervous System Diseases - pathology
Netrin Receptors - metabolism
Netrins - metabolism
Neurons - physiology
Protein Transport
Signal Transduction - physiology
Title Understanding axon guidance: are we nearly there yet?
URI https://www.ncbi.nlm.nih.gov/pubmed/29759980
https://www.proquest.com/docview/2039286953
Volume 145
WOSCitedRecordID wos000438949400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAAmLhUV7lJSOxBuLEdmyWCiEqBlp1oFLFErl-oC5J6Qv67zknqcqChMSSwZKl5O6zv-988R1CNyFXyjpBAy5CF1DOQ1hS0gSUGakMi0DhFp5-STod0e_LbnXgNql-q1zuicVGbXLtz8ghSAcmF1yyuDn6CHzXKJ9drVporKNaDFLGozrpr6qFx7zovEioT1MCsVXlSYGV7oyd3wLZUcJ-l5YFxbT2_vty-2i3Epf4oUTDAVqzWR1tle0mF3W03a4S6TD4lheDh4j1fl5vweorz_D7bGg8Gu6xGlv8aXFmfR1k7MWixQs7bR6hXuvp9fE5qHopBDpmZBqQyMkY3CUT0EPcAiNFjljidOKSMBwQx-kgUjQZaGaB1qTUBtwUKx_gRJqy6BhtZHlmTxEWBr4VJofaMgiuySABSSGFL8wPwYmwDXS9NFIKWPUJCJXZfDZJV2ZqoJPS0umoLKqR-hu-EPqFZ3-YfY52QLcIn8Qn7ALVHKxUe4k29Xw6nIyvChDAs9NtfwPiNLjH
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+axon+guidance%3A+are+we+nearly+there+yet%3F&rft.jtitle=Development+%28Cambridge%29&rft.au=Stoeckli%2C+Esther+T&rft.date=2018-05-15&rft.eissn=1477-9129&rft.volume=145&rft.issue=10&rft_id=info:doi/10.1242%2Fdev.151415&rft_id=info%3Apmid%2F29759980&rft_id=info%3Apmid%2F29759980&rft.externalDocID=29759980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9129&client=summon