Adaptive Interleaved Reinforcement Learning: Robust Stability of Affine Nonlinear Systems With Unknown Uncertainty

This article investigates adaptive robust controller design for discrete-time (DT) affine nonlinear systems using an adaptive dynamic programming. A novel adaptive interleaved reinforcement learning algorithm is developed for finding a robust controller of DT affine nonlinear systems subject to matc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 33; číslo 1; s. 270 - 280
Hlavní autori: Li, Jinna, Ding, Jinliang, Chai, Tianyou, Lewis, Frank L., Jagannathan, Sarangapani
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article investigates adaptive robust controller design for discrete-time (DT) affine nonlinear systems using an adaptive dynamic programming. A novel adaptive interleaved reinforcement learning algorithm is developed for finding a robust controller of DT affine nonlinear systems subject to matched or unmatched uncertainties. To this end, the robust control problem is converted into the optimal control problem for nominal systems by selecting an appropriate utility function. The performance evaluation and control policy update combined with neural networks approximation are alternately implemented at each time step for solving a simplified Hamilton-Jacobi-Bellman (HJB) equation such that the uniformly ultimately bounded (UUB) stability of DT affine nonlinear systems can be guaranteed, allowing for all realization of unknown bounded uncertainties. The rigorously theoretical proofs of convergence of the proposed interleaved RL algorithm and UUB stability of uncertain systems are provided. Simulation results are given to verify the effectiveness of the proposed method.
AbstractList This article investigates adaptive robust controller design for discrete-time (DT) affine nonlinear systems using an adaptive dynamic programming. A novel adaptive interleaved reinforcement learning algorithm is developed for finding a robust controller of DT affine nonlinear systems subject to matched or unmatched uncertainties. To this end, the robust control problem is converted into the optimal control problem for nominal systems by selecting an appropriate utility function. The performance evaluation and control policy update combined with neural networks approximation are alternately implemented at each time step for solving a simplified Hamilton-Jacobi-Bellman (HJB) equation such that the uniformly ultimately bounded (UUB) stability of DT affine nonlinear systems can be guaranteed, allowing for all realization of unknown bounded uncertainties. The rigorously theoretical proofs of convergence of the proposed interleaved RL algorithm and UUB stability of uncertain systems are provided. Simulation results are given to verify the effectiveness of the proposed method.
This article investigates adaptive robust controller design for discrete-time (DT) affine nonlinear systems using an adaptive dynamic programming. A novel adaptive interleaved reinforcement learning algorithm is developed for finding a robust controller of DT affine nonlinear systems subject to matched or unmatched uncertainties. To this end, the robust control problem is converted into the optimal control problem for nominal systems by selecting an appropriate utility function. The performance evaluation and control policy update combined with neural networks approximation are alternately implemented at each time step for solving a simplified Hamilton-Jacobi-Bellman (HJB) equation such that the uniformly ultimately bounded (UUB) stability of DT affine nonlinear systems can be guaranteed, allowing for all realization of unknown bounded uncertainties. The rigorously theoretical proofs of convergence of the proposed interleaved RL algorithm and UUB stability of uncertain systems are provided. Simulation results are given to verify the effectiveness of the proposed method.This article investigates adaptive robust controller design for discrete-time (DT) affine nonlinear systems using an adaptive dynamic programming. A novel adaptive interleaved reinforcement learning algorithm is developed for finding a robust controller of DT affine nonlinear systems subject to matched or unmatched uncertainties. To this end, the robust control problem is converted into the optimal control problem for nominal systems by selecting an appropriate utility function. The performance evaluation and control policy update combined with neural networks approximation are alternately implemented at each time step for solving a simplified Hamilton-Jacobi-Bellman (HJB) equation such that the uniformly ultimately bounded (UUB) stability of DT affine nonlinear systems can be guaranteed, allowing for all realization of unknown bounded uncertainties. The rigorously theoretical proofs of convergence of the proposed interleaved RL algorithm and UUB stability of uncertain systems are provided. Simulation results are given to verify the effectiveness of the proposed method.
Author Ding, Jinliang
Chai, Tianyou
Li, Jinna
Lewis, Frank L.
Jagannathan, Sarangapani
Author_xml – sequence: 1
  givenname: Jinna
  orcidid: 0000-0001-9985-6308
  surname: Li
  fullname: Li, Jinna
  email: lijinna_721@126.com
  organization: School of Information and Control Engineering, Liaoning Shihua University, Fushun, China
– sequence: 2
  givenname: Jinliang
  orcidid: 0000-0003-3735-0672
  surname: Ding
  fullname: Ding, Jinliang
  email: jlding@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Tianyou
  orcidid: 0000-0002-4623-1483
  surname: Chai
  fullname: Chai, Tianyou
  email: tychai@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Frank L.
  orcidid: 0000-0003-4074-1615
  surname: Lewis
  fullname: Lewis, Frank L.
  email: lewis@uta.edu
  organization: UTA Research Institute, The University of Texas at Arlington, Arlington, TX, USA
– sequence: 5
  givenname: Sarangapani
  orcidid: 0000-0002-2310-3737
  surname: Jagannathan
  fullname: Jagannathan, Sarangapani
  email: sarangap@mst.edu
  organization: Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33112750$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvbPwASssSGTVI_xo9hF1UFKkVBalrBbuTx3AGXGTvYnlb597gkZNEFd3Ou5O_Y1jmv0ZEPHhB6Q8mcUlJf3K5Wy_WcEUbmnDAlBX-BThiVbMa41keHXX0_Rucp3ZMykghZ1a_QMeeUMiXICYqLzmyyewB87TPEAcwDdPgGnO9DtDCCz3gJJnrnf3zEN6GdUsbrbFo3uLzFoceLvnce8Cr4oaiJeL1NGcaEv7n8E9_5Xz48-qIWYjbO5-0ZetmbIcH5Xk_R3aer28svs-XXz9eXi-XMckHzjDLDaGVIZXUtjGqJoiCVVFxZQmtidNW2YKXSndUtqbu2r4jlkgsgnRV1xU_Rh929mxh-T5ByM7pkYRiMhzClhlVC6KpEoQv6_hl6H6boy-8aJqlUVEspC_VuT03tCF2ziW40cdv8S7MAbAfYGFKK0B8QSpqn1pq_rTVPrTX71opJPzNZl012wedo3PB_69ud1QHA4a2aVVSV0z-CwqSZ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1049_rsn2_12111
crossref_primary_10_1109_TPEL_2025_3569821
crossref_primary_10_1109_TVT_2024_3476954
crossref_primary_10_1007_s40313_024_01143_4
crossref_primary_10_1016_j_oceaneng_2024_117920
crossref_primary_10_1109_TFUZZ_2022_3141749
crossref_primary_10_1109_TCYB_2024_3358739
crossref_primary_10_1016_j_isatra_2022_06_026
crossref_primary_10_1016_j_engappai_2024_108077
crossref_primary_10_1109_TCYB_2023_3338197
crossref_primary_10_1109_JAS_2024_124707
crossref_primary_10_1016_j_automatica_2025_112594
crossref_primary_10_1155_2021_5535213
crossref_primary_10_1109_TNNLS_2022_3153028
crossref_primary_10_1109_TCYB_2024_3440333
crossref_primary_10_1109_TNNLS_2023_3335138
crossref_primary_10_1016_j_ins_2023_119132
crossref_primary_10_1002_asjc_2830
crossref_primary_10_1109_TNNLS_2024_3395767
crossref_primary_10_1016_j_automatica_2023_111154
crossref_primary_10_1049_cth2_12520
crossref_primary_10_1109_TCYB_2023_3312491
crossref_primary_10_1016_j_jfranklin_2024_106659
crossref_primary_10_1016_j_oceaneng_2022_111361
crossref_primary_10_1109_TNNLS_2022_3226518
crossref_primary_10_1049_rsn2_12254
crossref_primary_10_1016_j_jfranklin_2023_10_002
crossref_primary_10_1109_TCYB_2023_3283771
crossref_primary_10_1109_TII_2024_3485724
crossref_primary_10_1016_j_engappai_2025_110443
crossref_primary_10_1080_00207721_2025_2515227
crossref_primary_10_1109_TFUZZ_2024_3352590
crossref_primary_10_1016_j_neucom_2024_127631
crossref_primary_10_1109_TCSI_2024_3418432
crossref_primary_10_1109_TNNLS_2021_3135405
crossref_primary_10_1016_j_neunet_2024_106274
crossref_primary_10_1109_TCSII_2022_3219255
crossref_primary_10_1109_TNNLS_2025_3549725
crossref_primary_10_1109_TCSI_2024_3520964
crossref_primary_10_1109_JAS_2023_123651
crossref_primary_10_1007_s11071_025_10946_2
crossref_primary_10_1002_cta_4180
crossref_primary_10_1016_j_robot_2024_104822
crossref_primary_10_3390_en17143438
crossref_primary_10_1109_TCSI_2022_3206102
crossref_primary_10_1109_TNNLS_2021_3123444
crossref_primary_10_1002_acs_3793
crossref_primary_10_1080_00207179_2023_2267701
crossref_primary_10_3390_math10152744
crossref_primary_10_1109_TCYB_2024_3491582
crossref_primary_10_1109_TII_2022_3151797
crossref_primary_10_1016_j_isatra_2024_08_024
crossref_primary_10_1109_TNNLS_2022_3148376
crossref_primary_10_1016_j_isatra_2023_11_011
crossref_primary_10_1016_j_neucom_2024_128412
crossref_primary_10_3390_act13060204
crossref_primary_10_1049_cth2_12545
crossref_primary_10_1109_JAS_2023_123843
crossref_primary_10_1109_ACCESS_2022_3171825
crossref_primary_10_1002_rnc_7451
crossref_primary_10_1002_rnc_8023
Cites_doi 10.1109/TSMCB.2012.2203336
10.1109/TCYB.2018.2833805
10.1109/TNNLS.2013.2294968
10.1201/9781420015454
10.1109/TSMC.2015.2466191
10.1109/TAC.2019.2926167
10.1007/s00500-013-1062-2
10.1109/TNNLS.2014.2346233
10.1109/TII.2017.2761852
10.1016/j.neunet.2006.08.010
10.1016/j.neucom.2020.02.025
10.1109/TNNLS.2014.2320744
10.1109/TNN.2007.900227
10.1109/TNN.2009.2027233
10.1109/TNNLS.2016.2609500
10.1109/TNNLS.2018.2861945
10.1109/MCAS.2009.933854
10.1016/j.automatica.2016.05.008
10.1109/TCYB.2015.2417170
10.1016/0005-1098(86)90045-2
10.1109/TCYB.2014.2354377
10.1109/TASE.2013.2296206
10.1016/0167-6911(87)90102-2
10.1080/00207170802187239
10.1109/TCYB.2018.2821369
10.1109/TNNLS.2015.2472974
10.1109/TNNLS.2017.2749641
10.1109/TASE.2013.2280974
10.1080/002071700219722
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3027653
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 280
ExternalDocumentID 33112750
10_1109_TNNLS_2020_3027653
9241753
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61525302; 61833004; 61673280; 62073158
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1701104
  funderid: 10.13039/501100012166
– fundername: Open Project of Key Field Alliance of Liaoning Province
  grantid: 2019-KF-03-06
– fundername: Xingliao Plan of Liaoning Province
  grantid: XLYC1808001
– fundername: Science and Technology Program of Liaoning Province
  grantid: 2020JH2/10500001
– fundername: Project of Liaoning Shihua University
  grantid: 2018XJJ-005
  funderid: 10.13039/501100016101
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-12a214a04c895a7b071e676737c0190a84bbec678dc8b09dbf40c3635e0dc5943
IEDL.DBID RIE
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739635300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 11:46:51 EDT 2025
Sun Nov 30 04:38:18 EST 2025
Thu Jan 02 22:57:10 EST 2025
Sat Nov 29 01:40:09 EST 2025
Tue Nov 18 22:42:18 EST 2025
Wed Aug 27 03:03:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-12a214a04c895a7b071e676737c0190a84bbec678dc8b09dbf40c3635e0dc5943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2310-3737
0000-0003-3735-0672
0000-0001-9985-6308
0000-0003-4074-1615
0000-0002-4623-1483
PMID 33112750
PQID 2616718666
PQPubID 85436
PageCount 11
ParticipantIDs proquest_miscellaneous_2455843318
ieee_primary_9241753
crossref_primary_10_1109_TNNLS_2020_3027653
crossref_citationtrail_10_1109_TNNLS_2020_3027653
proquest_journals_2616718666
pubmed_primary_33112750
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
2022-Jan
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1109/TSMCB.2012.2203336
– ident: ref1
  doi: 10.1109/TCYB.2018.2833805
– ident: ref2
  doi: 10.1109/TNNLS.2013.2294968
– ident: ref18
  doi: 10.1201/9781420015454
– ident: ref20
  doi: 10.1109/TSMC.2015.2466191
– ident: ref17
  doi: 10.1109/TAC.2019.2926167
– ident: ref26
  doi: 10.1007/s00500-013-1062-2
– ident: ref12
  doi: 10.1109/TNNLS.2014.2346233
– ident: ref25
  doi: 10.1109/TII.2017.2761852
– ident: ref29
  doi: 10.1016/j.neunet.2006.08.010
– ident: ref16
  doi: 10.1016/j.neucom.2020.02.025
– ident: ref7
  doi: 10.1109/TNNLS.2014.2320744
– ident: ref19
  doi: 10.1109/TNN.2007.900227
– ident: ref21
  doi: 10.1109/TNN.2009.2027233
– ident: ref23
  doi: 10.1109/TNNLS.2016.2609500
– ident: ref24
  doi: 10.1109/TNNLS.2018.2861945
– ident: ref9
  doi: 10.1109/MCAS.2009.933854
– ident: ref11
  doi: 10.1016/j.automatica.2016.05.008
– ident: ref14
  doi: 10.1109/TCYB.2015.2417170
– ident: ref4
  doi: 10.1016/0005-1098(86)90045-2
– ident: ref28
  doi: 10.1109/TCYB.2014.2354377
– ident: ref13
  doi: 10.1109/TASE.2013.2296206
– ident: ref3
  doi: 10.1016/0167-6911(87)90102-2
– ident: ref6
  doi: 10.1080/00207170802187239
– ident: ref8
  doi: 10.1109/TCYB.2018.2821369
– ident: ref10
  doi: 10.1109/TNNLS.2015.2472974
– ident: ref15
  doi: 10.1109/TNNLS.2017.2749641
– ident: ref22
  doi: 10.1109/TASE.2013.2280974
– ident: ref5
  doi: 10.1080/002071700219722
SSID ssj0000605649
Score 2.5991037
Snippet This article investigates adaptive robust controller design for discrete-time (DT) affine nonlinear systems using an adaptive dynamic programming. A novel...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 270
SubjectTerms Adaptive learning
Adaptive systems
Algorithms
Control systems design
Controllers
Discrete time systems
Dynamic programming
Interleaved reinforcement learning
Linear systems
Machine learning
Neural networks
neural networks (NNs)
Nonlinear systems
Optimal control
Performance evaluation
Reinforcement
Robust control
Robust stability
Stability
System effectiveness
uncertain systems
Uncertainty
Title Adaptive Interleaved Reinforcement Learning: Robust Stability of Affine Nonlinear Systems With Unknown Uncertainty
URI https://ieeexplore.ieee.org/document/9241753
https://www.ncbi.nlm.nih.gov/pubmed/33112750
https://www.proquest.com/docview/2616718666
https://www.proquest.com/docview/2455843318
Volume 33
WOSCitedRecordID wos000739635300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9VAFD60xYUba63a9MUI7jQ2yUzm4e4iFhclSG317sK8ooWSlHtzC_33PTN5gKCCqwxk8oDzzcx3zsz5DsBbLnDSo86mlhc6ZULQ1OAykRpPS0VLJ1VU5_9-IapKLpfq6xa8n3NhvPfx8Jn_EJpxL991dhNCZWfoKwRhyW3YFoIPuVpzPCVDXs4j2y1yXqQFFcspRyZTZ1dVdfENvcECnVR0xHgZ6udQmkd589-WpFhj5e90My4757v_98PP4dlIL8liwMMebPn2BexOpRvIOJL3YbVw-i7MdCSGBG-9vveOXPqoo2pjyJCM0qs_P5LLzmzWPUFiGo_SPpCuIYumQYJKqkFqQ-O7B-1z8uOm_0Wu2xCsa_FqhzMH_cNLuD7_fPXpSzqWX0gtLfM-zQtd5ExnzEpVamGQjPgg70aFDQnoWjKDAMDFzllpMuVMwzJLkcD4zNlSMfoKdtqu9QdAGh62J70z1jtmFNNcYctxroyWheYJ5JMFajtqk4cSGbd19FEyVUcD1sGA9WjABN7Nz9wNyhz_7L0fzDP3HC2TwPFk6HocvOsanUqEsETHLoE3820cdmEvRbe-22AfViJ1QwTJBF4PAJnfPeHq8M_fPIKnRcihiHGcY9jpVxt_Ak_sfX-zXp0itpfyNGL7EagS8zM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_MKeiLU-dHdWoE37Rbm6Rps7fLcEy8Fpl3et9KvqqD0Y57ewf77z1JP2Cgwp4aaJoGzknO75zk_A7Ae5HjpsesiY2gKuZ5zmKNZiLWjmWSZbaQgZ3_xzwvy2K5lN-24OOUC-OcC5fP3L5vhrN825qND5UdoK_giSXvwN2Mc5r02VpTRCVBZC4C3qWpoDFl-XLMkknkwaIs59_RH6TopqIrJjJfQYexNBCc3zBKocrKvwFnMDzHO7eb8iN4OABMMus14jFsueYJ7IzFG8iwlndhNbPq0u91JAQFL5y6cpacusCkakLQkAzkq78OyWmrN-uOIDQNl2mvSVuTWV0jRCVlT7ahcOye_Zz8PO9-k7PGh-safJr-1kF3_RTOjj8tjk7ioQBDbFiWdnFKFU25SrgpZKZyjXDEeYI3lhufgq4KrlEF0NxZU-hEWl3zxDCEMC6xJpOcPYPtpm3cCyC18AeUzmrjLNeSKyGxZYWQWhVUiQjSUQKVGdjJfZGMiyp4KYmsggArL8BqEGAEH6ZvLntujv_23vXimXoOkolgbxR0NSzfdYVuJSpxga5dBO-m17jw_GmKaly7wT48Q_CGGlRE8LxXkGnsUa9e_v2fb-H-yeLrvJp_Lr-8ggfUZ1SEqM4ebHerjXsN98xVd75evQka_ge1TvWS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Interleaved+Reinforcement+Learning%3A+Robust+Stability+of+Affine+Nonlinear+Systems+With+Unknown+Uncertainty&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Jinna&rft.au=Ding%2C+Jinliang&rft.au=Chai%2C+Tianyou&rft.au=Lewis%2C+Frank+L&rft.date=2022-01-01&rft.eissn=2162-2388&rft.volume=33&rft.issue=1&rft.spage=270&rft_id=info:doi/10.1109%2FTNNLS.2020.3027653&rft_id=info%3Apmid%2F33112750&rft.externalDocID=33112750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon