Learning Representations for Facial Actions From Unlabeled Videos
Facial actions are usually encoded as anatomy-based action units (AUs), the labelling of which demands expertise and thus is time-consuming and expensive. To alleviate the labelling demand, we propose to leverage the large number of unlabelled videos by proposing a twin-cycle autoencoder (TAE) to le...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 44; číslo 1; s. 302 - 317 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!