Persistence Paths and Signature Features in Topological Data Analysis
We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition o...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 42; číslo 1; s. 192 - 202 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations-barcode to path, path to tensor series-results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2018.2885516 |