Persistence Paths and Signature Features in Topological Data Analysis
We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition o...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 1; pp. 192 - 202 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations-barcode to path, path to tensor series-results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks. |
|---|---|
| AbstractList | We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations—barcode to path, path to tensor series—results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks. We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations-barcode to path, path to tensor series-results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks.We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations-barcode to path, path to tensor series-results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks. |
| Author | Chevyrev, Ilya Oberhauser, Harald Nanda, Vidit |
| Author_xml | – sequence: 1 givenname: Ilya orcidid: 0000-0002-5630-9694 surname: Chevyrev fullname: Chevyrev, Ilya email: chevyrev@maths.ox.ac.uk organization: Mathematical Institute, University of Oxford, Oxford, OX1 2JD, United Kingdom – sequence: 2 givenname: Vidit orcidid: 0000-0001-9243-6749 surname: Nanda fullname: Nanda, Vidit email: nanda@maths.ox.ac.uk organization: Mathematical Institute, University of Oxford, Oxford, United Kingdom – sequence: 3 givenname: Harald surname: Oberhauser fullname: Oberhauser, Harald email: oberhauser@maths.ox.ac.uk organization: Mathematical Institute, University of Oxford, Oxford, OX1 2JD, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30530312$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1PIzEQhi0EgsDxBzjptBINzeY8duz1lhHfEohIl6stxzvhjDZ2zvYW_HscEigoaGaa5xnNzHtM9n3wSMgZ0DEAbX_PZ9PH-zGjoMZMKSFA7pERA0nrlrVsn4woSFYrxdQROU7phVKYCMoPyRGnglMObESuZxiTSxm9xWpm8r9UGd9Vf9yzN3mIWN3ge0-V89U8rEMfnp01fXVlsqmm3vSvRf9BDpamT3i66yfk7831_PKufni6vb-cPtSWC8g1ACjKUKiukdQauQDeNcyimXRgbGO5lWiVFK2Eco5gVLSdsou2A7uQnVryE3KxnbuO4f-AKeuVSxb73ngMQ9IMyhfEphb0_Av6EoZY9i0UZ6yZNA3lhfq1o4bFCju9jm5l4qv-eFAB1BawMaQUcamtyya74HM0rtdA9SYL_Z6F3mShd1kUlX1RP6Z_K_3cSg4RPwUlZNMyxt8A-8-Svw |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_3389_fphys_2021_637684 crossref_primary_10_3390_app14052197 crossref_primary_10_1016_j_aam_2020_102102 crossref_primary_10_1214_24_BA1435 crossref_primary_10_1007_s10444_021_09893_4 crossref_primary_10_1016_j_asoc_2024_111691 crossref_primary_10_1016_j_bspc_2023_105760 crossref_primary_10_1007_s10208_022_09567_7 crossref_primary_10_1007_s10618_024_01068_1 crossref_primary_10_1007_s10462_024_10710_9 crossref_primary_10_3934_fods_2022002 crossref_primary_10_1109_TPAMI_2022_3217443 crossref_primary_10_3389_frai_2021_681108 crossref_primary_10_1007_s00607_023_01154_0 crossref_primary_10_1007_s10915_023_02401_4 crossref_primary_10_1093_gigascience_giad094 crossref_primary_10_1097_CCM_0000000000004510 crossref_primary_10_1016_j_knosys_2025_113125 crossref_primary_10_1007_s10994_025_06874_2 crossref_primary_10_1109_TPAMI_2023_3308391 crossref_primary_10_1109_LSENS_2024_3488331 crossref_primary_10_1016_j_spa_2025_104661 crossref_primary_10_1007_s10994_023_06492_w crossref_primary_10_1016_j_media_2021_102267 crossref_primary_10_1016_j_ins_2022_12_098 crossref_primary_10_1080_13658816_2022_2155654 crossref_primary_10_1109_ACCESS_2022_3229008 |
| Cites_doi | 10.1090/surv/209 10.1016/j.aim.2016.02.011 10.1111/j.1365-2966.2011.18394.x 10.1007/BF02698687 10.1109/ICPR.2002.1044854 10.2140/agt.2007.7.339 10.1007/s00454-013-9529-6 10.1007/s13160-014-0153-5 10.2969/jmsj/06841505 10.4310/HHA.2016.v18.n1.a21 10.1007/978-3-319-42545-0 10.1093/imaiai/iau011 10.1007/s00454-006-1276-5 10.1090/conm/620/12367 10.1090/S0273-0979-07-01191-3 10.1016/j.jsc.2016.03.009 10.1007/978-3-642-40193-0_6 10.1007/s10208-014-9206-z 10.1017/CBO9780511845079 10.1214/15-AOP1068 10.1109/ICPR.2016.7899780 10.1007/978-3-319-23231-7_27 10.1007/s00454-004-1146-y 10.1002/jcc.23816 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2018.2885516 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 202 |
| ExternalDocumentID | 30530312 10_1109_TPAMI_2018_2885516 8567922 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Alan Turing Institute grantid: EP/N510129/1 funderid: 10.13039/100012338 – fundername: Institute for Advanced Study funderid: 10.13039/100005235 – fundername: Oxford-Man Institute of Quantitative Finance – fundername: Junior Research Fellowship of St John's College, Oxford |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-111802e58d760ca6b13d72cea4d1ac7c3c6ec86596185552059d8cb9d1cb6d8f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502294300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 02:48:33 EDT 2025 Sun Nov 09 06:56:10 EST 2025 Wed Feb 19 02:30:31 EST 2025 Sat Nov 29 05:15:58 EST 2025 Tue Nov 18 21:24:08 EST 2025 Wed Aug 27 02:38:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-111802e58d760ca6b13d72cea4d1ac7c3c6ec86596185552059d8cb9d1cb6d8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5630-9694 0000-0001-9243-6749 |
| PMID | 30530312 |
| PQID | 2322747703 |
| PQPubID | 85458 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2018_2885516 pubmed_primary_30530312 crossref_primary_10_1109_TPAMI_2018_2885516 proquest_miscellaneous_2155152155 proquest_journals_2322747703 ieee_primary_8567922 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jan.-1 2020-1-1 2020-Jan 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan.-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 király (ref13) 2016 ref10 ref2 carrière (ref15) 0 ref1 ref17 pedregosa (ref32) 2011; 12 ref16 bubenik (ref11) 2015; 16 lyons (ref18) 2004; 1908 simon-gabriel (ref30) 2018; 19 chevyrev (ref31) 2018 zielinski (ref36) 2018 ref24 ref23 ref26 adams (ref33) 2017; 18 ref25 ref20 ref21 hatcher (ref19) 2002 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ghrist (ref22) 2016 adams (ref14) 2017; 18 |
| References_xml | – ident: ref3 doi: 10.1090/surv/209 – ident: ref27 doi: 10.1016/j.aim.2016.02.011 – volume: 18 start-page: 218 year: 2017 ident: ref33 article-title: Persistence images: A stable vector representation of persistent homology publication-title: Journal of Machine Learning Research – ident: ref6 doi: 10.1111/j.1365-2966.2011.18394.x – year: 2018 ident: ref36 article-title: Persistence codebooks for topological data analysis publication-title: ArXiv e-prints – volume: 19 start-page: 1 year: 2018 ident: ref30 article-title: Kernel distribution embeddings: Universal kernels, characteristic kernels and kernel metrics on distributions publication-title: J Mach Learn Res – ident: ref24 doi: 10.1007/BF02698687 – start-page: 6 year: 0 ident: ref15 article-title: Sliced Wasserstein kernel for persistence diagrams publication-title: Proc 34th Int Conf Mach Learn – ident: ref35 doi: 10.1109/ICPR.2002.1044854 – ident: ref7 doi: 10.2140/agt.2007.7.339 – ident: ref21 doi: 10.1007/s00454-013-9529-6 – ident: ref5 doi: 10.1007/s13160-014-0153-5 – volume: 12 start-page: 2825 year: 2011 ident: ref32 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref28 doi: 10.2969/jmsj/06841505 – ident: ref16 doi: 10.4310/HHA.2016.v18.n1.a21 – year: 2018 ident: ref31 article-title: Signature moments to characterize laws of stochastic processes publication-title: ArXiv e-prints – ident: ref10 doi: 10.1007/978-3-319-42545-0 – volume: 16 start-page: 77 year: 2015 ident: ref11 article-title: Statistical topological data analysis using persistence landscapes publication-title: J Mach Learn Res – year: 2002 ident: ref19 publication-title: Algebraic Topology – ident: ref12 doi: 10.1093/imaiai/iau011 – year: 2016 ident: ref22 article-title: Matroid filtrations and computational persistent homology publication-title: arXiv 1606 00199v2[math at] – ident: ref23 doi: 10.1007/s00454-006-1276-5 – ident: ref26 doi: 10.1090/conm/620/12367 – ident: ref1 doi: 10.1090/S0273-0979-07-01191-3 – year: 2016 ident: ref13 article-title: Kernels for sequentially ordered data publication-title: ArXiv e-prints 1601 08169 – volume: 18 start-page: 218 year: 2017 ident: ref14 article-title: Persistence images: A stable vector representation of persistent homology publication-title: Journal of Machine Learning Research – ident: ref34 doi: 10.1016/j.jsc.2016.03.009 – ident: ref2 doi: 10.1007/978-3-642-40193-0_6 – ident: ref4 doi: 10.1007/s10208-014-9206-z – ident: ref25 doi: 10.1017/CBO9780511845079 – ident: ref29 doi: 10.1214/15-AOP1068 – volume: 1908 year: 2004 ident: ref18 article-title: Differential equations driven by rough paths – ident: ref9 doi: 10.1109/ICPR.2016.7899780 – ident: ref17 doi: 10.1007/978-3-319-23231-7_27 – ident: ref20 doi: 10.1007/s00454-004-1146-y – ident: ref8 doi: 10.1002/jcc.23816 |
| SSID | ssj0014503 |
| Score | 2.5615509 |
| Snippet | We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 192 |
| SubjectTerms | Algebra Bar codes barcodes Bars Data analysis Extraterrestrial measurements Feature maps Homology Kernel kernel learning Mathematical analysis signature features Tensors Topological data analysis Vector space |
| Title | Persistence Paths and Signature Features in Topological Data Analysis |
| URI | https://ieeexplore.ieee.org/document/8567922 https://www.ncbi.nlm.nih.gov/pubmed/30530312 https://www.proquest.com/docview/2322747703 https://www.proquest.com/docview/2155152155 |
| Volume | 42 |
| WOSCitedRecordID | wos000502294300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5URPTg-1FdJYI3rbt9pEmPoit6UBZcYW8lTVJZkK64u_5-Z9IHCip4aQtJ05KZSb7JJPMBnEWiZ6W02jd5nPoxzyM_p5irMrbgIi9sbLUjmxCPj3I0SgcLcNGehbHWus1n9pIeXSzfTPSclsq6kiciDXHAXRRCVGe12ohBzB0LMiIYtHB0I5oDMr20OxxcPdzTLi55GUpJkaFVWEE9x9E7CL_NR45g5Xes6eac243__e0mrNfYkl1VyrAFC7bcho2Gt4HVZrwNa1-SEO5AnzbBk7CxjA0QEE6ZKg17Gr9UST8ZoUS8T9m4ZMOKU4Eky27UTLEmqckuPN_2h9d3fk2u4OuIBzM_cLnfLJdGJD2tkjyIjAi1VbEJlBY60onVMuHECMM5DxGGGanz1AQ6T4wsoj1YKielPQCWBgZdXVHEoRZxohDEFbGQ1GBKyWekB0HTxZmuM48TAcZr5jyQXpo5CWUkoayWkAfn7TtvVd6NP2vvUP-3Neuu96DTSDKrTXOaIYQkTxxHOg9O22I0KoqUqNJO5liHgCSnqwf7lQa0bTeKc_jzN49gNSSX3K3SdGBp9j63x7CsP2bj6fsJau5InjjN_QQnWOXI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hNgF7oKzAlg2YJ_EGgTixY-cRMRAVpaq0TuItcmwHVUIpIu3-_vmcHxoSm8RLEsmOE_nu7O989n0Ax4mIrJRWh6ZgWch4kYQFxlyVsSUXRWmZ1Z5sQkwm8v4-m67BaX8WxlrrN5_ZM3z0sXyz0CtcKjuXPBVZ7Abcd5yxmDantfqYAeOeB9lhGGfjzpHojshE2flsenE3wn1c8iyWEmNDW7DhNN2N3zR-MSN5ipV_o00_61wP3va_O7Ddokty0ajDR1iz1RAGHXMDaQ15CB_-SkO4C1e4DR7F7crI1EHCmqjKkJ_zhybtJ0Gc6O41mVdk1rAqoGzJD7VUpEtrsge_rq9mlzdhS68Q6oTTZUh99jfLpRFppFVa0MSIWFvFDFVa6ESnVsuUIycM5zx2QMxIXWSG6iI1skz2Yb1aVPYzkIwa5-yKksVasFQ5GFcyIbHBDNPPyABo18W5bnOPIwXGY-59kCjLvYRylFDeSiiAk_6dpybzxn9r72L_9zXbrg_goJNk3hpnnTsQib64G-sC-N4XO7PCWImq7GLl6iCU5HgN4FOjAX3bneJ8ef2b32DzZnY3zsejye1X2IrRQfdrNgewvnxe2UN4r38v5_XzkdffP9q_6Cc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistence+Paths+and+Signature+Features+in+Topological+Data+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chevyrev%2C+Ilya&rft.au=Nanda%2C+Vidit&rft.au=Oberhauser%2C+Harald&rft.date=2020-01-01&rft.eissn=1939-3539&rft.volume=42&rft.issue=1&rft.spage=192&rft_id=info:doi/10.1109%2FTPAMI.2018.2885516&rft_id=info%3Apmid%2F30530312&rft.externalDocID=30530312 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |