Persistence Paths and Signature Features in Topological Data Analysis

We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 1; pp. 192 - 202
Main Authors: Chevyrev, Ilya, Nanda, Vidit, Oberhauser, Harald
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations-barcode to path, path to tensor series-results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks.
AbstractList We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations—barcode to path, path to tensor series—results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks.
We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations-barcode to path, path to tensor series-results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks.We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a convenient vector space, and to then compute its path signature which takes values in the tensor algebra of that vector space. The composition of these two operations-barcode to path, path to tensor series-results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness, and achieves state-of-the-art results on common classification benchmarks.
Author Chevyrev, Ilya
Oberhauser, Harald
Nanda, Vidit
Author_xml – sequence: 1
  givenname: Ilya
  orcidid: 0000-0002-5630-9694
  surname: Chevyrev
  fullname: Chevyrev, Ilya
  email: chevyrev@maths.ox.ac.uk
  organization: Mathematical Institute, University of Oxford, Oxford, OX1 2JD, United Kingdom
– sequence: 2
  givenname: Vidit
  orcidid: 0000-0001-9243-6749
  surname: Nanda
  fullname: Nanda, Vidit
  email: nanda@maths.ox.ac.uk
  organization: Mathematical Institute, University of Oxford, Oxford, United Kingdom
– sequence: 3
  givenname: Harald
  surname: Oberhauser
  fullname: Oberhauser, Harald
  email: oberhauser@maths.ox.ac.uk
  organization: Mathematical Institute, University of Oxford, Oxford, OX1 2JD, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30530312$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PIzEQhi0EgsDxBzjptBINzeY8duz1lhHfEohIl6stxzvhjDZ2zvYW_HscEigoaGaa5xnNzHtM9n3wSMgZ0DEAbX_PZ9PH-zGjoMZMKSFA7pERA0nrlrVsn4woSFYrxdQROU7phVKYCMoPyRGnglMObESuZxiTSxm9xWpm8r9UGd9Vf9yzN3mIWN3ge0-V89U8rEMfnp01fXVlsqmm3vSvRf9BDpamT3i66yfk7831_PKufni6vb-cPtSWC8g1ACjKUKiukdQauQDeNcyimXRgbGO5lWiVFK2Eco5gVLSdsou2A7uQnVryE3KxnbuO4f-AKeuVSxb73ngMQ9IMyhfEphb0_Av6EoZY9i0UZ6yZNA3lhfq1o4bFCju9jm5l4qv-eFAB1BawMaQUcamtyya74HM0rtdA9SYL_Z6F3mShd1kUlX1RP6Z_K_3cSg4RPwUlZNMyxt8A-8-Svw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3389_fphys_2021_637684
crossref_primary_10_3390_app14052197
crossref_primary_10_1016_j_aam_2020_102102
crossref_primary_10_1214_24_BA1435
crossref_primary_10_1007_s10444_021_09893_4
crossref_primary_10_1016_j_asoc_2024_111691
crossref_primary_10_1016_j_bspc_2023_105760
crossref_primary_10_1007_s10208_022_09567_7
crossref_primary_10_1007_s10618_024_01068_1
crossref_primary_10_1007_s10462_024_10710_9
crossref_primary_10_3934_fods_2022002
crossref_primary_10_1109_TPAMI_2022_3217443
crossref_primary_10_3389_frai_2021_681108
crossref_primary_10_1007_s00607_023_01154_0
crossref_primary_10_1007_s10915_023_02401_4
crossref_primary_10_1093_gigascience_giad094
crossref_primary_10_1097_CCM_0000000000004510
crossref_primary_10_1016_j_knosys_2025_113125
crossref_primary_10_1007_s10994_025_06874_2
crossref_primary_10_1109_TPAMI_2023_3308391
crossref_primary_10_1109_LSENS_2024_3488331
crossref_primary_10_1016_j_spa_2025_104661
crossref_primary_10_1007_s10994_023_06492_w
crossref_primary_10_1016_j_media_2021_102267
crossref_primary_10_1016_j_ins_2022_12_098
crossref_primary_10_1080_13658816_2022_2155654
crossref_primary_10_1109_ACCESS_2022_3229008
Cites_doi 10.1090/surv/209
10.1016/j.aim.2016.02.011
10.1111/j.1365-2966.2011.18394.x
10.1007/BF02698687
10.1109/ICPR.2002.1044854
10.2140/agt.2007.7.339
10.1007/s00454-013-9529-6
10.1007/s13160-014-0153-5
10.2969/jmsj/06841505
10.4310/HHA.2016.v18.n1.a21
10.1007/978-3-319-42545-0
10.1093/imaiai/iau011
10.1007/s00454-006-1276-5
10.1090/conm/620/12367
10.1090/S0273-0979-07-01191-3
10.1016/j.jsc.2016.03.009
10.1007/978-3-642-40193-0_6
10.1007/s10208-014-9206-z
10.1017/CBO9780511845079
10.1214/15-AOP1068
10.1109/ICPR.2016.7899780
10.1007/978-3-319-23231-7_27
10.1007/s00454-004-1146-y
10.1002/jcc.23816
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2018.2885516
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 202
ExternalDocumentID 30530312
10_1109_TPAMI_2018_2885516
8567922
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Alan Turing Institute
  grantid: EP/N510129/1
  funderid: 10.13039/100012338
– fundername: Institute for Advanced Study
  funderid: 10.13039/100005235
– fundername: Oxford-Man Institute of Quantitative Finance
– fundername: Junior Research Fellowship of St John's College, Oxford
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-111802e58d760ca6b13d72cea4d1ac7c3c6ec86596185552059d8cb9d1cb6d8f3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502294300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 02:48:33 EDT 2025
Sun Nov 09 06:56:10 EST 2025
Wed Feb 19 02:30:31 EST 2025
Sat Nov 29 05:15:58 EST 2025
Tue Nov 18 21:24:08 EST 2025
Wed Aug 27 02:38:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-111802e58d760ca6b13d72cea4d1ac7c3c6ec86596185552059d8cb9d1cb6d8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5630-9694
0000-0001-9243-6749
PMID 30530312
PQID 2322747703
PQPubID 85458
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2018_2885516
pubmed_primary_30530312
crossref_primary_10_1109_TPAMI_2018_2885516
proquest_miscellaneous_2155152155
proquest_journals_2322747703
ieee_primary_8567922
PublicationCentury 2000
PublicationDate 2020-Jan.-1
2020-1-1
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
király (ref13) 2016
ref10
ref2
carrière (ref15) 0
ref1
ref17
pedregosa (ref32) 2011; 12
ref16
bubenik (ref11) 2015; 16
lyons (ref18) 2004; 1908
simon-gabriel (ref30) 2018; 19
chevyrev (ref31) 2018
zielinski (ref36) 2018
ref24
ref23
ref26
adams (ref33) 2017; 18
ref25
ref20
ref21
hatcher (ref19) 2002
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ghrist (ref22) 2016
adams (ref14) 2017; 18
References_xml – ident: ref3
  doi: 10.1090/surv/209
– ident: ref27
  doi: 10.1016/j.aim.2016.02.011
– volume: 18
  start-page: 218
  year: 2017
  ident: ref33
  article-title: Persistence images: A stable vector representation of persistent homology
  publication-title: Journal of Machine Learning Research
– ident: ref6
  doi: 10.1111/j.1365-2966.2011.18394.x
– year: 2018
  ident: ref36
  article-title: Persistence codebooks for topological data analysis
  publication-title: ArXiv e-prints
– volume: 19
  start-page: 1
  year: 2018
  ident: ref30
  article-title: Kernel distribution embeddings: Universal kernels, characteristic kernels and kernel metrics on distributions
  publication-title: J Mach Learn Res
– ident: ref24
  doi: 10.1007/BF02698687
– start-page: 6
  year: 0
  ident: ref15
  article-title: Sliced Wasserstein kernel for persistence diagrams
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref35
  doi: 10.1109/ICPR.2002.1044854
– ident: ref7
  doi: 10.2140/agt.2007.7.339
– ident: ref21
  doi: 10.1007/s00454-013-9529-6
– ident: ref5
  doi: 10.1007/s13160-014-0153-5
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref32
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref28
  doi: 10.2969/jmsj/06841505
– ident: ref16
  doi: 10.4310/HHA.2016.v18.n1.a21
– year: 2018
  ident: ref31
  article-title: Signature moments to characterize laws of stochastic processes
  publication-title: ArXiv e-prints
– ident: ref10
  doi: 10.1007/978-3-319-42545-0
– volume: 16
  start-page: 77
  year: 2015
  ident: ref11
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J Mach Learn Res
– year: 2002
  ident: ref19
  publication-title: Algebraic Topology
– ident: ref12
  doi: 10.1093/imaiai/iau011
– year: 2016
  ident: ref22
  article-title: Matroid filtrations and computational persistent homology
  publication-title: arXiv 1606 00199v2[math at]
– ident: ref23
  doi: 10.1007/s00454-006-1276-5
– ident: ref26
  doi: 10.1090/conm/620/12367
– ident: ref1
  doi: 10.1090/S0273-0979-07-01191-3
– year: 2016
  ident: ref13
  article-title: Kernels for sequentially ordered data
  publication-title: ArXiv e-prints 1601 08169
– volume: 18
  start-page: 218
  year: 2017
  ident: ref14
  article-title: Persistence images: A stable vector representation of persistent homology
  publication-title: Journal of Machine Learning Research
– ident: ref34
  doi: 10.1016/j.jsc.2016.03.009
– ident: ref2
  doi: 10.1007/978-3-642-40193-0_6
– ident: ref4
  doi: 10.1007/s10208-014-9206-z
– ident: ref25
  doi: 10.1017/CBO9780511845079
– ident: ref29
  doi: 10.1214/15-AOP1068
– volume: 1908
  year: 2004
  ident: ref18
  article-title: Differential equations driven by rough paths
– ident: ref9
  doi: 10.1109/ICPR.2016.7899780
– ident: ref17
  doi: 10.1007/978-3-319-23231-7_27
– ident: ref20
  doi: 10.1007/s00454-004-1146-y
– ident: ref8
  doi: 10.1002/jcc.23816
SSID ssj0014503
Score 2.5615509
Snippet We introduce a new feature map for barcodes as they arise in persistent homology computation. The main idea is to first realize each barcode as a path in a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Algebra
Bar codes
barcodes
Bars
Data analysis
Extraterrestrial measurements
Feature maps
Homology
Kernel
kernel learning
Mathematical analysis
signature features
Tensors
Topological data analysis
Vector space
Title Persistence Paths and Signature Features in Topological Data Analysis
URI https://ieeexplore.ieee.org/document/8567922
https://www.ncbi.nlm.nih.gov/pubmed/30530312
https://www.proquest.com/docview/2322747703
https://www.proquest.com/docview/2155152155
Volume 42
WOSCitedRecordID wos000502294300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5URPTg-1FdJYI3rbt9pEmPoit6UBZcYW8lTVJZkK64u_5-Z9IHCip4aQtJ05KZSb7JJPMBnEWiZ6W02jd5nPoxzyM_p5irMrbgIi9sbLUjmxCPj3I0SgcLcNGehbHWus1n9pIeXSzfTPSclsq6kiciDXHAXRRCVGe12ohBzB0LMiIYtHB0I5oDMr20OxxcPdzTLi55GUpJkaFVWEE9x9E7CL_NR45g5Xes6eac243__e0mrNfYkl1VyrAFC7bcho2Gt4HVZrwNa1-SEO5AnzbBk7CxjA0QEE6ZKg17Gr9UST8ZoUS8T9m4ZMOKU4Eky27UTLEmqckuPN_2h9d3fk2u4OuIBzM_cLnfLJdGJD2tkjyIjAi1VbEJlBY60onVMuHECMM5DxGGGanz1AQ6T4wsoj1YKielPQCWBgZdXVHEoRZxohDEFbGQ1GBKyWekB0HTxZmuM48TAcZr5jyQXpo5CWUkoayWkAfn7TtvVd6NP2vvUP-3Neuu96DTSDKrTXOaIYQkTxxHOg9O22I0KoqUqNJO5liHgCSnqwf7lQa0bTeKc_jzN49gNSSX3K3SdGBp9j63x7CsP2bj6fsJau5InjjN_QQnWOXI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hNgF7oKzAlg2YJ_EGgTixY-cRMRAVpaq0TuItcmwHVUIpIu3-_vmcHxoSm8RLEsmOE_nu7O989n0Ax4mIrJRWh6ZgWch4kYQFxlyVsSUXRWmZ1Z5sQkwm8v4-m67BaX8WxlrrN5_ZM3z0sXyz0CtcKjuXPBVZ7Abcd5yxmDantfqYAeOeB9lhGGfjzpHojshE2flsenE3wn1c8iyWEmNDW7DhNN2N3zR-MSN5ipV_o00_61wP3va_O7Ddokty0ajDR1iz1RAGHXMDaQ15CB_-SkO4C1e4DR7F7crI1EHCmqjKkJ_zhybtJ0Gc6O41mVdk1rAqoGzJD7VUpEtrsge_rq9mlzdhS68Q6oTTZUh99jfLpRFppFVa0MSIWFvFDFVa6ESnVsuUIycM5zx2QMxIXWSG6iI1skz2Yb1aVPYzkIwa5-yKksVasFQ5GFcyIbHBDNPPyABo18W5bnOPIwXGY-59kCjLvYRylFDeSiiAk_6dpybzxn9r72L_9zXbrg_goJNk3hpnnTsQib64G-sC-N4XO7PCWImq7GLl6iCU5HgN4FOjAX3bneJ8ef2b32DzZnY3zsejye1X2IrRQfdrNgewvnxe2UN4r38v5_XzkdffP9q_6Cc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistence+Paths+and+Signature+Features+in+Topological+Data+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chevyrev%2C+Ilya&rft.au=Nanda%2C+Vidit&rft.au=Oberhauser%2C+Harald&rft.date=2020-01-01&rft.eissn=1939-3539&rft.volume=42&rft.issue=1&rft.spage=192&rft_id=info:doi/10.1109%2FTPAMI.2018.2885516&rft_id=info%3Apmid%2F30530312&rft.externalDocID=30530312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon