Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial engineering international Jg. 13; H. 1; S. 29 - 46
Hauptverfasser: Mehmanpazir, Farhad, Asadi, Shahrokh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer 01.03.2017
Springer Berlin Heidelberg
Islamic Azad University, South Tehran Branch
Schlagworte:
ISSN:2251-712X, 1735-5702, 2251-712X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a ''data mining-based evolutionary fuzzy expert system'' (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into subpopulations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.
AbstractList The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a “data mining-based evolutionary fuzzy expert system” (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K -means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a ''data mining-based evolutionary fuzzy expert system'' (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into subpopulations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.
Author Asadi, Shahrokh
Mehmanpazir, Farhad
Author_xml – sequence: 1
  givenname: Farhad
  surname: Mehmanpazir
  fullname: Mehmanpazir, Farhad
– sequence: 2
  givenname: Shahrokh
  surname: Asadi
  fullname: Asadi, Shahrokh
BookMark eNp9kE1LAzEQhoMo-NUf4EEIeF5NspuPPYrfIHhR8BbTdFJX26Qm2WL99WZZD-LBwDAJM8_Mm3cfbfvgAaEjSk4pIfIsNYS0rCJUDMEruYX2GOO0kpQ9b_-676JJSm-kHClbUos99HIJa1iE1RJ8xsFh4zGsw6LPXfAmbrDrv742GD5XEDNOm5RhiV2IGFLuliZ3fl5ach8BT-HVrLtSKlNSDvYdr2Jn4RDtOLNIMPnJB-jp-urx4ra6f7i5uzi_r2zNqaxqSqeK25kEZWeOOemsMACta5xSoqGsPISwXDjDjCCtapQbymRaz5gSqj5AJ-PcVQwffZGn30IffVmpqRKcccHatnTRscvGkFIEp4vIZfmopkQPXurRS118HIJrWRj5h7FdNoNBOZpu8S_JRjKVLX4O8Zemf6DjEQIbfJf0kIqfUVPJeEPrb4eoliM
CitedBy_id crossref_primary_10_3390_fi11010005
crossref_primary_10_1007_s40092_018_0253_y
crossref_primary_10_1016_j_engappai_2020_103971
crossref_primary_10_1007_s10462_022_10355_6
crossref_primary_10_1007_s10614_022_10346_3
crossref_primary_10_1016_j_bbe_2019_05_010
crossref_primary_10_1016_j_jbi_2018_12_003
crossref_primary_10_1016_j_compbiomed_2017_10_024
crossref_primary_10_3390_s21238095
crossref_primary_10_1007_s00500_019_03856_0
crossref_primary_10_1016_j_engappai_2019_103319
crossref_primary_10_1016_j_neucom_2018_11_052
crossref_primary_10_1007_s40092_018_0285_3
crossref_primary_10_1016_j_gsf_2020_10_007
crossref_primary_10_1007_s40092_016_0170_x
crossref_primary_10_1016_j_engappai_2018_11_004
crossref_primary_10_1111_coin_12124
crossref_primary_10_1016_j_mex_2025_103413
Cites_doi 10.1002/int.20456
10.1109/TKDE.2005.39
10.1016/S0165-0114(98)00349-2
10.1016/j.eswa.2009.11.020
10.1016/j.ins.2014.09.038
10.1007/s12555-010-0325-2
10.1186/2251-712X-9-1
10.1007/s40092-014-0060-z
10.1016/j.knosys.2016.01.005
10.1016/j.eswa.2011.11.002
10.1109/TSMCB.2004.842257
10.1186/2251-712X-8-5
10.1016/j.neucom.2014.09.018
10.1186/2251-712X-8-24
10.1109/TFUZZ.2011.2147794
10.1016/j.eswa.2010.08.083
10.1080/18756891.2012.685272
10.1016/j.ijar.2015.02.001
10.1016/j.asoc.2009.07.001
10.1016/j.knosys.2013.01.014
10.1016/j.neucom.2016.01.010
10.1016/j.ifacol.2015.06.109
10.1016/S0169-2070(01)00093-0
10.1016/j.eswa.2006.04.007
10.1007/s40092-015-0121-y
10.1016/j.patcog.2011.01.017
10.1186/2251-712X-8-21
10.1016/j.neucom.2013.05.023
10.1016/j.eswa.2006.08.020
10.1016/j.knosys.2014.04.018
10.1016/j.neucom.2014.03.026
10.1016/j.knosys.2009.02.006
10.1016/j.ijar.2013.09.014
10.1016/j.knosys.2012.05.003
10.1016/j.knosys.2010.05.004
10.1016/j.knosys.2010.11.001
10.1016/j.knosys.2013.08.006
10.1016/j.procs.2015.03.200
10.1007/s11063-008-9085-x
10.1007/s12065-007-0001-5
10.1016/j.neucom.2008.09.029
10.1007/3-540-46027-6
10.1142/4177
10.1007/978-3-319-16598-1_5
10.1109/ISDA.2005.85
10.1109/IJCNN.2000.861443
10.1186/2251-712X-8-1
10.1002/9780470061190
ContentType Journal Article
Copyright The Author(s) 2016
Journal of Industrial Engineering International is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2016
– notice: Journal of Industrial Engineering International is a copyright of Springer, 2017.
DBID OT2
C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s40092-016-0165-7
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2251-712X
EndPage 46
ExternalDocumentID 4312385331
10_1007_s40092_016_0165_7
172541
GrantInformation_xml – fundername: Islamic Azad University
  funderid: http://dx.doi.org/10.13039/501100002660
GroupedDBID 2VQ
4.4
5VS
8FE
8FG
AAKDD
AAKKN
ABCFP
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACULB
ADBBV
AFFHD
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
OK1
OT2
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
SEG
SOJ
TUS
-A0
ADINQ
M~E
N95
RSV
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3517-311b85cd7e8cdf2f7fc6aee9f4f886412aee66c56fa2a609848fee9f0b3d28683
IEDL.DBID C24
ISSN 2251-712X
1735-5702
IngestDate Fri Jul 25 12:12:45 EDT 2025
Sat Nov 29 06:14:12 EST 2025
Tue Nov 18 21:40:02 EST 2025
Fri Feb 21 02:35:19 EST 2025
Fri Dec 05 12:07:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fuzzy expert system
Noise filtering
Data mining
Evolutionary strategy
Genetic algorithm
Stock price forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3517-311b85cd7e8cdf2f7fc6aee9f4f886412aee66c56fa2a609848fee9f0b3d28683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s40092-016-0165-7
PQID 1865256299
PQPubID 2034717
PageCount 18
ParticipantIDs proquest_journals_1865256299
crossref_primary_10_1007_s40092_016_0165_7
crossref_citationtrail_10_1007_s40092_016_0165_7
springer_journals_10_1007_s40092_016_0165_7
econis_econstor_172541
PublicationCentury 2000
PublicationDate 20170300
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Berlin/Heidelberg
– name: Tehran
PublicationTitle Journal of industrial engineering international
PublicationTitleAbbrev J Ind Eng Int
PublicationYear 2017
Publisher Springer
Springer Berlin Heidelberg
Islamic Azad University, South Tehran Branch
Publisher_xml – name: Springer
– name: Springer Berlin Heidelberg
– name: Islamic Azad University, South Tehran Branch
References Asadi, Shahrabi (CR6) 2016; 191
Chang, Liu (CR12) 2008; 34
Hassan (CR24) 2009; 72
Galar, Fernández, Barrenechea, Bustince, Herrera (CR22) 2011; 44
Trawiński, Cordón, Quirin (CR44) 2012; 5
Yiakopoulos, Gryllias, Antoniadis (CR47) 2011; 38
Alizadeh, Rada, Jolai, Fotoohi (CR2) 2011; 26
Hadavandi, Shavandi, Ghanbari (CR23) 2010; 23
Anbalagan, Maheswari (CR3) 2015; 47
Asadi, Shahrabi (CR7) 2016; 97
Mousavi, Esfahanipour, Zarandi (CR33) 2014; 66
Asadi, Shahrabi, Abbaszadeh, Tabanmehr (CR10) 2013; 121
CR17
Hassan, Nath, Kirley (CR26) 2007; 33
CR37
CR14
Herrera (CR27) 2008; 1
Niknam, Amiri (CR35) 2010; 10
CR11
Sun, Guo, Karimi, Ge, Xiong (CR43) 2015; 151
Su, Hsu (CR42) 2005; 17
Chen, Chen (CR13) 2015; 294
Ishibuchi, Yamamoto, Nakashima (CR29) 2005; 35
Singh, Borah (CR41) 2014; 55
Asadi, Tavakoli, Hejazi (CR9) 2012; 39
Shen, Guo, Wu, Wu (CR40) 2011; 24
Trawiński, Cordón, Quirin, Sánchez (CR45) 2013; 54
Jahromi, Tavakkoli-Moghaddam, Makui, Shamsi (CR30) 2012; 8
Vella, Ng (CR46) 2014; 141
De, Awasthi, Tiwari (CR18) 2015; 48
Shahrabi, Hadavandi, Asadi (CR39) 2013; 43
CR4
Aryanezhad, Hashemi, Makui, Javanshir (CR5) 2012; 8
Jasemi, Kimiagari (CR31) 2012; 8
CR48
CR25
Ferreira, Vasconcelos, Adeodato (CR21) 2008; 28
Hwang, Oh (CR28) 2010; 8
Kar, Bera, Das, Kar (CR32) 2015; 11
Alcala-Fdez, Alcala, Herrera (CR1) 2011; 19
Cordón, Herrera (CR15) 2001; 118
Asadi, Hadavandi, Mehmanpazir, Nakhostin (CR8) 2012; 35
Niaki, Hoseinzade (CR34) 2013; 9
Esfahanipour, Aghamiri (CR20) 2010; 37
Rafiei, Rabbani, Kokabi (CR36) 2014; 10
Sarantis (CR38) 2001; 17
Dash, Dash, Bisoi (CR16) 2015; 59
ElAlami (CR19) 2009; 22
J Alcala-Fdez (165_CR1) 2011; 19
O Cordón (165_CR15) 2001; 118
C Yiakopoulos (165_CR47) 2011; 38
STA Niaki (165_CR34) 2013; 9
R Dash (165_CR16) 2015; 59
B Sun (165_CR43) 2015; 151
T Anbalagan (165_CR3) 2015; 47
W Shen (165_CR40) 2011; 24
M Alizadeh (165_CR2) 2011; 26
P-C Chang (165_CR12) 2008; 34
T Niknam (165_CR35) 2010; 10
MR Hassan (165_CR24) 2009; 72
165_CR11
A Esfahanipour (165_CR20) 2010; 37
H Rafiei (165_CR36) 2014; 10
K Trawiński (165_CR44) 2012; 5
M Galar (165_CR22) 2011; 44
F Herrera (165_CR27) 2008; 1
V Vella (165_CR46) 2014; 141
165_CR25
H Hwang (165_CR28) 2010; 8
S Asadi (165_CR7) 2016; 97
165_CR48
165_CR4
ME ElAlami (165_CR19) 2009; 22
H Ishibuchi (165_CR29) 2005; 35
N Sarantis (165_CR38) 2001; 17
K Trawiński (165_CR45) 2013; 54
E Hadavandi (165_CR23) 2010; 23
J Shahrabi (165_CR39) 2013; 43
MB Kar (165_CR32) 2015; 11
S Asadi (165_CR9) 2012; 39
S Asadi (165_CR6) 2016; 191
165_CR17
TA Ferreira (165_CR21) 2008; 28
S Asadi (165_CR8) 2012; 35
165_CR14
M-B Aryanezhad (165_CR5) 2012; 8
MR Hassan (165_CR26) 2007; 33
M Jasemi (165_CR31) 2012; 8
165_CR37
A De (165_CR18) 2015; 48
MH Jahromi (165_CR30) 2012; 8
M-Y Chen (165_CR13) 2015; 294
P Singh (165_CR41) 2014; 55
C-T Su (165_CR42) 2005; 17
S Asadi (165_CR10) 2013; 121
S Mousavi (165_CR33) 2014; 66
References_xml – volume: 26
  start-page: 99
  year: 2011
  end-page: 114
  ident: CR2
  article-title: An adaptive neuro-fuzzy system for stock portfolio analysis
  publication-title: Int J Intell Syst
  doi: 10.1002/int.20456
– volume: 17
  start-page: 437
  year: 2005
  end-page: 441
  ident: CR42
  article-title: An extended chi2 algorithm for discretization of real value attributes
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.39
– volume: 118
  start-page: 235
  year: 2001
  end-page: 255
  ident: CR15
  article-title: Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(98)00349-2
– volume: 37
  start-page: 4742
  year: 2010
  end-page: 4748
  ident: CR20
  article-title: Adapted neuro-fuzzy inference system on indirect approach TSK fuzzy rule base for stock market analysis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.11.020
– volume: 294
  start-page: 227
  year: 2015
  end-page: 241
  ident: CR13
  article-title: A hybrid fuzzy time series model based on granular computing for stock price forecasting
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.038
– volume: 8
  start-page: 702
  year: 2010
  end-page: 706
  ident: CR28
  article-title: Fuzzy models for predicting time series stock price index
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-010-0325-2
– ident: CR4
– ident: CR14
– ident: CR37
– volume: 9
  start-page: 1
  year: 2013
  end-page: 9
  ident: CR34
  article-title: Forecasting S&P 500 index using artificial neural networks and design of experiments
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-9-1
– volume: 10
  start-page: 1
  year: 2014
  end-page: 9
  ident: CR36
  article-title: Multi-site production planning in hybrid make-to-stock/make-to-order production environment
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-014-0060-z
– volume: 97
  start-page: 175
  year: 2016
  end-page: 187
  ident: CR7
  article-title: ACORI: a novel ACO algorithm for rule induction
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.01.005
– volume: 39
  start-page: 5332
  year: 2012
  end-page: 5337
  ident: CR9
  article-title: A new hybrid for improvement of auto-regressive integrated moving average models applying particle swarm optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.11.002
– volume: 35
  start-page: 359
  year: 2005
  end-page: 365
  ident: CR29
  article-title: Hybridization of fuzzy GBML approaches for pattern classification problems
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2004.842257
– volume: 8
  start-page: 1
  year: 2012
  end-page: 9
  ident: CR31
  article-title: An investigation of model selection criteria for technical analysis of moving average
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-8-5
– volume: 151
  start-page: 1528
  year: 2015
  end-page: 1536
  ident: CR43
  article-title: Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.018
– volume: 8
  start-page: 1
  year: 2012
  end-page: 8
  ident: CR30
  article-title: Solving an one-dimensional cutting stock problem by simulated annealing and tabu search
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-8-24
– ident: CR25
– volume: 19
  start-page: 857
  year: 2011
  end-page: 872
  ident: CR1
  article-title: A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2011.2147794
– volume: 38
  start-page: 2888
  year: 2011
  end-page: 2911
  ident: CR47
  article-title: Rolling element bearing fault detection in industrial environments based on a -means clustering approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.08.083
– volume: 5
  start-page: 231
  year: 2012
  end-page: 253
  ident: CR44
  article-title: A study on the use of multiobjective genetic algorithms for classifier selection in FURIA-based fuzzy multiclassifiers
  publication-title: Int J Comput Intell Syst
  doi: 10.1080/18756891.2012.685272
– volume: 59
  start-page: 81
  year: 2015
  end-page: 104
  ident: CR16
  article-title: A differential harmony search based hybrid interval type2 fuzzy EGARCH model for stock market volatility prediction
  publication-title: Int J Approx Reas
  doi: 10.1016/j.ijar.2015.02.001
– volume: 10
  start-page: 183
  year: 2010
  end-page: 197
  ident: CR35
  article-title: An efficient hybrid approach based on PSO, ACO and -means for cluster analysis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.07.001
– volume: 43
  start-page: 112
  year: 2013
  end-page: 122
  ident: CR39
  article-title: Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.01.014
– ident: CR48
– volume: 191
  start-page: 19
  year: 2016
  end-page: 33
  ident: CR6
  article-title: RipMC: RIPPER for multiclass classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.010
– volume: 48
  start-page: 368
  year: 2015
  end-page: 373
  ident: CR18
  article-title: Robust formulation for optimizing sustainable ship routing and scheduling problem
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2015.06.109
– volume: 17
  start-page: 459
  year: 2001
  end-page: 482
  ident: CR38
  article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(01)00093-0
– volume: 33
  start-page: 171
  year: 2007
  end-page: 180
  ident: CR26
  article-title: A fusion model of HMM, ANN and GA for stock market forecasting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.04.007
– volume: 11
  start-page: 555
  year: 2015
  end-page: 574
  ident: CR32
  article-title: A production-inventory model with permissible delay incorporating learning effect in random planning horizon using genetic algorithm
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-015-0121-y
– ident: CR17
– volume: 44
  start-page: 1761
  year: 2011
  end-page: 1776
  ident: CR22
  article-title: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.01.017
– volume: 8
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR5
  article-title: A simple approach to the two-dimensional guillotine cutting stock problem
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-8-21
– ident: CR11
– volume: 121
  start-page: 470
  year: 2013
  end-page: 480
  ident: CR10
  article-title: A new hybrid artificial neural networks for rainfall–runoff process modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.023
– volume: 34
  start-page: 135
  year: 2008
  end-page: 144
  ident: CR12
  article-title: A TSK type fuzzy rule based system for stock price prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.08.020
– volume: 66
  start-page: 68
  year: 2014
  end-page: 81
  ident: CR33
  article-title: A novel approach to dynamic portfolio trading system using multitree genetic programming
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.04.018
– volume: 141
  start-page: 170
  year: 2014
  end-page: 187
  ident: CR46
  article-title: Enhancing risk-adjusted performance of stock market intraday trading with neuro-fuzzy systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.026
– volume: 22
  start-page: 356
  year: 2009
  end-page: 362
  ident: CR19
  article-title: A filter model for feature subset selection based on genetic algorithm
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2009.02.006
– volume: 55
  start-page: 812
  year: 2014
  end-page: 833
  ident: CR41
  article-title: Forecasting stock index price based on -factors fuzzy time series and particle swarm optimization
  publication-title: Int J Approx Reas
  doi: 10.1016/j.ijar.2013.09.014
– volume: 35
  start-page: 245
  year: 2012
  end-page: 258
  ident: CR8
  article-title: Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2012.05.003
– volume: 23
  start-page: 800
  year: 2010
  end-page: 808
  ident: CR23
  article-title: Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2010.05.004
– volume: 24
  start-page: 378
  year: 2011
  end-page: 385
  ident: CR40
  article-title: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2010.11.001
– volume: 54
  start-page: 3
  year: 2013
  end-page: 21
  ident: CR45
  article-title: Multiobjective genetic classifier selection for random oracles fuzzy rule-based classifier ensembles: how beneficial is the additional diversity?
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.08.006
– volume: 47
  start-page: 214
  year: 2015
  end-page: 221
  ident: CR3
  article-title: Classification and prediction of stock market index based on fuzzy metagraph
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2015.03.200
– volume: 28
  start-page: 113
  year: 2008
  end-page: 129
  ident: CR21
  article-title: A new intelligent system methodology for time series forecasting with artificial neural networks
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-008-9085-x
– volume: 1
  start-page: 27
  year: 2008
  end-page: 46
  ident: CR27
  article-title: Genetic fuzzy systems: taxonomy, current research trends and prospects
  publication-title: Evol Intell
  doi: 10.1007/s12065-007-0001-5
– volume: 72
  start-page: 3439
  year: 2009
  end-page: 3446
  ident: CR24
  article-title: A combination of hidden Markov model and fuzzy model for stock market forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.029
– volume: 43
  start-page: 112
  year: 2013
  ident: 165_CR39
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.01.014
– ident: 165_CR48
  doi: 10.1007/3-540-46027-6
– volume: 17
  start-page: 459
  year: 2001
  ident: 165_CR38
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(01)00093-0
– volume: 47
  start-page: 214
  year: 2015
  ident: 165_CR3
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2015.03.200
– volume: 118
  start-page: 235
  year: 2001
  ident: 165_CR15
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(98)00349-2
– volume: 10
  start-page: 1
  year: 2014
  ident: 165_CR36
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-014-0060-z
– volume: 55
  start-page: 812
  year: 2014
  ident: 165_CR41
  publication-title: Int J Approx Reas
  doi: 10.1016/j.ijar.2013.09.014
– ident: 165_CR14
  doi: 10.1142/4177
– volume: 8
  start-page: 1
  year: 2012
  ident: 165_CR30
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-8-24
– volume: 28
  start-page: 113
  year: 2008
  ident: 165_CR21
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-008-9085-x
– ident: 165_CR37
  doi: 10.1007/978-3-319-16598-1_5
– ident: 165_CR25
  doi: 10.1109/ISDA.2005.85
– volume: 294
  start-page: 227
  year: 2015
  ident: 165_CR13
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.038
– ident: 165_CR11
  doi: 10.1109/IJCNN.2000.861443
– volume: 72
  start-page: 3439
  year: 2009
  ident: 165_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.029
– volume: 35
  start-page: 359
  year: 2005
  ident: 165_CR29
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2004.842257
– volume: 24
  start-page: 378
  year: 2011
  ident: 165_CR40
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2010.11.001
– volume: 8
  start-page: 1
  year: 2012
  ident: 165_CR5
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-8-1
– volume: 121
  start-page: 470
  year: 2013
  ident: 165_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.023
– volume: 26
  start-page: 99
  year: 2011
  ident: 165_CR2
  publication-title: Int J Intell Syst
  doi: 10.1002/int.20456
– volume: 191
  start-page: 19
  year: 2016
  ident: 165_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.010
– volume: 141
  start-page: 170
  year: 2014
  ident: 165_CR46
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.026
– volume: 34
  start-page: 135
  year: 2008
  ident: 165_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.08.020
– volume: 33
  start-page: 171
  year: 2007
  ident: 165_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.04.007
– volume: 19
  start-page: 857
  year: 2011
  ident: 165_CR1
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2011.2147794
– volume: 151
  start-page: 1528
  year: 2015
  ident: 165_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.018
– volume: 54
  start-page: 3
  year: 2013
  ident: 165_CR45
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.08.006
– volume: 59
  start-page: 81
  year: 2015
  ident: 165_CR16
  publication-title: Int J Approx Reas
  doi: 10.1016/j.ijar.2015.02.001
– volume: 37
  start-page: 4742
  year: 2010
  ident: 165_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.11.020
– volume: 35
  start-page: 245
  year: 2012
  ident: 165_CR8
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2012.05.003
– volume: 9
  start-page: 1
  year: 2013
  ident: 165_CR34
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-9-1
– volume: 38
  start-page: 2888
  year: 2011
  ident: 165_CR47
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.08.083
– volume: 97
  start-page: 175
  year: 2016
  ident: 165_CR7
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.01.005
– volume: 8
  start-page: 702
  year: 2010
  ident: 165_CR28
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-010-0325-2
– volume: 10
  start-page: 183
  year: 2010
  ident: 165_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.07.001
– volume: 17
  start-page: 437
  year: 2005
  ident: 165_CR42
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.39
– volume: 8
  start-page: 1
  year: 2012
  ident: 165_CR31
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-8-5
– volume: 22
  start-page: 356
  year: 2009
  ident: 165_CR19
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2009.02.006
– volume: 44
  start-page: 1761
  year: 2011
  ident: 165_CR22
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.01.017
– volume: 11
  start-page: 555
  year: 2015
  ident: 165_CR32
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-015-0121-y
– volume: 1
  start-page: 27
  year: 2008
  ident: 165_CR27
  publication-title: Evol Intell
  doi: 10.1007/s12065-007-0001-5
– volume: 23
  start-page: 800
  year: 2010
  ident: 165_CR23
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2010.05.004
– ident: 165_CR17
  doi: 10.1002/9780470061190
– volume: 39
  start-page: 5332
  year: 2012
  ident: 165_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.11.002
– ident: 165_CR4
– volume: 5
  start-page: 231
  year: 2012
  ident: 165_CR44
  publication-title: Int J Comput Intell Syst
  doi: 10.1080/18756891.2012.685272
– volume: 66
  start-page: 68
  year: 2014
  ident: 165_CR33
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.04.018
– volume: 48
  start-page: 368
  year: 2015
  ident: 165_CR18
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2015.06.109
SSID ssj0000779036
ssib044744590
Score 2.0873184
Snippet The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to...
SourceID proquest
crossref
springer
econis
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Data mining
Engineering
Engineering Economics
Evolutionary strategy
Facility Management
Fuzzy expert system
Genetic algorithm
Industrial and Production Engineering
Logistics
Marketing
Mathematical and Computational Engineering
Noise filtering
Organization
Original Research
Quality Control
Reliability
Safety and Risk
Stock price forecasting
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RhUN7aHkUseUhHziBIhLHr5wQQkU9IITEQ9yC1w-EWmWX3QVp-fX1OA4sSOXSUxQ5cRTNZOazZ_J9ALtO2twqqzLFuc5YSLAo5C4yowO8CIijFLFien0qz87UzU11njbcJqmtsouJMVDbocE98oNCCR7Sc4ieh6OHDFWjsLqaJDQ-wSKyJNDYunfR-RNjkjGeqkAxMiO5XlQNLGTJMy5z2hU68W86hgREYW2NS2zBM_kmVS3h-vR-8gaIvqudxpR08u1_X2YZviYwSo5a71mBBdeswpc5isI1uJ3rKiJDT3RD3FNyVz2eEf_4_DwjUSdgSlpaaBJwMEHyDgTDzR1paUtIRwiAswTEaX6TERIafYerk5-Xx7-ypMqQmZIXuKlZDBQ3VjplrKdeeiO0c5VnXinBChpOhDBceE21yCvFlMfhfFBaqoQq16HXDBu3AUSbsrC-ctxVnDkuB7pw1IewUkpqja76kHcGqE2iLEfljD_1C9lytFmNbWpos1r2Ye_lllHL1_HRxeutVWs8YDdqHfAcZ0Uftjq71embntSvRuvDfmf5ueF_PeXHx5NtwmeKUCH2tW1Bbzp-dNuwZJ6m95PxTnTovxGd-Zw
  priority: 102
  providerName: ProQuest
Title Development of an evolutionary fuzzy expert system for estimating future behavior of stock price
URI https://www.econstor.eu/handle/10419/172541
https://link.springer.com/article/10.1007/s40092-016-0165-7
https://www.proquest.com/docview/1865256299
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2251-712X
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0000779036
  issn: 2251-712X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2251-712X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044744590
  issn: 2251-712X
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2251-712X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779036
  issn: 2251-712X
  databaseCode: M7S
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2251-712X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779036
  issn: 2251-712X
  databaseCode: BENPR
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2251-712X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779036
  issn: 2251-712X
  databaseCode: PIMPY
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2251-712X
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0000779036
  issn: 2251-712X
  databaseCode: C24
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-Njwd42MZHtUKp_MDTUKQ48VceGaIa0lZVG0zwFFzHRhVTitqCBH89PicpBQHS9hRFdhzFd_H97Lv7HcC-lUVcqEJFinMdMW9gsZC7iIz28MIjjlQEj-mfH7LfV-fn2aDO45420e6NSzKs1PNkN4b8QH7riztgwSO5BCucqgzV-uiJcpwxyRivXT9hOUZGvVAqkMqUR1zGSePdfG3UZ_ZpFTelo-kz9PnCYRrsUO_Tf33BZ_hYw05yWOnJBnyw5SasL5ARbsHlQvwQGTuiS2LvasXUk3vibh8e7kmoCDAjFQE08YiXIE0Hwt7yilQEJaRJ_cdRPLY01-QGqYu24ax3fHr0ParrL0Qm5RSPL-lQcVNIq0zhEiedEdrazDGnlGA08TdCGC6cTrSIM8WUw-Z4mBaJEiptwXI5Lu0XINqktHCZ5TbjzHI51NQmzi8gqUwKo7M2xM2s56YmJ8caGX_zOa1ymLwcA9Jw8nLZhq_zR24qZo73OrcqUeZ4wbjT3CM3zmgbOo1o8_rvneZUCe6hoLfUbThoRLnQ_NZbdv6p9y6sJYgRQkBbB5Znk1u7B6vmbjaaTrqw8u24P_jVDcrdDUcFXQxM_e1bBic_BxeP2tTzcA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUgl64NmqCwV8gAsoauL4lQNCCKhadVkhUVBvrtePqqLKbne3RdsfxW_E4yRli0RvPXCKoiSOEn-e-ewZfwPw0kuXO-VUpjg3GYsOFgu5i8yaSC8i4yhFiph-78vBQB0cVF-W4Fe3FwbTKjubmAy1G1lcI98qlODRPUfr-W58mmHVKIyudiU0Gljs-fnPOGWbvt39GPv3FaXbn_Y_7GRtVYHMlrzARbliqLh10ivrAg0yWGG8rwILSglW0HgihOUiGGpEXimmAl7Oh6WjSqgytnsLbjO0_ilV8GuHX8YkY7yNOiVPgGJ-qUphIUuecZnTLrCKu_cYCh7FuTxO6QXP5BXXuILz4ePpFeL7V6w2ucDt-__bz3sA91qyTd43o-MhLPn6EawuSDA-hsOFrCkyCsTUxJ-3w9FM5iScXVzMSaqDMCON7DWJPJ-gOAmS_fqINLIspBM8wFYio7Y_yBgFm9bg24184jos16PabwAxtixcqDz3FWeey6EpPA3RbJaSOmuqHuRdh2vbSrJjZZATfSkmnTCiMQ0PMaJlD15fPjJu9Eiuu3m9QZHGA2bb6shXOSt6sNnhRLc2a6r_gKQHbzqkLVz-11ueXN_YC7izs_-5r_u7g72ncJciLUo5fJuwPJuc-WewYs9nx9PJ8zSYCBzeNAB_A4EVWD0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8a3YTYgc9N6xjgA1xA0RLHXzkghBgV1UbVA6Bx8lzHRhMo7dpuU_en7a_DL4lHh8RuO3CKEieOEv_8Pvyefw_gpZNlWqpSJYpzk7CgYLGQu0isCeZFsDhyUUdMvx3IwUAdHhbDFbiMe2EwrTLKxFpQl2OLa-S7mRI8qOcgPXd9mxYx3Ou9m5wkWEEKI62xnEYDkX23OA_u2-xtfy-M9StKex-_fPiUtBUGEpvzDBfospHitpRO2dJTL70VxrnCM6-UYBkNJ0JYLryhRqSFYspjczrKS6qEykO_d2A1mOSMdWB12P88_B7RzPAib2NQtV5Aar-6ZmEmc55wmdIYZsW9fAzpj4Jnjw6-4Im8pijX0Ds-nl0zg_-K3NYKsffgf_6VD-F-a4aT9828eQQrrnoM60vkjE_gaCmfiow9MRVxZ-1ENdMF8acXFwtSV0iYk4YQmwQPgCBtCboB1Q_SELaQSIWAvQRb2_4kE6Ry2oCvt_KJm9CpxpXbAmJsnpW-cNwVnDkuRyZz1AeBmktaWlN0IY2Dr21L1o41Q37pK5rpGi8aE_QQL1p24fXVI5OGqeSmmzcbRGk8YB6uDpYsZ1kXdiJmdCvNZvoPYLrwJqJuqflfb9m-ubMXcDfgTh_0B_tP4R5Fe6lO7tuBznx66p7Bmj2bH8-mz9uZReDothH4G3x4Yn0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+evolutionary+fuzzy+expert+system+for+estimating+future+behavior+of+stock+price&rft.jtitle=Journal+of+industrial+engineering+international&rft.au=Mehmanpazir%2C+Farhad&rft.au=Asadi%2C+Shahrokh&rft.date=2017-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1735-5702&rft.eissn=2251-712X&rft.volume=13&rft.issue=1&rft.spage=29&rft.epage=46&rft_id=info:doi/10.1007%2Fs40092-016-0165-7&rft.externalDocID=10_1007_s40092_016_0165_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2251-712X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2251-712X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2251-712X&client=summon