Two-layer Gravity Currents with Topography
Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and underlying a layer of lighter fluid are considered. The equations which describe the resulting two‐layer flow are derived from the Navier–Stokes equa...
Gespeichert in:
| Veröffentlicht in: | Studies in applied mathematics (Cambridge) Jg. 102; H. 3; S. 221 - 266 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston, USA and Oxford, UK
Blackwell Publishers Inc
01.04.1999
Blackwell |
| Schlagworte: | |
| ISSN: | 0022-2526, 1467-9590 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and underlying a layer of lighter fluid are considered. The equations which describe the resulting two‐layer flow are derived from the Navier–Stokes equations for a constant density, inviscid, nonrotating fluid, neglecting kinematic viscosity, surface tension, and entrainment between the layers. A new addition to the theory is introduced in the form of a forcing term in the lower layer horizontal momentum equation which is incorporated to produce the characteristic structure typical of such gravity currents in the laboratory. This delaying term is restricted to the front of the gravity current, and as such is shown to be valid under conventional shallow‐water scaling assumptions. The hyperbolic character of the equations of motion is shown, a simple numerical test for hyperbolicity is derived from theoretical considerations, and these results are related to the stability Froude number of the flow. Well‐posedness of the initial boundary value problem is proven via localization of the equations, and the discussion is extended to a two‐point boundary value problem with examples of steady‐state and traveling wave solutions given for a bottom surface of constant slope. Numerical results are obtained by using a recently developed finite‐difference relaxation scheme for conservation laws, sufficiently modified herein to include spatial variability and forcing terms, which approximates the material interface at the front of the lower fluid layer as a shock. The effects of slope and the delaying force are investigated numerically to determine their theoretical importance, and the range of expected values is compared to published experimental results. Some calculations for the temporal evolution of the flow are produced that display the phenomenon of rear wall separation for nonzero slopes. |
|---|---|
| AbstractList | Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and underlying a layer of lighter fluid are considered. The equations which describe the resulting two‐layer flow are derived from the Navier–Stokes equations for a constant density, inviscid, nonrotating fluid, neglecting kinematic viscosity, surface tension, and entrainment between the layers. A new addition to the theory is introduced in the form of a forcing term in the lower layer horizontal momentum equation which is incorporated to produce the characteristic structure typical of such gravity currents in the laboratory. This delaying term is restricted to the front of the gravity current, and as such is shown to be valid under conventional shallow‐water scaling assumptions. The hyperbolic character of the equations of motion is shown, a simple numerical test for hyperbolicity is derived from theoretical considerations, and these results are related to the stability Froude number of the flow. Well‐posedness of the initial boundary value problem is proven via localization of the equations, and the discussion is extended to a two‐point boundary value problem with examples of steady‐state and traveling wave solutions given for a bottom surface of constant slope. Numerical results are obtained by using a recently developed finite‐difference relaxation scheme for conservation laws, sufficiently modified herein to include spatial variability and forcing terms, which approximates the material interface at the front of the lower fluid layer as a shock. The effects of slope and the delaying force are investigated numerically to determine their theoretical importance, and the range of expected values is compared to published experimental results. Some calculations for the temporal evolution of the flow are produced that display the phenomenon of rear wall separation for nonzero slopes. |
| Author | Montgomery, P. J. Moodie, T. B. |
| Author_xml | – sequence: 1 givenname: P. J. surname: Montgomery fullname: Montgomery, P. J. organization: University of Alberta, Edmonton – sequence: 2 givenname: T. B. surname: Moodie fullname: Moodie, T. B. organization: University of Alberta, Edmonton |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1942106$$DView record in Pascal Francis |
| BookMark | eNqFkEFLw0AQRhepYFs9e83Bk5B2drO76R5LsVWpVbCit2WSbuxqTMputObfmxpR8KBzGRjem2G-HukUZWEIOaYwoE0NKZdxqISCAQClsEe635MO6QIwFjLB5AHpef8EDRML6JLT5bYMc6yNC2YO32xVB5NX50xR-WBrq3WwLDflo8PNuj4k-xnm3hx99T65m54tJ-fh_Hp2MRnPwzQSFEJO6WiUSJ5lSJXBSDAuMoqYrAygUkATBJausoRJSKMklioB4CaJV6lJRMSjPjlp927Qp5hnDovUer1x9gVdranijIJssGGLpa703pnshwC9S0Tv_te7__VnIo0hfhmprbCyZVE5tPkfHm-9rc1N_d8ZfTu-uWq1sNWsr8z7t4buWcs4ioW-X8y0kuJhQcWlnkYfiXGDGg |
| CODEN | SAPMB6 |
| CitedBy_id | crossref_primary_10_1016_j_compfluid_2005_04_002 crossref_primary_10_1080_00036811_2014_1002481 crossref_primary_10_1111_1467_9590_00228 crossref_primary_10_1140_epjp_s13360_020_00559_6 crossref_primary_10_1111_j_0022_2526_2005_01545_x crossref_primary_10_1016_S0020_7462_00_00063_9 crossref_primary_10_1080_00036811_2022_2098729 crossref_primary_10_1016_S0377_0427_01_00551_9 crossref_primary_10_1111_1467_9590_t01_1_00233 |
| ContentType | Journal Article |
| Copyright | Massachusetts Institute of Technology 1999 1999 INIST-CNRS |
| Copyright_xml | – notice: Massachusetts Institute of Technology 1999 – notice: 1999 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW |
| DOI | 10.1111/1467-9590.00110 |
| DatabaseName | Istex CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Physics |
| EISSN | 1467-9590 |
| EndPage | 266 |
| ExternalDocumentID | 1942106 10_1111_1467_9590_00110 SAPM110 ark_67375_WNG_965XN15J_F |
| Genre | article |
| GroupedDBID | --Z -~X .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 29Q 31~ 33P 3R3 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHQJS AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EJD EMI EMK EST ESX F00 F01 F04 F5P FEDTE FSPIC G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IHE IX1 J0M K1G K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XOL XSW YNT ZY4 ZZTAW ~02 ~IA ~WT AAHHS ABTAH ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN UAO WRC XJT AAYXX CITATION O8X 63O AAJUZ AAPBV ABCVL ABHUG ABPTK ACSMX ACXME ADAWD ADDAD AFVGU AGJLS G8K IQODW |
| ID | FETCH-LOGICAL-c3510-41188b64ffa19ea35245f1aabde0a9901ba02cdfb260c3b769b004eb7dceb5343 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000079372800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-2526 |
| IngestDate | Sun Oct 29 17:08:06 EDT 2023 Sat Nov 29 01:40:04 EST 2025 Tue Nov 18 20:44:42 EST 2025 Wed Jan 22 16:57:28 EST 2025 Tue Nov 11 03:31:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Initial boundary value problem Gravity current Equation of motion Initial value problem Well posed problem Jacobi matrix Froude number Finite element method Incompressible flow Conservation law Boundary value problem Navier Stokes equation Classification Relaxation method Stratified flow |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3510-41188b64ffa19ea35245f1aabde0a9901ba02cdfb260c3b769b004eb7dceb5343 |
| Notes | ArticleID:SAPM110 ark:/67375/WNG-965XN15J-F istex:385945D4DB49DB930CB7CA55DA0E19AB91609B84 |
| PageCount | 46 |
| ParticipantIDs | pascalfrancis_primary_1942106 crossref_primary_10_1111_1467_9590_00110 crossref_citationtrail_10_1111_1467_9590_00110 wiley_primary_10_1111_1467_9590_00110_SAPM110 istex_primary_ark_67375_WNG_965XN15J_F |
| PublicationCentury | 1900 |
| PublicationDate | April 1999 |
| PublicationDateYYYYMMDD | 1999-04-01 |
| PublicationDate_xml | – month: 04 year: 1999 text: April 1999 |
| PublicationDecade | 1990 |
| PublicationPlace | Boston, USA and Oxford, UK |
| PublicationPlace_xml | – name: Boston, USA and Oxford, UK – name: Boston, MA – name: Oxford |
| PublicationTitle | Studies in applied mathematics (Cambridge) |
| PublicationYear | 1999 |
| Publisher | Blackwell Publishers Inc Blackwell |
| Publisher_xml | – name: Blackwell Publishers Inc – name: Blackwell |
| SSID | ssj0001750 |
| Score | 1.5429108 |
| Snippet | Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and... |
| SourceID | pascalfrancis crossref wiley istex |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 221 |
| SubjectTerms | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Laminar flows Low-reynolds-number (creeping) flows Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Physics Sciences and techniques of general use |
| Title | Two-layer Gravity Currents with Topography |
| URI | https://api.istex.fr/ark:/67375/WNG-965XN15J-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1467-9590.00110 |
| Volume | 102 |
| WOSCitedRecordID | wos000079372800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-9590 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001750 issn: 0022-2526 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7IpqAPXqZi1UkfRHyw0lva5nGonchWhm66t5KkKYhjG-u8PPoT_I3-EpO0q04QEXzqQ9O0nJOTnC_5-h2AQ4EYvJQ73GA4QYaLMDOwYzmGbSeUC4xrEVV57rblR1HQ7-NOwSaU_8Lk-hDlhpuMDDVfywAnNPsS5CrEMcKmOkwQqL1qi9HrVqB6fh32WuV0LNZHcyYZbiPbK_R9JJ3nWxdzS1NVWvlFUiVJJqyV5mUu5lNYtQaFa__w9euwWiSgeiMfMRuwwIc1WGmX6q1ZDZYULZRlm3DSfR69v74NiEjM9eaEyEITeiHplOlyD1fvjsaF6vUW9MKL7tmlUdRXMJgjQtFwBbgIqOemKbEwJyIVc1FqEUITbhJ5XkaJabMkpQLzMIf6ntRPdDn1E8YpclxnGyrD0ZDvgO6LvFPcJKnDLZGSJQEJEi8NqE18kjDMNTidmTZmhfi4rIExiGcgRBoklgZRLDtTg-PygXGuu_Fz0yPlq7IdmTxIupqP4ruoGWMP9SMLXcWhBvU5Z352jF2BfD0NDOWy314Y3zQ6bXHd_WP7PVjORR8k72cfKtPJI6_DInua3meTg2LcfgAvnOkn |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQBgIOPAaIAYMeEOJAUV9pm-MEbAO2CsGA3aokTSXEtE3reBz5CfxGfglJ2pUNCSEkTj3UTSsnjv057meAfYEY3JjbXGc4QrqDMNOxbdq6ZUWUC4xrEtV57q7pBYHf6eDJf2FSfog84SYtQ-3X0sBlQnrCypWNY4QNdZogYHvREYsJFaB4el27beb7sXCQxpgz3EKWmxH8yHqeb0NM-aaiVPOrrJUkiVBXnPa5mI5hlROqLf_H56_AUhaCatV0zazCDO-VYLGV87cmJZhThaEsWYOj9kv_4-29S0RortWHRLaa0DJSp0STWVyt3R9kvNfrcFs7a5809KzDgs5sYYy6I-CFT10njomJORHBmINikxAacYPIEzNKDItFMRWoh9nUcyWDosOpFzFOke3YG1Do9Xt8EzRPRJ7iJoltboqgLPKJH7mxTy3ikYhhXobjsW5DltGPyy4Y3XAMQ6RCQqkQVWdnlOEwf2CQMm_8LHqgJiuXI8NHWbDmofA-qIfYRZ3ARBdhrQyVqdn8Ghg7Avu6ZdDVnP32wvCmetUS160_yu_BfKPdaobN8-ByGxZSCghZBbQDhdHwiVdglj2PHpLhbraIPwE9Lu0X |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VuwW1BwoF1AAtOSDEgaC8nMTHFUv6YBtVsFv2FvkpoVa7q6TQHvkJ_Y39JYydbNqthBASpxzi2NGMxzOfPf4G4A0ihkSrSHmCSuLFhAqPRkHkhaHkCjFuwGzludNRWhTZdErv3oVp-CG6DTdjGXa9NgauFlLfsXJr45RQ354mIGzv41AJGmd_-CWfjLr1GB2kv-QMD0mYtAQ_Jp_nXhcrvqlvxHxlciVZjeLSTZ2L1RjWOqF863_8_mN41Iag7qCZM09gTc22YfO442-tt-GBTQwV9VN4P76c3_y6PmcYmrv7FTOlJtyW1Kl2zS6uO54vWt7rZzDJP40_HnhthQVPRGiMXozwIuNJrDULqGIYjMVEB4xxqXxmTsw480MhNUfUIyKeJoZBMVY8lUJxEsXRc-jN5jO1A26KkSe-ZDpSAQZlMmOZTHTGQ5YyKahy4MNStqVo6cdNFYzzcglDjEBKIxCbZ-c78K77YNEwb_y56VurrK4dq85MwlpKym_FfkkTMi0CclTmDuyuaPO2Yxoj9k0c8KzO_jZg-XVwcozPF__Y_jU8PBnm5eiw-PwSNhoGCJME9Ap6F9UPtQvr4ufF97raa-fwb-Fd7JI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90layer+Gravity+Currents+with+Topography&rft.jtitle=Studies+in+applied+mathematics+%28Cambridge%29&rft.au=Montgomery%2C+P.+J.&rft.au=Moodie%2C+T.+B.&rft.date=1999-04-01&rft.pub=Blackwell+Publishers+Inc&rft.issn=0022-2526&rft.eissn=1467-9590&rft.volume=102&rft.issue=3&rft.spage=221&rft.epage=266&rft_id=info:doi/10.1111%2F1467-9590.00110&rft.externalDBID=10.1111%252F1467-9590.00110&rft.externalDocID=SAPM110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2526&client=summon |