Two-layer Gravity Currents with Topography

Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and underlying a layer of lighter fluid are considered. The equations which describe the resulting two‐layer flow are derived from the Navier–Stokes equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) Jg. 102; H. 3; S. 221 - 266
Hauptverfasser: Montgomery, P. J., Moodie, T. B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston, USA and Oxford, UK Blackwell Publishers Inc 01.04.1999
Blackwell
Schlagworte:
ISSN:0022-2526, 1467-9590
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and underlying a layer of lighter fluid are considered. The equations which describe the resulting two‐layer flow are derived from the Navier–Stokes equations for a constant density, inviscid, nonrotating fluid, neglecting kinematic viscosity, surface tension, and entrainment between the layers. A new addition to the theory is introduced in the form of a forcing term in the lower layer horizontal momentum equation which is incorporated to produce the characteristic structure typical of such gravity currents in the laboratory. This delaying term is restricted to the front of the gravity current, and as such is shown to be valid under conventional shallow‐water scaling assumptions. The hyperbolic character of the equations of motion is shown, a simple numerical test for hyperbolicity is derived from theoretical considerations, and these results are related to the stability Froude number of the flow. Well‐posedness of the initial boundary value problem is proven via localization of the equations, and the discussion is extended to a two‐point boundary value problem with examples of steady‐state and traveling wave solutions given for a bottom surface of constant slope. Numerical results are obtained by using a recently developed finite‐difference relaxation scheme for conservation laws, sufficiently modified herein to include spatial variability and forcing terms, which approximates the material interface at the front of the lower fluid layer as a shock. The effects of slope and the delaying force are investigated numerically to determine their theoretical importance, and the range of expected values is compared to published experimental results. Some calculations for the temporal evolution of the flow are produced that display the phenomenon of rear wall separation for nonzero slopes.
AbstractList Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and underlying a layer of lighter fluid are considered. The equations which describe the resulting two‐layer flow are derived from the Navier–Stokes equations for a constant density, inviscid, nonrotating fluid, neglecting kinematic viscosity, surface tension, and entrainment between the layers. A new addition to the theory is introduced in the form of a forcing term in the lower layer horizontal momentum equation which is incorporated to produce the characteristic structure typical of such gravity currents in the laboratory. This delaying term is restricted to the front of the gravity current, and as such is shown to be valid under conventional shallow‐water scaling assumptions. The hyperbolic character of the equations of motion is shown, a simple numerical test for hyperbolicity is derived from theoretical considerations, and these results are related to the stability Froude number of the flow. Well‐posedness of the initial boundary value problem is proven via localization of the equations, and the discussion is extended to a two‐point boundary value problem with examples of steady‐state and traveling wave solutions given for a bottom surface of constant slope. Numerical results are obtained by using a recently developed finite‐difference relaxation scheme for conservation laws, sufficiently modified herein to include spatial variability and forcing terms, which approximates the material interface at the front of the lower fluid layer as a shock. The effects of slope and the delaying force are investigated numerically to determine their theoretical importance, and the range of expected values is compared to published experimental results. Some calculations for the temporal evolution of the flow are produced that display the phenomenon of rear wall separation for nonzero slopes.
Author Montgomery, P. J.
Moodie, T. B.
Author_xml – sequence: 1
  givenname: P. J.
  surname: Montgomery
  fullname: Montgomery, P. J.
  organization: University of Alberta, Edmonton
– sequence: 2
  givenname: T. B.
  surname: Moodie
  fullname: Moodie, T. B.
  organization: University of Alberta, Edmonton
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1942106$$DView record in Pascal Francis
BookMark eNqFkEFLw0AQRhepYFs9e83Bk5B2drO76R5LsVWpVbCit2WSbuxqTMputObfmxpR8KBzGRjem2G-HukUZWEIOaYwoE0NKZdxqISCAQClsEe635MO6QIwFjLB5AHpef8EDRML6JLT5bYMc6yNC2YO32xVB5NX50xR-WBrq3WwLDflo8PNuj4k-xnm3hx99T65m54tJ-fh_Hp2MRnPwzQSFEJO6WiUSJ5lSJXBSDAuMoqYrAygUkATBJausoRJSKMklioB4CaJV6lJRMSjPjlp927Qp5hnDovUer1x9gVdranijIJssGGLpa703pnshwC9S0Tv_te7__VnIo0hfhmprbCyZVE5tPkfHm-9rc1N_d8ZfTu-uWq1sNWsr8z7t4buWcs4ioW-X8y0kuJhQcWlnkYfiXGDGg
CODEN SAPMB6
CitedBy_id crossref_primary_10_1016_j_compfluid_2005_04_002
crossref_primary_10_1080_00036811_2014_1002481
crossref_primary_10_1111_1467_9590_00228
crossref_primary_10_1140_epjp_s13360_020_00559_6
crossref_primary_10_1111_j_0022_2526_2005_01545_x
crossref_primary_10_1016_S0020_7462_00_00063_9
crossref_primary_10_1080_00036811_2022_2098729
crossref_primary_10_1016_S0377_0427_01_00551_9
crossref_primary_10_1111_1467_9590_t01_1_00233
ContentType Journal Article
Copyright Massachusetts Institute of Technology 1999
1999 INIST-CNRS
Copyright_xml – notice: Massachusetts Institute of Technology 1999
– notice: 1999 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1111/1467-9590.00110
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1467-9590
EndPage 266
ExternalDocumentID 1942106
10_1111_1467_9590_00110
SAPM110
ark_67375_WNG_965XN15J_F
Genre article
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
29Q
31~
33P
3R3
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHQJS
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EJD
EMI
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IHE
IX1
J0M
K1G
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XOL
XSW
YNT
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
UAO
WRC
XJT
AAYXX
CITATION
O8X
63O
AAJUZ
AAPBV
ABCVL
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
G8K
IQODW
ID FETCH-LOGICAL-c3510-41188b64ffa19ea35245f1aabde0a9901ba02cdfb260c3b769b004eb7dceb5343
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000079372800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2526
IngestDate Sun Oct 29 17:08:06 EDT 2023
Sat Nov 29 01:40:04 EST 2025
Tue Nov 18 20:44:42 EST 2025
Wed Jan 22 16:57:28 EST 2025
Tue Nov 11 03:31:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Initial boundary value problem
Gravity current
Equation of motion
Initial value problem
Well posed problem
Jacobi matrix
Froude number
Finite element method
Incompressible flow
Conservation law
Boundary value problem
Navier Stokes equation
Classification
Relaxation method
Stratified flow
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3510-41188b64ffa19ea35245f1aabde0a9901ba02cdfb260c3b769b004eb7dceb5343
Notes ArticleID:SAPM110
ark:/67375/WNG-965XN15J-F
istex:385945D4DB49DB930CB7CA55DA0E19AB91609B84
PageCount 46
ParticipantIDs pascalfrancis_primary_1942106
crossref_primary_10_1111_1467_9590_00110
crossref_citationtrail_10_1111_1467_9590_00110
wiley_primary_10_1111_1467_9590_00110_SAPM110
istex_primary_ark_67375_WNG_965XN15J_F
PublicationCentury 1900
PublicationDate April 1999
PublicationDateYYYYMMDD 1999-04-01
PublicationDate_xml – month: 04
  year: 1999
  text: April 1999
PublicationDecade 1990
PublicationPlace Boston, USA and Oxford, UK
PublicationPlace_xml – name: Boston, USA and Oxford, UK
– name: Boston, MA
– name: Oxford
PublicationTitle Studies in applied mathematics (Cambridge)
PublicationYear 1999
Publisher Blackwell Publishers Inc
Blackwell
Publisher_xml – name: Blackwell Publishers Inc
– name: Blackwell
SSID ssj0001750
Score 1.5429108
Snippet Two‐dimensional and time‐dependent gravity currents involving the initial release of a fixed volume of heavy fluid over a gradually sloping bottom and...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 221
SubjectTerms Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Laminar flows
Low-reynolds-number (creeping) flows
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Physics
Sciences and techniques of general use
Title Two-layer Gravity Currents with Topography
URI https://api.istex.fr/ark:/67375/WNG-965XN15J-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1467-9590.00110
Volume 102
WOSCitedRecordID wos000079372800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9590
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001750
  issn: 0022-2526
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7IpqAPXqZi1UkfRHyw0lva5nGonchWhm66t5KkKYhjG-u8PPoT_I3-EpO0q04QEXzqQ9O0nJOTnC_5-h2AQ4EYvJQ73GA4QYaLMDOwYzmGbSeUC4xrEVV57rblR1HQ7-NOwSaU_8Lk-hDlhpuMDDVfywAnNPsS5CrEMcKmOkwQqL1qi9HrVqB6fh32WuV0LNZHcyYZbiPbK_R9JJ3nWxdzS1NVWvlFUiVJJqyV5mUu5lNYtQaFa__w9euwWiSgeiMfMRuwwIc1WGmX6q1ZDZYULZRlm3DSfR69v74NiEjM9eaEyEITeiHplOlyD1fvjsaF6vUW9MKL7tmlUdRXMJgjQtFwBbgIqOemKbEwJyIVc1FqEUITbhJ5XkaJabMkpQLzMIf6ntRPdDn1E8YpclxnGyrD0ZDvgO6LvFPcJKnDLZGSJQEJEi8NqE18kjDMNTidmTZmhfi4rIExiGcgRBoklgZRLDtTg-PygXGuu_Fz0yPlq7IdmTxIupqP4ruoGWMP9SMLXcWhBvU5Z352jF2BfD0NDOWy314Y3zQ6bXHd_WP7PVjORR8k72cfKtPJI6_DInua3meTg2LcfgAvnOkn
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQBgIOPAaIAYMeEOJAUV9pm-MEbAO2CsGA3aokTSXEtE3reBz5CfxGfglJ2pUNCSEkTj3UTSsnjv057meAfYEY3JjbXGc4QrqDMNOxbdq6ZUWUC4xrEtV57q7pBYHf6eDJf2FSfog84SYtQ-3X0sBlQnrCypWNY4QNdZogYHvREYsJFaB4el27beb7sXCQxpgz3EKWmxH8yHqeb0NM-aaiVPOrrJUkiVBXnPa5mI5hlROqLf_H56_AUhaCatV0zazCDO-VYLGV87cmJZhThaEsWYOj9kv_4-29S0RortWHRLaa0DJSp0STWVyt3R9kvNfrcFs7a5809KzDgs5sYYy6I-CFT10njomJORHBmINikxAacYPIEzNKDItFMRWoh9nUcyWDosOpFzFOke3YG1Do9Xt8EzRPRJ7iJoltboqgLPKJH7mxTy3ikYhhXobjsW5DltGPyy4Y3XAMQ6RCQqkQVWdnlOEwf2CQMm_8LHqgJiuXI8NHWbDmofA-qIfYRZ3ARBdhrQyVqdn8Ghg7Avu6ZdDVnP32wvCmetUS160_yu_BfKPdaobN8-ByGxZSCghZBbQDhdHwiVdglj2PHpLhbraIPwE9Lu0X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VuwW1BwoF1AAtOSDEgaC8nMTHFUv6YBtVsFv2FvkpoVa7q6TQHvkJ_Y39JYydbNqthBASpxzi2NGMxzOfPf4G4A0ihkSrSHmCSuLFhAqPRkHkhaHkCjFuwGzludNRWhTZdErv3oVp-CG6DTdjGXa9NgauFlLfsXJr45RQ354mIGzv41AJGmd_-CWfjLr1GB2kv-QMD0mYtAQ_Jp_nXhcrvqlvxHxlciVZjeLSTZ2L1RjWOqF863_8_mN41Iag7qCZM09gTc22YfO442-tt-GBTQwV9VN4P76c3_y6PmcYmrv7FTOlJtyW1Kl2zS6uO54vWt7rZzDJP40_HnhthQVPRGiMXozwIuNJrDULqGIYjMVEB4xxqXxmTsw480MhNUfUIyKeJoZBMVY8lUJxEsXRc-jN5jO1A26KkSe-ZDpSAQZlMmOZTHTGQ5YyKahy4MNStqVo6cdNFYzzcglDjEBKIxCbZ-c78K77YNEwb_y56VurrK4dq85MwlpKym_FfkkTMi0CclTmDuyuaPO2Yxoj9k0c8KzO_jZg-XVwcozPF__Y_jU8PBnm5eiw-PwSNhoGCJME9Ap6F9UPtQvr4ufF97raa-fwb-Fd7JI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90layer+Gravity+Currents+with+Topography&rft.jtitle=Studies+in+applied+mathematics+%28Cambridge%29&rft.au=Montgomery%2C+P.+J.&rft.au=Moodie%2C+T.+B.&rft.date=1999-04-01&rft.pub=Blackwell+Publishers+Inc&rft.issn=0022-2526&rft.eissn=1467-9590&rft.volume=102&rft.issue=3&rft.spage=221&rft.epage=266&rft_id=info:doi/10.1111%2F1467-9590.00110&rft.externalDBID=10.1111%252F1467-9590.00110&rft.externalDocID=SAPM110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2526&client=summon