An Edge-based Stochastic Proximal Gradient Algorithm for Decentralized Composite Optimization

This paper investigates decentralized composite optimization problems involving a common non-smooth regularization term over an undirected and connected network. In the same situation, there exist lots of gradient-based proximal distributed methods, but most of them are only sublinearly convergent....

Full description

Saved in:
Bibliographic Details
Published in:International journal of control, automation, and systems Vol. 19; no. 11; pp. 3598 - 3610
Main Authors: Zhang, Ling, Yan, Yu, Wang, Zheng, Li, Huaqing
Format: Journal Article
Language:English
Published: Bucheon / Seoul Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers 01.11.2021
Springer Nature B.V
제어·로봇·시스템학회
Subjects:
ISSN:1598-6446, 2005-4092
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper investigates decentralized composite optimization problems involving a common non-smooth regularization term over an undirected and connected network. In the same situation, there exist lots of gradient-based proximal distributed methods, but most of them are only sublinearly convergent. The proof of linear convergence for this series of algorithms is extremely difficult. To set up the problem, we presume all networked agents use the same non-smooth regularization term, which is the circumstance for most machine learning to implement based on centralized optimization. For this scenario, most existing proximal-gradient algorithms trend to ignore the cost of gradient evaluations, which results in degraded performance. To tackle this problem, we further set the local cost function to the average of a moderate amount of local cost subfunctions and develop an edge-based stochastic proximal gradient algorithm (SPG-Edge) by employing local unbiased stochastic averaging gradient method. When the non-smooth term does not exist, the proposed algorithm could be extended to some notable primal-dual domain algorithms, such as EXTRA and DIGing. Finally, we provide a simplified proof of linear convergence and conduct numerical experiments to illustrate the validity of theoretical results.
AbstractList This paper investigates decentralized composite optimization problems involving a common non-smooth regularization term over an undirected and connected network. In the same situation, there exist lots of gradientbased proximal distributed methods, but most of them are only sublinearly convergent. The proof of linear convergence for this series of algorithms is extremely difficult. To set up the problem, we presume all networked agents use the same non-smooth regularization term, which is the circumstance for most machine learning to implement based on centralized optimization. For this scenario, most existing proximal-gradient algorithms trend to ignore the cost of gradient evaluations, which results in degraded performance. To tackle this problem, we further set the local cost function to the average of a moderate amount of local cost subfunctions and develop an edge-based stochastic proximal gradient algorithm (SPG-Edge) by employing local unbiased stochastic averaging gradient method. When the non-smooth term does not exist, the proposed algorithm could be extended to some notable primal-dual domain algorithms, such as EXTRA and DIGing. Finally, we provide a simplified proof of linear convergence and conduct numerical experiments to illustrate the validity of theoretical results. KCI Citation Count: 2
This paper investigates decentralized composite optimization problems involving a common non-smooth regularization term over an undirected and connected network. In the same situation, there exist lots of gradient-based proximal distributed methods, but most of them are only sublinearly convergent. The proof of linear convergence for this series of algorithms is extremely difficult. To set up the problem, we presume all networked agents use the same non-smooth regularization term, which is the circumstance for most machine learning to implement based on centralized optimization. For this scenario, most existing proximal-gradient algorithms trend to ignore the cost of gradient evaluations, which results in degraded performance. To tackle this problem, we further set the local cost function to the average of a moderate amount of local cost subfunctions and develop an edge-based stochastic proximal gradient algorithm (SPG-Edge) by employing local unbiased stochastic averaging gradient method. When the non-smooth term does not exist, the proposed algorithm could be extended to some notable primal-dual domain algorithms, such as EXTRA and DIGing. Finally, we provide a simplified proof of linear convergence and conduct numerical experiments to illustrate the validity of theoretical results.
Author Li, Huaqing
Zhang, Ling
Yan, Yu
Wang, Zheng
Author_xml – sequence: 1
  givenname: Ling
  surname: Zhang
  fullname: Zhang, Ling
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University
– sequence: 2
  givenname: Yu
  orcidid: 0000-0002-5015-0803
  surname: Yan
  fullname: Yan, Yu
  email: yanyu_nice@163.com
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University
– sequence: 3
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales
– sequence: 4
  givenname: Huaqing
  orcidid: 0000-0001-6310-8965
  surname: Li
  fullname: Li, Huaqing
  email: huaqingli@swu.edu.cn
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002768067$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1rFTEUhoO04G31B7gbcOUiepLJx2R5uba1UKjYdllCJh-3aedOrkkK2l9v2hEEQVcHXt7nnMNzhA7mNHuE3hH4SADkp0Io5xwDBQxs6LF6hVYUgGMGih6gFeFqwIIx8RodlXIPIARVcoVu13N34rYej6Z4113VZO9MqdF2X3P6EXdm6s6ycdHPtVtP25Rjvdt1IeXus7ctzGaKTw3cpN0-lVh9d7mvcRefTI1pfoMOg5mKf_t7HqOb05PrzRd8cXl2vllfYNtzqNg7b6hxgfQQgnG9DH1Q0sograUcWK9AMDM6y4QfR2JaKq13oxGBCeFof4w-LHvnHPSDjTqZ-DK3ST9kvf52fa7VIBkM0Lrvl-4-p--PvlR9nx7z3N7TlA-KKKp431pkadmcSsk-6H1uNvJPTUA_G9eLcd2M62fjWjVG_sXYWF88NE1x-i9JF7K0K_PW5z8__Rv6BSyFmIQ
CitedBy_id crossref_primary_10_1007_s12555_024_0424_0
crossref_primary_10_1007_s12555_023_0211_3
Cites_doi 10.1561/2200000051
10.1109/TSP.2013.2254478
10.1109/TSP.2016.2617829
10.1109/TSP.2010.2055862
10.1109/TSP.2010.2047721
10.1137/16M1084316
10.1016/j.asoc.2018.08.044
10.1109/TKDE.2012.191
10.1109/TSP.2014.2367458
10.1007/s12555-017-0717-7
10.1007/s12555-018-0191-x
10.1007/s12555-018-9543-9
10.1109/TSP.2015.2461520
10.1109/TAC.2017.2713046
10.1109/TSP.2007.906734
10.1109/TNSE.2019.2933177
10.1137/14096668X
10.1109/TSP.2014.2304432
10.1109/TRO.2017.2686441
10.1109/TSP.2018.2875898
10.1109/TAC.1986.1104412
ContentType Journal Article
Copyright ICROS, KIEE and Springer 2021
ICROS, KIEE and Springer 2021.
Copyright_xml – notice: ICROS, KIEE and Springer 2021
– notice: ICROS, KIEE and Springer 2021.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ACYCR
DOI 10.1007/s12555-020-0483-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4092
EndPage 3610
ExternalDocumentID oai_kci_go_kr_ARTI_9874080
10_1007_s12555_020_0483_9
GroupedDBID -EM
.UV
06D
0R~
0VY
1N0
203
29J
29~
2KG
2LR
2VQ
30V
3V.
4.4
406
408
40D
5GY
5VS
67Z
7WY
8FE
8FG
8FL
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
BA0
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRNLG
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GNUQQ
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
KVFHK
LLZTM
M0C
M0N
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P62
P9P
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
R9I
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ACYCR
PMFND
ID FETCH-LOGICAL-c350t-edea2adf130ffad37f3f97c7f7cc250439064abdc46ebb1acc27cedba6f466d23
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692086100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1598-6446
IngestDate Thu May 29 05:21:49 EDT 2025
Wed Sep 17 23:59:56 EDT 2025
Sat Nov 29 01:37:42 EST 2025
Tue Nov 18 21:55:34 EST 2025
Fri Feb 21 02:47:46 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords proximal-gradient method
Decentralized composite optimization
machine learning
stochastic averaging gradient
linear convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-edea2adf130ffad37f3f97c7f7cc250439064abdc46ebb1acc27cedba6f466d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
http://link.springer.com/article/10.1007/s12555-020-0483-9
ORCID 0000-0002-5015-0803
0000-0001-6310-8965
PQID 2589192953
PQPubID 326316
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9874080
proquest_journals_2589192953
crossref_primary_10_1007_s12555_020_0483_9
crossref_citationtrail_10_1007_s12555_020_0483_9
springer_journals_10_1007_s12555_020_0483_9
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Bucheon / Seoul
PublicationPlace_xml – name: Bucheon / Seoul
– name: Heidelberg
PublicationSubtitle IJCAS
PublicationTitle International journal of control, automation, and systems
PublicationTitleAbbrev Int. J. Control Autom. Syst
PublicationYear 2021
Publisher Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
Springer Nature B.V
제어·로봇·시스템학회
Publisher_xml – name: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
– name: Springer Nature B.V
– name: 제어·로봇·시스템학회
References Boulkaibet, Belarbi, Bououden, Chadli, Marwala (CR18) 2018; 73
Smith, Forte, Chenxin, Takac, Jordan, Jaggi (CR10) 2018; 18
Wang, Zheng, Li (CR23) 2020; 18
CR12
CR11
Yan, Sundaram, Vishwanathan, Qi (CR6) 2013; 25
Chang, Hong, Wang (CR22) 2015; 63
Sayed (CR8) 2014; 7
Nedic, Olshevsky, Shi (CR1) 2017; 27
Shi, Ling, Yuan, Wu, Yin (CR5) 2014; 62
Schizas, Ribeiro, Giannakis (CR3) 2008; 56
Aybat, Wang, Lin, Ma (CR4) 2018; 63
Mota, Xavier, Aguiar (CR16) 2013; 61
Ling, Tian (CR20) 2010; 58
Mokhtari, Ling, Ribeiro (CR14) 2016; 65
Sui, Duan, Hou, Zhang (CR26) 2019; 17
CR28
Wang, Li (CR25) 2020; 7
CR24
Seaman, Bach, Bubeck, Lee, Massoulie (CR15) 2017; 70
Shi, Ling, Wu, Yin (CR7) 2015; 63
Yuan, Ying, Zhao, Sayed (CR9) 2019; 67
Tsitsiklis, Bertsekas, Athans (CR19) 1986; 31
Safavi, Khan (CR21) 2017; 33
Zhang, Gong, Yang, Chen (CR27) 2019; 17
Shi, Ling, Wu, Yin (CR2) 2015; 25
Mateos, Bazerque, Giannakis (CR17) 2010; 58
Mokhtari, Ribeiro (CR13) 2016; 17
N Aybat (483_CR4) 2018; 63
Z Wang (483_CR23) 2020; 18
Q Ling (483_CR20) 2010; 58
G Mateos (483_CR17) 2010; 58
A H Sayed (483_CR8) 2014; 7
J Tsitsiklis (483_CR19) 1986; 31
483_CR12
K Yuan (483_CR9) 2019; 67
I Schizas (483_CR3) 2008; 56
I Boulkaibet (483_CR18) 2018; 73
A Nedic (483_CR1) 2017; 27
483_CR11
A Mokhtari (483_CR13) 2016; 17
S Safavi (483_CR21) 2017; 33
W Shi (483_CR5) 2014; 62
J Mota (483_CR16) 2013; 61
W S Sui (483_CR26) 2019; 17
W Shi (483_CR7) 2015; 63
V Smith (483_CR10) 2018; 18
F Yan (483_CR6) 2013; 25
A Mokhtari (483_CR14) 2016; 65
Q Zhang (483_CR27) 2019; 17
W Shi (483_CR2) 2015; 25
K Seaman (483_CR15) 2017; 70
483_CR24
T-H Chang (483_CR22) 2015; 63
483_CR28
Z Wang (483_CR25) 2020; 7
References_xml – volume: 7
  start-page: 311
  issue: 4–5
  year: 2014
  end-page: 801
  ident: CR8
  article-title: Adaptation, learning, and optimization over networks
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000051
– volume: 61
  start-page: 2718
  issue: 10
  year: 2013
  end-page: 2723
  ident: CR16
  article-title: DADMM: A communication-efficient distributed algorithm for separable optimization
  publication-title: IEEE Transactions on Signal Process
  doi: 10.1109/TSP.2013.2254478
– ident: CR12
– volume: 65
  start-page: 146
  issue: 1
  year: 2016
  end-page: 161
  ident: CR14
  article-title: Network Newton distributed optimization methods
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2016.2617829
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  end-page: 5276
  ident: CR17
  article-title: Distributed sparse linear regression
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2055862
– volume: 58
  start-page: 3816
  issue: 7
  year: 2010
  end-page: 3827
  ident: CR20
  article-title: Decentralized sparse signal recovery for compressive sleeping wireless sensor networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2047721
– volume: 27
  start-page: 2597
  issue: 4
  year: 2017
  end-page: 2633
  ident: CR1
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M1084316
– volume: 73
  start-page: 572
  year: 2018
  end-page: 590
  ident: CR18
  article-title: An adaptive fuzzy predictive control of nonlinear processes based on multi-kernel least squares support vector regression
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.08.044
– volume: 25
  start-page: 2483
  issue: 11
  year: 2013
  end-page: 2493
  ident: CR6
  article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.191
– volume: 70
  start-page: 3027
  year: 2017
  end-page: 3036
  ident: CR15
  article-title: Optimal algorithms for smooth and strongly convex distributed optimization in networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 63
  start-page: 482
  issue: 2
  year: 2015
  end-page: 497
  ident: CR22
  article-title: Multi-agent distributed optimization via inexact consensus ADMM
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2014.2367458
– volume: 17
  start-page: 1117
  issue: 6
  year: 2019
  end-page: 1130
  ident: CR26
  article-title: Distributed fixed-time attitude synchronization control for multiple rigid spacecraft
  publication-title: International Journal of Control, Automation and Systems
  doi: 10.1007/s12555-017-0717-7
– volume: 17
  start-page: 1177
  issue: 5
  year: 2019
  end-page: 1183
  ident: CR27
  article-title: Distributed convex optimization for flocking of nonlinear multi-agent systems
  publication-title: International Journal of Control, Automation and Systems
  doi: 10.1007/s12555-018-0191-x
– volume: 18
  start-page: 2534
  issue: 10
  year: 2020
  end-page: 2542
  ident: CR23
  article-title: Distributed optimization over general directed networks with random sleep scheme
  publication-title: International Journal of Control, Automation and Systems
  doi: 10.1007/s12555-018-9543-9
– volume: 63
  start-page: 6013
  issue: 22
  year: 2015
  end-page: 6023
  ident: CR7
  article-title: A proximal gradient algorithm for decentralized composite optimization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2015.2461520
– volume: 63
  start-page: 5
  issue: 1
  year: 2018
  end-page: 20
  ident: CR4
  article-title: Distributed linearized alternating direction method of multipliers for composite convex consensus optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2713046
– volume: 56
  start-page: 350
  issue: 1
  year: 2008
  end-page: 364
  ident: CR3
  article-title: Consensus in ad hoc WSNs with noisy links-part I: Distributed estimation of deterministic signals
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2007.906734
– volume: 7
  start-page: 1421
  issue: 3
  year: 2020
  end-page: 1430
  ident: CR25
  article-title: Edge-based stochastic gradient algorithm for distributed optimization
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2019.2933177
– volume: 25
  start-page: 944
  issue: 2
  year: 2015
  end-page: 966
  ident: CR2
  article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/14096668X
– volume: 18
  start-page: 8590
  issue: 1
  year: 2018
  end-page: 8638
  ident: CR10
  article-title: CoCoA: A general framework for communication efficient distributed optimization
  publication-title: Journal of Machine Learning Research
– volume: 62
  start-page: 1750
  year: 2014
  end-page: 1761
  ident: CR5
  article-title: On the linear convergence of the ADMM in decentralized consensus optimization
  publication-title: IEEE Transactions on Signal Process
  doi: 10.1109/TSP.2014.2304432
– volume: 17
  start-page: 1
  year: 2016
  end-page: 35
  ident: CR13
  article-title: DSA: Decentralized double stochastic averaging gradient algorithm
  publication-title: The Journal of Machine Learning Research
– volume: 33
  start-page: 875
  issue: 4
  year: 2017
  end-page: 888
  ident: CR21
  article-title: An opportunistic linear-convex algorithm for localization in mobile robot networks
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2017.2686441
– ident: CR11
– volume: 67
  start-page: 708
  issue: 3
  year: 2019
  end-page: 723
  ident: CR9
  article-title: Exact diffusion for distributed optimization and learning-Part I: Algorithm development
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2018.2875898
– ident: CR28
– volume: 31
  start-page: 803
  issue: 9
  year: 1986
  end-page: 812
  ident: CR19
  article-title: Distributed asynchronous deterministic and stochastic gradient optimization algorithms
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1986.1104412
– ident: CR24
– ident: 483_CR28
– volume: 61
  start-page: 2718
  issue: 10
  year: 2013
  ident: 483_CR16
  publication-title: IEEE Transactions on Signal Process
  doi: 10.1109/TSP.2013.2254478
– ident: 483_CR24
– volume: 7
  start-page: 311
  issue: 4–5
  year: 2014
  ident: 483_CR8
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000051
– volume: 33
  start-page: 875
  issue: 4
  year: 2017
  ident: 483_CR21
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2017.2686441
– volume: 67
  start-page: 708
  issue: 3
  year: 2019
  ident: 483_CR9
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2018.2875898
– volume: 63
  start-page: 482
  issue: 2
  year: 2015
  ident: 483_CR22
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2014.2367458
– ident: 483_CR11
– volume: 18
  start-page: 8590
  issue: 1
  year: 2018
  ident: 483_CR10
  publication-title: Journal of Machine Learning Research
– volume: 27
  start-page: 2597
  issue: 4
  year: 2017
  ident: 483_CR1
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M1084316
– volume: 17
  start-page: 1177
  issue: 5
  year: 2019
  ident: 483_CR27
  publication-title: International Journal of Control, Automation and Systems
  doi: 10.1007/s12555-018-0191-x
– volume: 62
  start-page: 1750
  year: 2014
  ident: 483_CR5
  publication-title: IEEE Transactions on Signal Process
  doi: 10.1109/TSP.2014.2304432
– volume: 18
  start-page: 2534
  issue: 10
  year: 2020
  ident: 483_CR23
  publication-title: International Journal of Control, Automation and Systems
  doi: 10.1007/s12555-018-9543-9
– volume: 63
  start-page: 5
  issue: 1
  year: 2018
  ident: 483_CR4
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2713046
– volume: 17
  start-page: 1
  year: 2016
  ident: 483_CR13
  publication-title: The Journal of Machine Learning Research
– volume: 17
  start-page: 1117
  issue: 6
  year: 2019
  ident: 483_CR26
  publication-title: International Journal of Control, Automation and Systems
  doi: 10.1007/s12555-017-0717-7
– volume: 73
  start-page: 572
  year: 2018
  ident: 483_CR18
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.08.044
– volume: 25
  start-page: 944
  issue: 2
  year: 2015
  ident: 483_CR2
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/14096668X
– volume: 63
  start-page: 6013
  issue: 22
  year: 2015
  ident: 483_CR7
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2015.2461520
– volume: 31
  start-page: 803
  issue: 9
  year: 1986
  ident: 483_CR19
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1986.1104412
– ident: 483_CR12
– volume: 25
  start-page: 2483
  issue: 11
  year: 2013
  ident: 483_CR6
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.191
– volume: 70
  start-page: 3027
  year: 2017
  ident: 483_CR15
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 7
  start-page: 1421
  issue: 3
  year: 2020
  ident: 483_CR25
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2019.2933177
– volume: 56
  start-page: 350
  issue: 1
  year: 2008
  ident: 483_CR3
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2007.906734
– volume: 58
  start-page: 3816
  issue: 7
  year: 2010
  ident: 483_CR20
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2047721
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  ident: 483_CR17
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2055862
– volume: 65
  start-page: 146
  issue: 1
  year: 2016
  ident: 483_CR14
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2016.2617829
SSID ssj0066297
Score 2.263988
Snippet This paper investigates decentralized composite optimization problems involving a common non-smooth regularization term over an undirected and connected...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3598
SubjectTerms Algorithms
Control
Convergence
Cost function
Engineering
Machine learning
Mechatronics
Optimization
Performance degradation
Regular Papers
Regularization
Robotics
제어계측공학
Title An Edge-based Stochastic Proximal Gradient Algorithm for Decentralized Composite Optimization
URI https://link.springer.com/article/10.1007/s12555-020-0483-9
https://www.proquest.com/docview/2589192953
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002768067
Volume 19
WOSCitedRecordID wos000692086100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Control, 2021, Automation, and Systems, 19(11), , pp.3598-3610
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 2005-4092
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066297
  issn: 1598-6446
  databaseCode: RSV
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7x6KEcgNIiwkurihPIkmM7Xu8x4n1JUUNRLmi1z2BBbOQYhPj1zDo2aVBBKidL9q5tzaxnPmtnvg9gTyqrWBQbTwoWeFHEEk9E1Pco023f-hYhuqrEJmivlwwG7KLu4x431e7NlmQVqafNboh-XTexK0dMQo_NwyJmu8TpNfzuXzXhN46DiaJKBx-LyT5utjL_dYuZZDSfFXYGZ77ZGq0yzsnKp951FZZrgEm6kxXxDeZMtgZLf9EOfofrbkaO9dBZbmw06Ze5uhGOr5lcFPlTOsLpp0VVClaS7t0wL9LyZkQQ3ZIjUxdzps840cUSV_NlyC8MPKO6o_MH_Dk5vjw882qZBU-FHb_0jDYiENpiNrNW6JDa0DKqqKVKVQRnDGGLkFqhS6VsCzxLldFSxDaKYx2E67CQ5ZnZAJL4kdVhZFwDb6RlIqSNRSB1KKluS6la4Df25qrmIHdSGHd8yp7sLMfRctxZjrMW7L9OuZ8QcHw0-Cc6kd-qlDvabHcc5vy24PhzcM6Zkx9M_BZsNz7m9Qc75oFTV0So2AlbcND4dHr53Sdu_tfoLfgauJqYqpdxGxbK4sHswBf1WKbjYrdaxy9d9O3c
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-qFdSH2vqBZ7Vdik-VQC7Zy2Yfj9Yvaq_iF76UZT_PoJdILi3Sv76zucSrUoX2KZDsZsPMZua3zMxvALaVdprTxAZK8iiglKeBpCwMGDfd0IUOIbqum02wwSC9vOTHTR33uM12b0OStaWeFrsh-vXVxD4dMY0DPgMvKTosT5h_cnrRmt8kiSYdVXq4LDr7pA1l_u0VD5zRTF66BzjzUWi09jh7S__1ra_hVQMwSX-yI97AC5svw-IftIMr8L2fk10z9JIbW0NOq0JfSc_XTI7L4i4b4fT9sk4Fq0j_ZliUWXU1IohuyWfbJHNmv3CityU-58uSb2h4Rk1F5yqc7-2efToImjYLgY57YRVYY2UkjUNv5pw0MXOx40wzx7SuCc44whapjEaVKtWVeJdpa5RMHE0SE8VrMJsXuV0HkobUmZhaX8BLjUqlcomMlIkVM12ldAfCVt5CNxzkvhXGjZiyJ3vJCZSc8JITvAMf76fcTgg4nhv8AZUornUmPG22vw4LcV0KPBwcCu7bD6ZhBzZbHYvmhx2LyHdXRKjYizuw0-p0-vjJFTf-afR7mD84-3okjg4HX97CQuTzY-q6xk2Yrcofdgvm9M8qG5fv6j39G4xO8MA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xghB74McYWmEMC_G0KWqauHH8WLGVTaBSaTDtBVn-2UVrkynNJsRfjy9NKJs2pImnSImdWHeO7yx_930AH5R2mtPEBkryKKCUp4GkLAwYN_3Qhc6n6LoWm2DjcXp6yieNzumiRbu3R5LLmgZkacqr3oVxvVXhm8-EsbIYoYlpHPA1eEgRR4_b9eOTdilOkmiprjLwQ_CBP2mPNW97xbXAtJaX7lrOeeOYtI4-o2f_Pe7n8LRJPMlwOVNewAObb8D6X3SEL-HHMCcHZooWXVhDjqtCn0nkcSaTsviZzX33T2UNEavIcDYtyqw6mxOf9ZJ924A8s1--I64xiAWz5KtfkOZNpecmfB8dfPt4GDTyC4GOB2EVWGNlJI3zUc45aWLmYseZZo5pXROfcZ_OSGW0d7VSfenvMm2NkomjSWKi-BV08iK3W0DSkDoTU4uFvdSoVCqXyEiZWDHTV0p3IWxtL3TDTY4SGTOxYlVGywlvOYGWE7wLu3-6XCyJOf7V-L13qDjXmUA6bbxOC3FeCr9pOBIcZQnTsAvbrb9F8yMvRISqiz6FHMRd2Gv9u3p85xdf36v1O3g82R-JL0fjz2_gSYSwmbrccRs6VXlp38IjfVVli3Knnt6_AXeR-aQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Edge-based+Stochastic+Proximal+Gradient+Algorithm+for+Decentralized+Composite+Optimization&rft.jtitle=International+journal+of+control%2C+automation%2C+and+systems&rft.au=Zhang%2C+Ling&rft.au=Yan%2C+Yu&rft.au=Wang%2C+Zheng&rft.au=Li%2C+Huaqing&rft.date=2021-11-01&rft.issn=1598-6446&rft.eissn=2005-4092&rft.volume=19&rft.issue=11&rft.spage=3598&rft.epage=3610&rft_id=info:doi/10.1007%2Fs12555-020-0483-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12555_020_0483_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-6446&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-6446&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-6446&client=summon