Scaled Position Consensus of High-Order Uncertain Multiagent Systems Over Switching Directed Graphs
We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interactio...
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 54; číslo 5; s. 3093 - 3104 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents. |
|---|---|
| AbstractList | We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents.We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents. We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents. We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents. |
| Author | Ma, Guangfu Mei, Jie Tian, Kaixin |
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-8990-4641 surname: Mei fullname: Mei, Jie email: jmei@hit.edu.cn organization: Department of Automation and the Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China – sequence: 2 givenname: Kaixin surname: Tian fullname: Tian, Kaixin email: 19b953037@stu.hit.edu.cn organization: Department of Automation and the Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China – sequence: 3 givenname: Guangfu orcidid: 0000-0002-4654-9045 surname: Ma fullname: Ma, Guangfu organization: Department of Automation and the Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37824313$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9vEzEQxS3UipbSD4CEkCUuXDb43669R0ihrVQUpLQHTpbXO5u42tip7S3qt8dRQoV6wJexrN-b8bz3Bh354AGhd5TMKCXt59v5r68zRhifcU5Z0zav0CmjjaoYk_XR872RJ-g8pXtSjipPrXqNTrhUTHDKT5FdWjNCj3-G5LILHs-DT-DTlHAY8JVbratF7CHiO28hZuM8_jGN2ZkV-IyXTynDJuHFYyGWv122a-dX-MJFsLl0vYxmu05v0fFgxgTnh3qG7r5_u51fVTeLy-v5l5vK8prkCjrDpGpZPQDjLeO27VTf1sANCKugNgq4opx0ZQdpQZi-J01t5CBBSNsBP0Of9n23MTxMkLLeuGRhHI2HMCXNlJRcEarqgn58gd6HKfryO82JIEQIKkShPhyoqdtAr7fRbUx80n_tKwDdAzaGlCIMzwglepeS3qWkdynpQ0pFI19orMtm532Oxo3_Vb7fKx0A_DOJKd7WhP8BKKWemg |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_physa_2025_130921 crossref_primary_10_1016_j_sysconle_2025_106167 crossref_primary_10_1109_TCYB_2024_3422511 crossref_primary_10_1007_s11431_024_2942_8 crossref_primary_10_1109_TAC_2025_3546080 crossref_primary_10_1109_TIE_2024_3485710 crossref_primary_10_1007_s13160_025_00697_3 crossref_primary_10_1109_TAC_2025_3566577 crossref_primary_10_3390_jmse12081332 crossref_primary_10_1016_j_automatica_2025_112296 crossref_primary_10_1109_TAC_2024_3462533 crossref_primary_10_1109_TCYB_2025_3547895 |
| Cites_doi | 10.1049/iet-cta.2009.0191 10.1109/TCYB.2017.2714688 10.1109/TCSII.2023.3253927 10.1109/TIE.2016.2636810 10.1109/TCNS.2019.2937202 10.1109/TII.2021.3069207 10.1109/TCNS.2017.2737824 10.1109/9.728882 10.1109/tcns.2023.3272848 10.1109/TCYB.2020.3034013 10.1109/TRO.2018.2861917 10.1561/2600000019 10.1109/TAC.2003.812781 10.1109/TAC.2005.846556 10.1109/MCAS.2019.2909446 10.1109/TCYB.2021.3118782 10.1109/TCYB.2016.2616020 10.1080/00207170903177774 10.1109/TCYB.2017.2731601 10.1109/TAC.2021.3062594 10.1109/TNSE.2022.3148354 10.1016/j.automatica.2019.108559 10.1016/j.automatica.2010.03.006 10.1007/978-1-84800-015-5 10.1109/TCYB.2019.2916563 10.1109/TCNS.2018.2889003 10.1002/acs.2866 10.1109/TAC.2010.2040500 10.1109/TAC.2015.2444211 10.1016/j.sysconle.2021.105109 10.1109/TCYB.2018.2883793 10.1109/JPROC.2018.2817461 10.1080/00207721.2014.966281 10.1016/j.jfranklin.2021.02.002 10.1115/1.3426967 10.1109/TAC.2015.2479119 10.1109/TCSI.2011.2106032 10.1109/CAC.2017.8242975 10.1016/j.jfranklin.2022.07.044 10.1109/TNSE.2021.3114410 10.1016/j.sysconle.2011.03.004 10.1109/TAC.2015.2480336 10.1016/j.automatica.2014.10.022 10.1109/TAC.2018.2799520 10.1109/tcsi.2009.2023937 10.1109/TAC.2010.2041974 10.1109/JPROC.2018.2821924 10.1109/TAC.2015.2408576 10.1109/TSMCB.2008.2007810 10.1016/j.automatica.2014.10.073 10.1109/TCYB.2022.3182036 10.1115/1.2764508 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2023.3312696 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 3104 |
| ExternalDocumentID | 37824313 10_1109_TCYB_2023_3312696 10283950 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Shenzhen Fundamental Research Program grantid: JCYJ20200109113210134; JCYJ20210324132215038 funderid: 10.13039/501100017607 – fundername: National Natural Science Foundation of China grantid: 62073098; U1913209 funderid: 10.13039/501100001809 – fundername: National Defense Basic Scientific Research Project grantid: JCKY2020903B002; JCKY2021603B030 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c350t-eba278925fe23923c9b8d95e3ae4c8e5a8e38130b8987ce4add065a7f7e47cbe3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001088276400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 20:20:53 EDT 2025 Mon Jun 30 04:28:00 EDT 2025 Mon Jul 21 05:15:16 EDT 2025 Sat Nov 29 02:02:40 EST 2025 Tue Nov 18 21:28:58 EST 2025 Wed Aug 27 02:17:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-eba278925fe23923c9b8d95e3ae4c8e5a8e38130b8987ce4add065a7f7e47cbe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4654-9045 0000-0002-8990-4641 |
| PMID | 37824313 |
| PQID | 3040044144 |
| PQPubID | 85422 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCYB_2023_3312696 ieee_primary_10283950 proquest_miscellaneous_2877380185 proquest_journals_3040044144 pubmed_primary_37824313 crossref_citationtrail_10_1109_TCYB_2023_3312696 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 Ren (ref49) 2008 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Astrom (ref53) 2008 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 Khalil (ref50) 2002 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref16 doi: 10.1049/iet-cta.2009.0191 – ident: ref2 doi: 10.1109/TCYB.2017.2714688 – ident: ref34 doi: 10.1109/TCSII.2023.3253927 – ident: ref36 doi: 10.1109/TIE.2016.2636810 – ident: ref32 doi: 10.1109/TCNS.2019.2937202 – ident: ref48 doi: 10.1109/TII.2021.3069207 – ident: ref27 doi: 10.1109/TCNS.2017.2737824 – ident: ref54 doi: 10.1109/9.728882 – ident: ref30 doi: 10.1109/tcns.2023.3272848 – volume-title: Adaptive Control year: 2008 ident: ref53 – ident: ref22 doi: 10.1109/TCYB.2020.3034013 – ident: ref52 doi: 10.1109/TRO.2018.2861917 – ident: ref35 doi: 10.1561/2600000019 – ident: ref7 doi: 10.1109/TAC.2003.812781 – ident: ref8 doi: 10.1109/TAC.2005.846556 – ident: ref6 doi: 10.1109/MCAS.2019.2909446 – ident: ref33 doi: 10.1109/TCYB.2021.3118782 – ident: ref11 doi: 10.1109/TCYB.2016.2616020 – ident: ref17 doi: 10.1080/00207170903177774 – ident: ref44 doi: 10.1109/TCYB.2017.2731601 – ident: ref38 doi: 10.1109/TAC.2021.3062594 – ident: ref42 doi: 10.1109/TNSE.2022.3148354 – ident: ref28 doi: 10.1016/j.automatica.2019.108559 – ident: ref9 doi: 10.1016/j.automatica.2010.03.006 – volume-title: Distributed Consensus in Multi-Vehicle Cooperative Control year: 2008 ident: ref49 doi: 10.1007/978-1-84800-015-5 – ident: ref29 doi: 10.1109/TCYB.2019.2916563 – ident: ref25 doi: 10.1109/TCNS.2018.2889003 – ident: ref37 doi: 10.1002/acs.2866 – ident: ref12 doi: 10.1109/TAC.2010.2040500 – ident: ref21 doi: 10.1109/TAC.2015.2444211 – ident: ref45 doi: 10.1016/j.sysconle.2021.105109 – ident: ref47 doi: 10.1109/TCYB.2018.2883793 – ident: ref5 doi: 10.1109/JPROC.2018.2817461 – ident: ref20 doi: 10.1080/00207721.2014.966281 – ident: ref41 doi: 10.1016/j.jfranklin.2021.02.002 – ident: ref51 doi: 10.1115/1.3426967 – ident: ref40 doi: 10.1109/TAC.2015.2479119 – ident: ref15 doi: 10.1109/TCSI.2011.2106032 – ident: ref31 doi: 10.1109/CAC.2017.8242975 – ident: ref43 doi: 10.1016/j.jfranklin.2022.07.044 – ident: ref26 doi: 10.1109/TNSE.2021.3114410 – ident: ref13 doi: 10.1016/j.sysconle.2011.03.004 – ident: ref10 doi: 10.1109/TAC.2015.2480336 – ident: ref1 doi: 10.1016/j.automatica.2014.10.022 – ident: ref19 doi: 10.1109/TAC.2018.2799520 – ident: ref23 doi: 10.1109/tcsi.2009.2023937 – ident: ref3 doi: 10.1109/TAC.2010.2041974 – ident: ref4 doi: 10.1109/JPROC.2018.2821924 – ident: ref18 doi: 10.1109/TAC.2015.2408576 – ident: ref24 doi: 10.1109/TSMCB.2008.2007810 – ident: ref39 doi: 10.1016/j.automatica.2014.10.073 – ident: ref46 doi: 10.1109/TCYB.2022.3182036 – volume-title: Nonlinear Systems year: 2002 ident: ref50 – ident: ref14 doi: 10.1115/1.2764508 |
| SSID | ssj0000816898 |
| Score | 2.4323983 |
| Snippet | We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents'... We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents’... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3093 |
| SubjectTerms | Adaptive algorithms Consensus algorithm Control systems Directed graphs Graph theory Graphs Heuristic algorithms High-order multiagent systems Mathematical models Multi-agent systems Multiagent systems scaled position consensus Switches Switching switching directed graphs uncertainties Uncertainty |
| Title | Scaled Position Consensus of High-Order Uncertain Multiagent Systems Over Switching Directed Graphs |
| URI | https://ieeexplore.ieee.org/document/10283950 https://www.ncbi.nlm.nih.gov/pubmed/37824313 https://www.proquest.com/docview/3040044144 https://www.proquest.com/docview/2877380185 |
| Volume | 54 |
| WOSCitedRecordID | wos001088276400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xtAdeBoxuCzBkJB5gUkqI49p-ZIiPJ0BqK3VPkeNcpEqonUjL_v3dOW7FHpjEm6XYjuW7893Zd_cDOHGV9lWtOLjVYEr2rU8tOXCpw7quM9dUeQSb0Pf3ZjKxjzFZPeTCIGIIPsM-N8Nbfj33S74qOw_K0LKH_kHrQZestb5QCQgSAfs2p0ZKZoWOr5gXmT0fXf362Weo8L6UF_nAMnSRJO1I-lP-o5ICxsrb5mZQOzfb71zwDnyK9qW47BhiFzZw9hl2owS34jSWmT7bAz8k8mAtHmPYlmDsTga-aMW8ERz_kT5wXU4xppEhbkCEbF3HyVgiVjoXDyQKYvhnuggxmaI7QWnWWy6E3fZgfHM9urpLI-RC6qXKFilWjlNjc9VgTpaT9LYytVUoHRbeoHIGScXLrKKd1h4LOh3JhnG60VgQ0VF-gc3ZfIbfQFQD1ZA94QtFLp63svIml-izRnnllBkkkK12vfSxHjnDYjyVwS_JbMk0K5lmZaRZAj_WQ353xTj-17nHBHnVsaNFAocr2pZRXttShrOsIO8ygeP1Z5I0fj5xM5wv25J8Sy1JoRuVwNeOJ9aTr1hp_42fHsAWra3oIiUPYXPxvMTv8NG_LKbt8xGx88QcBXb-C9wn7pA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcmhjReGMf46HZAkPYASD1K01ybR0BjIOBA4pDgKUpTV0JCdxO92_792WnuNB5A2lukJmkU27Gd2P4BfLdl7spKcXBrgTHZty7W5MDFFquqSmxdpgFsIh8MiocHfRuS1X0uDCL64DPscdO_5VdjN-WrskOvDDV76B9VlqVJm641v1LxGBIe_TalRkyGRR7eMY8SfTg8fTzpMVh4T8qjtK8ZvEiSfiQNKl8pJY-y8rbB6RXP2ef_XPIKLAcLUxy3LNGBDzhahU6Q4UbshULT-1_A3RGBsBK3IXBLMHonQ180YlwLjgCJb7gyp7inkT5yQPh8XcvpWCLUOhc3JAzi7s_TxEdlivYMpVl_cinsZg3uz34MT8_jALoQO6mSSYyl5eTYVNWYku0knS6LSiuUFjNXoLIFkpKXSUk7nTvM6HwkK8bmdY4ZkR3lOiyMxiPcBFH2VU0WhcsUOXlOy9IVqUSX1Mopq4p-BMls140LFckZGOPZeM8k0YZpZphmJtAsgoP5kF9tOY73Oq8xQf7p2NIigu6MtiZIbGOkP80y8i8j2J1_JlnjBxQ7wvG0MeRd5pJUeqEi2Gh5Yj75jJW-vvHTHfh0Pry-MlcXg8tvsETrzNq4yS4sTF6muAWL7vfkqXnZ9kz9F8wY8O8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaled+Position+Consensus+of+High-Order+Uncertain+Multiagent+Systems+Over+Switching+Directed+Graphs&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Mei%2C+Jie&rft.au=Tian%2C+Kaixin&rft.au=Ma%2C+Guangfu&rft.date=2024-05-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=54&rft.issue=5&rft.spage=3093&rft.epage=3104&rft_id=info:doi/10.1109%2FTCYB.2023.3312696&rft_id=info%3Apmid%2F37824313&rft.externalDocID=10283950 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |