Scaled Position Consensus of High-Order Uncertain Multiagent Systems Over Switching Directed Graphs

We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interactio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 54; číslo 5; s. 3093 - 3104
Hlavní autoři: Mei, Jie, Tian, Kaixin, Ma, Guangfu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents.
AbstractList We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents.We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents.
We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a acrlong MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents.
We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents' position states reach a consensus value with different scales. The intricacy arises from the asymmetry inherent in information interaction. Achieving scaled position consensus in high-order multiagent systems over directed graphs remains a significant challenge, particularly when confronted with the following complex features: 1) uniformly jointly connected switching directed graphs; 2) complex agent dynamics with unknown inertias, unknown control directions, parametric uncertainties, and external disturbances; 3) interacting with each other via only relative scaled position information (without high-order derivatives of relative position); and 4) fully distributed in terms of no shared gains and no global gain dependency. To address these challenges, we propose a distributed adaptive algorithm based on a MRACon scheme, where a linear high-order reference model is designed for every individual agent employing relative scaled position information as input. A new transformation is proposed which converts the scaled position consensus of high-order linear reference models to that of first-order ones. Theoretical analysis is presented where agents' positions achieve the scaled consensus over switching directed graphs. Numerical simulations are performed to validate the efficacy of our algorithm and some collective behaviors on traditional consensus, bipartite consensus, and cluster consensus are shown by precisely choosing the scales of the agents.
Author Ma, Guangfu
Mei, Jie
Tian, Kaixin
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-8990-4641
  surname: Mei
  fullname: Mei, Jie
  email: jmei@hit.edu.cn
  organization: Department of Automation and the Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
– sequence: 2
  givenname: Kaixin
  surname: Tian
  fullname: Tian, Kaixin
  email: 19b953037@stu.hit.edu.cn
  organization: Department of Automation and the Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
– sequence: 3
  givenname: Guangfu
  orcidid: 0000-0002-4654-9045
  surname: Ma
  fullname: Ma, Guangfu
  organization: Department of Automation and the Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37824313$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS3UipbSD4CEkCUuXDb43669R0ihrVQUpLQHTpbXO5u42tip7S3qt8dRQoV6wJexrN-b8bz3Bh354AGhd5TMKCXt59v5r68zRhifcU5Z0zav0CmjjaoYk_XR872RJ-g8pXtSjipPrXqNTrhUTHDKT5FdWjNCj3-G5LILHs-DT-DTlHAY8JVbratF7CHiO28hZuM8_jGN2ZkV-IyXTynDJuHFYyGWv122a-dX-MJFsLl0vYxmu05v0fFgxgTnh3qG7r5_u51fVTeLy-v5l5vK8prkCjrDpGpZPQDjLeO27VTf1sANCKugNgq4opx0ZQdpQZi-J01t5CBBSNsBP0Of9n23MTxMkLLeuGRhHI2HMCXNlJRcEarqgn58gd6HKfryO82JIEQIKkShPhyoqdtAr7fRbUx80n_tKwDdAzaGlCIMzwglepeS3qWkdynpQ0pFI19orMtm532Oxo3_Vb7fKx0A_DOJKd7WhP8BKKWemg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_physa_2025_130921
crossref_primary_10_1016_j_sysconle_2025_106167
crossref_primary_10_1109_TCYB_2024_3422511
crossref_primary_10_1007_s11431_024_2942_8
crossref_primary_10_1109_TAC_2025_3546080
crossref_primary_10_1109_TIE_2024_3485710
crossref_primary_10_1007_s13160_025_00697_3
crossref_primary_10_1109_TAC_2025_3566577
crossref_primary_10_3390_jmse12081332
crossref_primary_10_1016_j_automatica_2025_112296
crossref_primary_10_1109_TAC_2024_3462533
crossref_primary_10_1109_TCYB_2025_3547895
Cites_doi 10.1049/iet-cta.2009.0191
10.1109/TCYB.2017.2714688
10.1109/TCSII.2023.3253927
10.1109/TIE.2016.2636810
10.1109/TCNS.2019.2937202
10.1109/TII.2021.3069207
10.1109/TCNS.2017.2737824
10.1109/9.728882
10.1109/tcns.2023.3272848
10.1109/TCYB.2020.3034013
10.1109/TRO.2018.2861917
10.1561/2600000019
10.1109/TAC.2003.812781
10.1109/TAC.2005.846556
10.1109/MCAS.2019.2909446
10.1109/TCYB.2021.3118782
10.1109/TCYB.2016.2616020
10.1080/00207170903177774
10.1109/TCYB.2017.2731601
10.1109/TAC.2021.3062594
10.1109/TNSE.2022.3148354
10.1016/j.automatica.2019.108559
10.1016/j.automatica.2010.03.006
10.1007/978-1-84800-015-5
10.1109/TCYB.2019.2916563
10.1109/TCNS.2018.2889003
10.1002/acs.2866
10.1109/TAC.2010.2040500
10.1109/TAC.2015.2444211
10.1016/j.sysconle.2021.105109
10.1109/TCYB.2018.2883793
10.1109/JPROC.2018.2817461
10.1080/00207721.2014.966281
10.1016/j.jfranklin.2021.02.002
10.1115/1.3426967
10.1109/TAC.2015.2479119
10.1109/TCSI.2011.2106032
10.1109/CAC.2017.8242975
10.1016/j.jfranklin.2022.07.044
10.1109/TNSE.2021.3114410
10.1016/j.sysconle.2011.03.004
10.1109/TAC.2015.2480336
10.1016/j.automatica.2014.10.022
10.1109/TAC.2018.2799520
10.1109/tcsi.2009.2023937
10.1109/TAC.2010.2041974
10.1109/JPROC.2018.2821924
10.1109/TAC.2015.2408576
10.1109/TSMCB.2008.2007810
10.1016/j.automatica.2014.10.073
10.1109/TCYB.2022.3182036
10.1115/1.2764508
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2023.3312696
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3104
ExternalDocumentID 37824313
10_1109_TCYB_2023_3312696
10283950
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Shenzhen Fundamental Research Program
  grantid: JCYJ20200109113210134; JCYJ20210324132215038
  funderid: 10.13039/501100017607
– fundername: National Natural Science Foundation of China
  grantid: 62073098; U1913209
  funderid: 10.13039/501100001809
– fundername: National Defense Basic Scientific Research Project
  grantid: JCKY2020903B002; JCKY2021603B030
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c350t-eba278925fe23923c9b8d95e3ae4c8e5a8e38130b8987ce4add065a7f7e47cbe3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001088276400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 20:20:53 EDT 2025
Mon Jun 30 04:28:00 EDT 2025
Mon Jul 21 05:15:16 EDT 2025
Sat Nov 29 02:02:40 EST 2025
Tue Nov 18 21:28:58 EST 2025
Wed Aug 27 02:17:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-eba278925fe23923c9b8d95e3ae4c8e5a8e38130b8987ce4add065a7f7e47cbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4654-9045
0000-0002-8990-4641
PMID 37824313
PQID 3040044144
PQPubID 85422
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCYB_2023_3312696
ieee_primary_10283950
proquest_miscellaneous_2877380185
proquest_journals_3040044144
pubmed_primary_37824313
crossref_citationtrail_10_1109_TCYB_2023_3312696
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
Ren (ref49) 2008
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Astrom (ref53) 2008
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
Khalil (ref50) 2002
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref16
  doi: 10.1049/iet-cta.2009.0191
– ident: ref2
  doi: 10.1109/TCYB.2017.2714688
– ident: ref34
  doi: 10.1109/TCSII.2023.3253927
– ident: ref36
  doi: 10.1109/TIE.2016.2636810
– ident: ref32
  doi: 10.1109/TCNS.2019.2937202
– ident: ref48
  doi: 10.1109/TII.2021.3069207
– ident: ref27
  doi: 10.1109/TCNS.2017.2737824
– ident: ref54
  doi: 10.1109/9.728882
– ident: ref30
  doi: 10.1109/tcns.2023.3272848
– volume-title: Adaptive Control
  year: 2008
  ident: ref53
– ident: ref22
  doi: 10.1109/TCYB.2020.3034013
– ident: ref52
  doi: 10.1109/TRO.2018.2861917
– ident: ref35
  doi: 10.1561/2600000019
– ident: ref7
  doi: 10.1109/TAC.2003.812781
– ident: ref8
  doi: 10.1109/TAC.2005.846556
– ident: ref6
  doi: 10.1109/MCAS.2019.2909446
– ident: ref33
  doi: 10.1109/TCYB.2021.3118782
– ident: ref11
  doi: 10.1109/TCYB.2016.2616020
– ident: ref17
  doi: 10.1080/00207170903177774
– ident: ref44
  doi: 10.1109/TCYB.2017.2731601
– ident: ref38
  doi: 10.1109/TAC.2021.3062594
– ident: ref42
  doi: 10.1109/TNSE.2022.3148354
– ident: ref28
  doi: 10.1016/j.automatica.2019.108559
– ident: ref9
  doi: 10.1016/j.automatica.2010.03.006
– volume-title: Distributed Consensus in Multi-Vehicle Cooperative Control
  year: 2008
  ident: ref49
  doi: 10.1007/978-1-84800-015-5
– ident: ref29
  doi: 10.1109/TCYB.2019.2916563
– ident: ref25
  doi: 10.1109/TCNS.2018.2889003
– ident: ref37
  doi: 10.1002/acs.2866
– ident: ref12
  doi: 10.1109/TAC.2010.2040500
– ident: ref21
  doi: 10.1109/TAC.2015.2444211
– ident: ref45
  doi: 10.1016/j.sysconle.2021.105109
– ident: ref47
  doi: 10.1109/TCYB.2018.2883793
– ident: ref5
  doi: 10.1109/JPROC.2018.2817461
– ident: ref20
  doi: 10.1080/00207721.2014.966281
– ident: ref41
  doi: 10.1016/j.jfranklin.2021.02.002
– ident: ref51
  doi: 10.1115/1.3426967
– ident: ref40
  doi: 10.1109/TAC.2015.2479119
– ident: ref15
  doi: 10.1109/TCSI.2011.2106032
– ident: ref31
  doi: 10.1109/CAC.2017.8242975
– ident: ref43
  doi: 10.1016/j.jfranklin.2022.07.044
– ident: ref26
  doi: 10.1109/TNSE.2021.3114410
– ident: ref13
  doi: 10.1016/j.sysconle.2011.03.004
– ident: ref10
  doi: 10.1109/TAC.2015.2480336
– ident: ref1
  doi: 10.1016/j.automatica.2014.10.022
– ident: ref19
  doi: 10.1109/TAC.2018.2799520
– ident: ref23
  doi: 10.1109/tcsi.2009.2023937
– ident: ref3
  doi: 10.1109/TAC.2010.2041974
– ident: ref4
  doi: 10.1109/JPROC.2018.2821924
– ident: ref18
  doi: 10.1109/TAC.2015.2408576
– ident: ref24
  doi: 10.1109/TSMCB.2008.2007810
– ident: ref39
  doi: 10.1016/j.automatica.2014.10.073
– ident: ref46
  doi: 10.1109/TCYB.2022.3182036
– volume-title: Nonlinear Systems
  year: 2002
  ident: ref50
– ident: ref14
  doi: 10.1115/1.2764508
SSID ssj0000816898
Score 2.4323983
Snippet We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents'...
We investigate the scaled position consensus of high-order multiagent systems with parametric uncertainties over switching directed graphs, where the agents’...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3093
SubjectTerms Adaptive algorithms
Consensus algorithm
Control systems
Directed graphs
Graph theory
Graphs
Heuristic algorithms
High-order multiagent systems
Mathematical models
Multi-agent systems
Multiagent systems
scaled position consensus
Switches
Switching
switching directed graphs
uncertainties
Uncertainty
Title Scaled Position Consensus of High-Order Uncertain Multiagent Systems Over Switching Directed Graphs
URI https://ieeexplore.ieee.org/document/10283950
https://www.ncbi.nlm.nih.gov/pubmed/37824313
https://www.proquest.com/docview/3040044144
https://www.proquest.com/docview/2877380185
Volume 54
WOSCitedRecordID wos001088276400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xtAdeBoxuCzBkJB5gUkqI49p-ZIiPJ0BqK3VPkeNcpEqonUjL_v3dOW7FHpjEm6XYjuW7893Zd_cDOHGV9lWtOLjVYEr2rU8tOXCpw7quM9dUeQSb0Pf3ZjKxjzFZPeTCIGIIPsM-N8Nbfj33S74qOw_K0LKH_kHrQZestb5QCQgSAfs2p0ZKZoWOr5gXmT0fXf362Weo8L6UF_nAMnSRJO1I-lP-o5ICxsrb5mZQOzfb71zwDnyK9qW47BhiFzZw9hl2owS34jSWmT7bAz8k8mAtHmPYlmDsTga-aMW8ERz_kT5wXU4xppEhbkCEbF3HyVgiVjoXDyQKYvhnuggxmaI7QWnWWy6E3fZgfHM9urpLI-RC6qXKFilWjlNjc9VgTpaT9LYytVUoHRbeoHIGScXLrKKd1h4LOh3JhnG60VgQ0VF-gc3ZfIbfQFQD1ZA94QtFLp63svIml-izRnnllBkkkK12vfSxHjnDYjyVwS_JbMk0K5lmZaRZAj_WQ353xTj-17nHBHnVsaNFAocr2pZRXttShrOsIO8ygeP1Z5I0fj5xM5wv25J8Sy1JoRuVwNeOJ9aTr1hp_42fHsAWra3oIiUPYXPxvMTv8NG_LKbt8xGx88QcBXb-C9wn7pA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcmhjReGMf46HZAkPYASD1K01ybR0BjIOBA4pDgKUpTV0JCdxO92_792WnuNB5A2lukJmkU27Gd2P4BfLdl7spKcXBrgTHZty7W5MDFFquqSmxdpgFsIh8MiocHfRuS1X0uDCL64DPscdO_5VdjN-WrskOvDDV76B9VlqVJm641v1LxGBIe_TalRkyGRR7eMY8SfTg8fTzpMVh4T8qjtK8ZvEiSfiQNKl8pJY-y8rbB6RXP2ef_XPIKLAcLUxy3LNGBDzhahU6Q4UbshULT-1_A3RGBsBK3IXBLMHonQ180YlwLjgCJb7gyp7inkT5yQPh8XcvpWCLUOhc3JAzi7s_TxEdlivYMpVl_cinsZg3uz34MT8_jALoQO6mSSYyl5eTYVNWYku0knS6LSiuUFjNXoLIFkpKXSUk7nTvM6HwkK8bmdY4ZkR3lOiyMxiPcBFH2VU0WhcsUOXlOy9IVqUSX1Mopq4p-BMls140LFckZGOPZeM8k0YZpZphmJtAsgoP5kF9tOY73Oq8xQf7p2NIigu6MtiZIbGOkP80y8i8j2J1_JlnjBxQ7wvG0MeRd5pJUeqEi2Gh5Yj75jJW-vvHTHfh0Pry-MlcXg8tvsETrzNq4yS4sTF6muAWL7vfkqXnZ9kz9F8wY8O8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaled+Position+Consensus+of+High-Order+Uncertain+Multiagent+Systems+Over+Switching+Directed+Graphs&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Mei%2C+Jie&rft.au=Tian%2C+Kaixin&rft.au=Ma%2C+Guangfu&rft.date=2024-05-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=54&rft.issue=5&rft.spage=3093&rft.epage=3104&rft_id=info:doi/10.1109%2FTCYB.2023.3312696&rft_id=info%3Apmid%2F37824313&rft.externalDocID=10283950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon