Tailored genetic algorithms for the detailed design optimization of reinforced concrete structures: case study on a flexural beam

This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Structural and multidisciplinary optimization Ročník 68; číslo 8; s. 161
Hlavní autoři: Quéva, Paul, Jason, Ludovic, Arnaud, Gilles, Sarazin, Gabriel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 21.08.2025
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1615-147X, 1615-1488
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least 8 × 10 7 times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided.
AbstractList This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least 8×107 times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided.
This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring significantly fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided.
This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least 8 × 10 7 times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided.
This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least $$8\times {10}^{7}$$ 8 × 10 7 times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided.
ArticleNumber 161
Author Jason, Ludovic
Arnaud, Gilles
Quéva, Paul
Sarazin, Gabriel
Author_xml – sequence: 1
  givenname: Paul
  orcidid: 0009-0009-3383-2712
  surname: Quéva
  fullname: Quéva, Paul
  email: paul.queva@cea.fr
  organization: Université Paris-Saclay, CEA, Laboratoire Energétique Mécanique Electromagnétisme, Université Paris Nanterre
– sequence: 2
  givenname: Ludovic
  surname: Jason
  fullname: Jason, Ludovic
  organization: Université Paris-Saclay, CEA
– sequence: 3
  givenname: Gilles
  surname: Arnaud
  fullname: Arnaud, Gilles
  organization: Université Paris-Saclay, CEA, Service de Génie Logiciel pour la Simulation
– sequence: 4
  givenname: Gabriel
  surname: Sarazin
  fullname: Sarazin, Gabriel
  organization: Université Paris-Saclay, CEA, Service de Génie Logiciel pour la Simulation
BackLink https://hal.science/hal-05217969$$DView record in HAL
BookMark eNp9kUtr3DAUhUVJoJPHH-hK0FUWbq4ke2RnF0LTFAa6SSE7ocf1jAaPNZHkMsmu_7yauiS7ru6D7xzu5ZyRkzGMSMgnBl8YgLxOAKxpK-BNBTV0vDp8IAu2ZE3F6rY9eevl00dyltIWAFqouwX5_aj9ECI6usYRs7dUD-sQfd7sEu1DpHmD1GEuVGEcJr8eadhnv_OvOvtQhp5G9GNhbSFsGG3EjDTlONk8RUw31Op0XEzuhRaBpv2AhynqgRrUuwty2ush4eW_ek5-3n99vHuoVj--fb-7XVVWNJArbFoNzOhOSOtAGFlr2YFxEt2SO9kLzTgYY501rFkK03JTl3-57hGxdVqck6vZd6MHtY9-p-OLCtqrh9uVOu6g4Ux2y-4XK-znmd3H8DxhymobpjiW85TgNZMCmu5I8ZmyMaQUsX-zZaCOsag5FlViUX9jUYciErMoFXhcY3y3_o_qD8gXlSE
Cites_doi 10.1007/978-3-319-15892-1_8
10.1109/TEVC.2003.810758
10.1016/j.compstruc.2014.10.003
10.1115/1.3607869
10.1061/JSENDH.STENG-13542
10.1016/S0957-4174(96)00084-X
10.1016/j.cad.2009.03.005
10.1111/j.1467-8667.2008.00561.x
10.1109/TEVC.2020.3013290
10.3390/sym11091145
10.1016/j.autcon.2018.10.005
10.1051/epjn/2018050
10.1007/BF01213587
10.1016/0045-7949(88)90142-3
10.1016/j.autcon.2022.104677
10.1007/s00158-013-0884-y
10.1088/1748-9326/11/7/074029
10.1016/j.compstruc.2005.09.001
10.1016/j.advengsoft.2017.09.007
10.1016/j.jclepro.2020.120623
10.1016/0045-7949(92)90040-7
10.1016/j.autcon.2022.104224
10.1016/j.jobe.2021.102940
10.1109/CEC.2002.1007013
10.1061/(ASCE)0733-9445(2003)129:6(762)
10.1016/S0045-7949(03)00215-3
10.1038/scientificamerican0792-66
10.1111/0885-9507.00084
10.1126/science.220.4598.671
10.1061/JSDEAG.0004697
10.1016/j.autcon.2019.01.012
10.1109/4235.996017
10.1145/298151.298382
10.1016/j.jobe.2021.103310
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s00158-025-04092-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID oai:HAL:hal-05217969v1
10_1007_s00158_025_04092_x
GrantInformation_xml – fundername: Commissariat à l'Énergie Atomique et aux Énergies Alternatives
GroupedDBID .86
.VR
06D
0R~
0VY
123
199
1N0
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~02
-Y2
2.D
2P1
2VQ
5QI
8FE
8FG
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
ADPHR
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARCEE
BDATZ
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
L6V
M7S
N2Q
NDZJH
O9-
PHGZM
PHGZT
PQGLB
PTHSS
RNI
RZK
S26
S28
SCLPG
T16
1XC
VOOES
ID FETCH-LOGICAL-c350t-e58a01ba937cd03b74a790bd7ed62d7f3a120bbcdcb1563b82b41472afeee8da3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556619400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-147X
IngestDate Tue Oct 14 21:00:13 EDT 2025
Sat Nov 22 20:41:18 EST 2025
Sat Nov 29 07:33:55 EST 2025
Sat Sep 06 10:14:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Carbon footprint minimization
Cost minimization
Steel reinforcement design
Genetic algorithm
Multiobjective optimization
Reinforced concrete structure
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-e58a01ba937cd03b74a790bd7ed62d7f3a120bbcdcb1563b82b41472afeee8da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Report-3
ObjectType-Case Study-4
ORCID 0009-0009-3383-2712
0000-0001-6018-118X
0000-0001-8465-2767
OpenAccessLink https://link.springer.com/10.1007/s00158-025-04092-x
PQID 3241730591
PQPubID 2043658
ParticipantIDs hal_primary_oai_HAL_hal_05217969v1
proquest_journals_3241730591
crossref_primary_10_1007_s00158_025_04092_x
springer_journals_10_1007_s00158_025_04092_x
PublicationCentury 2000
PublicationDate 2025-08-21
PublicationDateYYYYMMDD 2025-08-21
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-21
  day: 21
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Y Collette (4092_CR10) 2002
MJ Esfandiari (4092_CR15) 2018; 115
H-G Kwak (4092_CR32) 2009; 41
E Zitzler (4092_CR49) 2003; 7
C Zheng (4092_CR47) 2019; 101
JH Holland (4092_CR24) 1992; 267
S Eleftheriadis (4092_CR14) 2018; 96
MM Jahjouh (4092_CR27) 2013; 47
VK Koumousis (4092_CR31) 1998; 13
4092_CR44
I Paya (4092_CR39) 2008; 23
H Ishibuchi (4092_CR26) 2015
CC Coello (4092_CR8) 1997; 12
EJ Haug (4092_CR23) 1967; 34
IA Negrin (4092_CR38) 2021; 80
K Deb (4092_CR12) 2002; 6
S Kirkpatrick (4092_CR29) 1983; 220
E Zitzler (4092_CR48) 1998
IEA. (2024) International Energy Agency. World Energy Outlook (4092_CR25) 2024
X Zhang (4092_CR46) 2021; 44
V Govindaraj (4092_CR21) 2005; 84
4092_CR17
J-B Blanchard (4092_CR5) 2019; 5
4092_CR11
M Li (4092_CR36) 2023; 146
CA Coello Coello (4092_CR9) 2004
M Li (4092_CR35) 2021; 44
A Akin (4092_CR4) 2015; 147
C Lee (4092_CR33) 2003; 129
P Siarry (4092_CR43) 2014
4092_CR18
4092_CR19
RJ Duffin (4092_CR13) 1967
4092_CR28
A Hassanzadeh (4092_CR22) 2024; 150
BK Chakrabarty (4092_CR6) 1992; 42
M Leps (4092_CR34) 2003; 81
4092_CR2
S Rani (4092_CR41) 2019; 11
4092_CR1
K Shang (4092_CR42) 2021; 25
SA Miller (4092_CR37) 2016; 11
T Chou (4092_CR7) 1977; 103
MJ Fadaee (4092_CR16) 1998; 14
C Xu (4092_CR45) 2022; 138
4092_CR30
DE Goldberg (4092_CR20) 1989
M Afzal (4092_CR3) 2020; 260
A Prakash (4092_CR40) 1988; 30
References_xml – start-page: 110
  volume-title: Evolutionary Multi-Criterion Optimization
  year: 2015
  ident: 4092_CR26
  doi: 10.1007/978-3-319-15892-1_8
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 4092_CR49
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2003.810758
– volume: 147
  start-page: 79
  year: 2015
  ident: 4092_CR4
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.10.003
– volume: 34
  start-page: 999
  issue: 4
  year: 1967
  ident: 4092_CR23
  publication-title: J Appl Mech
  doi: 10.1115/1.3607869
– volume: 80
  start-page: 285
  year: 2021
  ident: 4092_CR38
  publication-title: STRUCTURAL ENGINEERING AND MECHANICS
– volume-title: Geometric Programming for Design and Cost Optimization
  year: 1967
  ident: 4092_CR13
– volume: 150
  start-page: 03124001
  issue: 8
  year: 2024
  ident: 4092_CR22
  publication-title: J Struct Eng
  doi: 10.1061/JSENDH.STENG-13542
– ident: 4092_CR18
– volume-title: IEA
  year: 2024
  ident: 4092_CR25
– ident: 4092_CR2
– volume: 12
  start-page: 101
  issue: 1
  year: 1997
  ident: 4092_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(96)00084-X
– volume: 41
  start-page: 490
  issue: 7
  year: 2009
  ident: 4092_CR32
  publication-title: Comput Aided des
  doi: 10.1016/j.cad.2009.03.005
– start-page: 292
  volume-title: Parallel Problem Solving from Nature — PPSN
  year: 1998
  ident: 4092_CR48
– volume: 23
  start-page: 596
  issue: 8
  year: 2008
  ident: 4092_CR39
  publication-title: Computer Aided Civil Eng
  doi: 10.1111/j.1467-8667.2008.00561.x
– volume: 25
  start-page: 1
  issue: 1
  year: 2021
  ident: 4092_CR42
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2020.3013290
– volume: 11
  start-page: 1145
  issue: 9
  year: 2019
  ident: 4092_CR41
  publication-title: Symmetry
  doi: 10.3390/sym11091145
– volume: 96
  start-page: 366
  year: 2018
  ident: 4092_CR14
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.10.005
– start-page: 688
  volume-title: MICAI 2004: Advances in Artificial Intelligence
  year: 2004
  ident: 4092_CR9
– ident: 4092_CR11
– volume-title: Genetic Algorithms in Search, Optimization and Machine Learning
  year: 1989
  ident: 4092_CR20
– ident: 4092_CR19
– ident: 4092_CR1
– volume: 5
  start-page: 4
  year: 2019
  ident: 4092_CR5
  publication-title: EPJ Nuclear Sci Technol
  doi: 10.1051/epjn/2018050
– volume: 14
  start-page: 139
  issue: 2
  year: 1998
  ident: 4092_CR16
  publication-title: Engineering with Computers
  doi: 10.1007/BF01213587
– volume: 30
  start-page: 1009
  issue: 4
  year: 1988
  ident: 4092_CR40
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(88)90142-3
– volume: 146
  year: 2023
  ident: 4092_CR36
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104677
– volume: 47
  start-page: 963
  issue: 6
  year: 2013
  ident: 4092_CR27
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-013-0884-y
– volume: 11
  issue: 7
  year: 2016
  ident: 4092_CR37
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/11/7/074029
– volume: 84
  start-page: 34
  issue: 1–2
  year: 2005
  ident: 4092_CR21
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2005.09.001
– volume: 115
  start-page: 149
  year: 2018
  ident: 4092_CR15
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.09.007
– volume: 260
  year: 2020
  ident: 4092_CR3
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120623
– volume: 42
  start-page: 447
  issue: 3
  year: 1992
  ident: 4092_CR6
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(92)90040-7
– volume: 138
  year: 2022
  ident: 4092_CR45
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104224
– volume-title: Optimisation multiobjectif
  year: 2002
  ident: 4092_CR10
– volume: 44
  year: 2021
  ident: 4092_CR46
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2021.102940
– ident: 4092_CR30
  doi: 10.1109/CEC.2002.1007013
– volume: 129
  start-page: 762
  issue: 6
  year: 2003
  ident: 4092_CR33
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2003)129:6(762)
– volume: 81
  start-page: 1957
  year: 2003
  ident: 4092_CR34
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(03)00215-3
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 4092_CR24
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 13
  start-page: 43
  issue: 1
  year: 1998
  ident: 4092_CR31
  publication-title: Computer Aided Civil Eng
  doi: 10.1111/0885-9507.00084
– volume-title: Métaheuristiques: recuit simulé, recherche avec tabous, recherche à voisinages variables, méthode GRASP, algorithmes évolutionnaires, fourmis artificielles, essaims particulaires et autres méthodes d’optimisation
  year: 2014
  ident: 4092_CR43
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 4092_CR29
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: 4092_CR17
– volume: 103
  start-page: 1605
  issue: 8
  year: 1977
  ident: 4092_CR7
  publication-title: J Struct Div
  doi: 10.1061/JSDEAG.0004697
– volume: 101
  start-page: 32
  year: 2019
  ident: 4092_CR47
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2019.01.012
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 4092_CR12
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/4235.996017
– ident: 4092_CR44
  doi: 10.1145/298151.298382
– volume: 44
  year: 2021
  ident: 4092_CR35
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2021.103310
– ident: 4092_CR28
SSID ssj0008049
Score 2.4427338
Snippet This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements,...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 161
SubjectTerms Case studies
Combinatorial analysis
Complexity
Compliance
Computational Mathematics and Numerical Analysis
Concrete structures
Criteria
Design optimization
Engineering
Engineering Design
Engineering Sciences
Enumeration
Genetic algorithms
Methods
Multiple objective analysis
Optimization algorithms
Optimization techniques
Parameter sensitivity
Parameterization
Reinforced concrete
Research Paper
Searching
Theoretical and Applied Mechanics
Title Tailored genetic algorithms for the detailed design optimization of reinforced concrete structures: case study on a flexural beam
URI https://link.springer.com/article/10.1007/s00158-025-04092-x
https://www.proquest.com/docview/3241730591
https://hal.science/hal-05217969
Volume 68
WOSCitedRecordID wos001556619400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: RSV
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLa4vgnjTQNukTeJNRPEgIr7YW8k0qS64u7K7ilf_uZO0XR_oQa_NpC0zk5kvZOYLIXtCG1mCTlmhBDDBQTCjPeGlTcEl2vHMQLhsQl5cqHZbX9ZNYcOm2r05kgyRetzs5tO7Yv76VXQ8nTBEjtOY7pRfjlfXd-P4qyrQ66EMi4Vs160yP7_jSzqafPDFkJ-Q5rfD0ZBzThf-97eLZL7GmPSocoolMuF6y2TuE_PgCnm7MR3cqTtL0YF8HyM1j_f9QWf00B1SxLEUcSGtyktRxoYyD9rH8NKt-zZpv6QDF2hXC5TAXTXCz5GjFR_tM27iD2mBGZIG_lqKEwwtH92rZ_mg4Ex3ldyentwcn7H6NgZW8DQaMZcqE8VgEM8UNuIghZE6AiudzRIrS27iJAIobAG4J-SgEhCo_sSUzjllDV8jU71-z60TWqaCS4AURRHAWI2TTJYZkYKW4Lhqkf3GKPlTRbqRj-mVg2JzVGweFJu_tsgu2m0s6Pmyz47Oc__MdyZLnemXuEW2GrPm9Sod5ggmY4xwqcbhg8aMH8O_f3Ljb-KbZDYJnoBBKd4iU2gJt01mipdRZzjYCd77DjVO7ZU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELY2QII9AOOH6GBgTXsblpLYieO9oQnUiVIhKFPfLF_s0Eq0RW2HeN1_vrOTdAyxB_aanJPo7nL3nXz3mZDPQhlZgkpZkQtggoNgRnnCS5uCS5TjmYFw2ITsdvN-X13WQ2Gzptu92ZIMkXox7ObTe8788avoeCphiByXBWYs38h3df1jEX_zCvR6KMNiIfv1qMzLz_grHb0d-GbIJ0jz2eZoyDlnG__3tZtkvcaY9KRyivfkjRtvkXdPmAe3ya-eGWKl7ixFB_JzjNTc3U6mw_lgNKOIYyniQlq1l6KMDW0edILhZVTPbdJJSacu0K4WKIFVNcLPuaMVH-1PLOK_0gIzJA38tRQXGFreuUfP8kHBmdEOuTk77X1rs_o0BlbwNJozl-YmisEgnilsxEEKI1UEVjqbJVaW3MRJBFDYArAm5JAnIFD9iSmdc7k1fJcsjSdjt0domQouAVIURQBjFS4yWWZECkqC43mLfGmMou8r0g29oFcOitWoWB0Uqx9b5BPabSHo-bLbJx3tr_nJZKky9RC3yEFjVl3_pTONYDLGCJcqvH3cmPHP7X-_8sPrxI_Iart30dGd793zfbKWBK_AABUfkCW0ivtIVoqH-XA2PQye_BtgAPB5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYGQwgeBgwQZTAstDdmkcROHPOGgIppqEKCob5ZvtiBSrRFbUC87p_v7KSloO0B7TU-J5bvcvdZvvuOkG9CGVmCSlmRC2CCg2BGecJLm4JLlOOZgdBsQnY6eberLmeq-EO2--RKsq5p8CxNg-rwwZaH08I3H-pz5luxohGqhCGK_Ch80yB_Xr-6mfrivAbAHtawWMhuUzbz93e8Ck1zdz4xcgZ1vrkoDfGnvfL_K18lnxrsSY9rY1kjH9zgM1meYSRcJ7-vTQ9P8M5SNCxf30jN_e1w1Kvu-mOK-JYiXqR12inK2JD-QYfodvpNPScdlnTkAh1rgRK4OISllaM1T-0jHu6PaIGRkwZeW4oTDC3v3bNn_6DgTH-D_GqfXZ-cs6ZLAyt4GlXMpbmJYjCIcwobcZDCSBWBlc5miZUlN3ESARS2ADwrcsgTEKiKxJTOudwavknmB8OB2yK0TAWXACmKIrCxCieZLDMiBSXB8bxFDiYK0g81GYee0i6HjdW4sTpsrH5ukX3U4VTQ82ifH19o_8xXLEuVqae4RXYmKtbN3zvWCDJj9HypwuHvE5W-DP_7k9vvE98ji5enbX3xo_PzC1lKglGg34p3yDwqxe2SheKp6o1HX4NR_wH9g_ld
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailored+genetic+algorithms+for+the+detailed+design+optimization+of+reinforced+concrete+structures%3A+case+study+on+a+flexural+beam&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Qu%C3%A9va%2C+Paul&rft.au=Jason%2C+Ludovic&rft.au=Arnaud%2C+Gilles&rft.au=Sarazin%2C+Gabriel&rft.date=2025-08-21&rft.pub=Springer+Nature+B.V&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=68&rft.issue=8&rft.spage=161&rft_id=info:doi/10.1007%2Fs00158-025-04092-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon