Tailored genetic algorithms for the detailed design optimization of reinforced concrete structures: case study on a flexural beam
This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an...
Uloženo v:
| Vydáno v: | Structural and multidisciplinary optimization Ročník 68; číslo 8; s. 161 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
21.08.2025
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 1615-147X, 1615-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least
8
×
10
7
times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided. |
|---|---|
| AbstractList | This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least 8×107 times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided. This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring significantly fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided. This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least 8 × 10 7 times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided. This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements, integrating various criteria such as economic and sustainability. Traditional methods, focused on strength and durability, leave engineers with an infinite range of solutions to account for these criteria. To overcome these difficulties, genetic algorithm (GA)-based approaches have been used to automate the search for optimal trade-offs between competing objectives. However, when applied to the detailed design of RC structures, these approaches face challenges due to the combinatorial nature of the problem. In practice, simplifying assumptions—such as fixed bar diameters or reliance on predefined reinforcement arrangements—are often introduced to reduce the complexity of the search space and formulation. While effective computationally, these assumptions can limit the diversity and novelty of the resulting designs. To address these limitations, the proposed methodology introduces a GA-based optimization framework with a refined parametrization of the design space. Particular attention is given to the selection of variable inputs and the integration of tailored operators to enable efficient exploration of innovative designs. The performance of the proposed methodology is demonstrated on a constrained multiobjective optimization problem applied to the detailed design of an RC beam under three-point bending. The comparison against an exhaustive exploration of the search space reveals that the algorithm successfully converges to complex optimal designs while requiring at least $$8\times {10}^{7}$$ 8 × 10 7 times fewer computations than a complete enumeration of the search space. Finally, a discussion on the method's sensitivity to parameter calibration and its dependence on operator choices is also provided. |
| ArticleNumber | 161 |
| Author | Jason, Ludovic Arnaud, Gilles Quéva, Paul Sarazin, Gabriel |
| Author_xml | – sequence: 1 givenname: Paul orcidid: 0009-0009-3383-2712 surname: Quéva fullname: Quéva, Paul email: paul.queva@cea.fr organization: Université Paris-Saclay, CEA, Laboratoire Energétique Mécanique Electromagnétisme, Université Paris Nanterre – sequence: 2 givenname: Ludovic surname: Jason fullname: Jason, Ludovic organization: Université Paris-Saclay, CEA – sequence: 3 givenname: Gilles surname: Arnaud fullname: Arnaud, Gilles organization: Université Paris-Saclay, CEA, Service de Génie Logiciel pour la Simulation – sequence: 4 givenname: Gabriel surname: Sarazin fullname: Sarazin, Gabriel organization: Université Paris-Saclay, CEA, Service de Génie Logiciel pour la Simulation |
| BackLink | https://hal.science/hal-05217969$$DView record in HAL |
| BookMark | eNp9kUtr3DAUhUVJoJPHH-hK0FUWbq4ke2RnF0LTFAa6SSE7ocf1jAaPNZHkMsmu_7yauiS7ru6D7xzu5ZyRkzGMSMgnBl8YgLxOAKxpK-BNBTV0vDp8IAu2ZE3F6rY9eevl00dyltIWAFqouwX5_aj9ECI6usYRs7dUD-sQfd7sEu1DpHmD1GEuVGEcJr8eadhnv_OvOvtQhp5G9GNhbSFsGG3EjDTlONk8RUw31Op0XEzuhRaBpv2AhynqgRrUuwty2ush4eW_ek5-3n99vHuoVj--fb-7XVVWNJArbFoNzOhOSOtAGFlr2YFxEt2SO9kLzTgYY501rFkK03JTl3-57hGxdVqck6vZd6MHtY9-p-OLCtqrh9uVOu6g4Ux2y-4XK-znmd3H8DxhymobpjiW85TgNZMCmu5I8ZmyMaQUsX-zZaCOsag5FlViUX9jUYciErMoFXhcY3y3_o_qD8gXlSE |
| Cites_doi | 10.1007/978-3-319-15892-1_8 10.1109/TEVC.2003.810758 10.1016/j.compstruc.2014.10.003 10.1115/1.3607869 10.1061/JSENDH.STENG-13542 10.1016/S0957-4174(96)00084-X 10.1016/j.cad.2009.03.005 10.1111/j.1467-8667.2008.00561.x 10.1109/TEVC.2020.3013290 10.3390/sym11091145 10.1016/j.autcon.2018.10.005 10.1051/epjn/2018050 10.1007/BF01213587 10.1016/0045-7949(88)90142-3 10.1016/j.autcon.2022.104677 10.1007/s00158-013-0884-y 10.1088/1748-9326/11/7/074029 10.1016/j.compstruc.2005.09.001 10.1016/j.advengsoft.2017.09.007 10.1016/j.jclepro.2020.120623 10.1016/0045-7949(92)90040-7 10.1016/j.autcon.2022.104224 10.1016/j.jobe.2021.102940 10.1109/CEC.2002.1007013 10.1061/(ASCE)0733-9445(2003)129:6(762) 10.1016/S0045-7949(03)00215-3 10.1038/scientificamerican0792-66 10.1111/0885-9507.00084 10.1126/science.220.4598.671 10.1061/JSDEAG.0004697 10.1016/j.autcon.2019.01.012 10.1109/4235.996017 10.1145/298151.298382 10.1016/j.jobe.2021.103310 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | C6C AAYXX CITATION 1XC VOOES |
| DOI | 10.1007/s00158-025-04092-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1615-1488 |
| ExternalDocumentID | oai:HAL:hal-05217969v1 10_1007_s00158_025_04092_x |
| GrantInformation_xml | – fundername: Commissariat à l'Énergie Atomique et aux Énergies Alternatives |
| GroupedDBID | .86 .VR 06D 0R~ 0VY 123 199 1N0 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~02 -Y2 2.D 2P1 2VQ 5QI 8FE 8FG AARHV AAYTO AAYXX ABJCF ABQSL ABULA ACBXY ADHKG ADPHR AEBTG AEFIE AEKMD AFEXP AFFHD AFGCZ AFKRA AGGDS AGQPQ AJBLW ARCEE BDATZ BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 L6V M7S N2Q NDZJH O9- PHGZM PHGZT PQGLB PTHSS RNI RZK S26 S28 SCLPG T16 1XC VOOES |
| ID | FETCH-LOGICAL-c350t-e58a01ba937cd03b74a790bd7ed62d7f3a120bbcdcb1563b82b41472afeee8da3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556619400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-147X |
| IngestDate | Tue Oct 14 21:00:13 EDT 2025 Sat Nov 22 20:41:18 EST 2025 Sat Nov 29 07:33:55 EST 2025 Sat Sep 06 10:14:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Carbon footprint minimization Cost minimization Steel reinforcement design Genetic algorithm Multiobjective optimization Reinforced concrete structure |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-e58a01ba937cd03b74a790bd7ed62d7f3a120bbcdcb1563b82b41472afeee8da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Report-3 ObjectType-Case Study-4 |
| ORCID | 0009-0009-3383-2712 0000-0001-6018-118X 0000-0001-8465-2767 |
| OpenAccessLink | https://link.springer.com/10.1007/s00158-025-04092-x |
| PQID | 3241730591 |
| PQPubID | 2043658 |
| ParticipantIDs | hal_primary_oai_HAL_hal_05217969v1 proquest_journals_3241730591 crossref_primary_10_1007_s00158_025_04092_x springer_journals_10_1007_s00158_025_04092_x |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-21 |
| PublicationDateYYYYMMDD | 2025-08-21 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Structural and multidisciplinary optimization |
| PublicationTitleAbbrev | Struct Multidisc Optim |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | Y Collette (4092_CR10) 2002 MJ Esfandiari (4092_CR15) 2018; 115 H-G Kwak (4092_CR32) 2009; 41 E Zitzler (4092_CR49) 2003; 7 C Zheng (4092_CR47) 2019; 101 JH Holland (4092_CR24) 1992; 267 S Eleftheriadis (4092_CR14) 2018; 96 MM Jahjouh (4092_CR27) 2013; 47 VK Koumousis (4092_CR31) 1998; 13 4092_CR44 I Paya (4092_CR39) 2008; 23 H Ishibuchi (4092_CR26) 2015 CC Coello (4092_CR8) 1997; 12 EJ Haug (4092_CR23) 1967; 34 IA Negrin (4092_CR38) 2021; 80 K Deb (4092_CR12) 2002; 6 S Kirkpatrick (4092_CR29) 1983; 220 E Zitzler (4092_CR48) 1998 IEA. (2024) International Energy Agency. World Energy Outlook (4092_CR25) 2024 X Zhang (4092_CR46) 2021; 44 V Govindaraj (4092_CR21) 2005; 84 4092_CR17 J-B Blanchard (4092_CR5) 2019; 5 4092_CR11 M Li (4092_CR36) 2023; 146 CA Coello Coello (4092_CR9) 2004 M Li (4092_CR35) 2021; 44 A Akin (4092_CR4) 2015; 147 C Lee (4092_CR33) 2003; 129 P Siarry (4092_CR43) 2014 4092_CR18 4092_CR19 RJ Duffin (4092_CR13) 1967 4092_CR28 A Hassanzadeh (4092_CR22) 2024; 150 BK Chakrabarty (4092_CR6) 1992; 42 M Leps (4092_CR34) 2003; 81 4092_CR2 S Rani (4092_CR41) 2019; 11 4092_CR1 K Shang (4092_CR42) 2021; 25 SA Miller (4092_CR37) 2016; 11 T Chou (4092_CR7) 1977; 103 MJ Fadaee (4092_CR16) 1998; 14 C Xu (4092_CR45) 2022; 138 4092_CR30 DE Goldberg (4092_CR20) 1989 M Afzal (4092_CR3) 2020; 260 A Prakash (4092_CR40) 1988; 30 |
| References_xml | – start-page: 110 volume-title: Evolutionary Multi-Criterion Optimization year: 2015 ident: 4092_CR26 doi: 10.1007/978-3-319-15892-1_8 – volume: 7 start-page: 117 issue: 2 year: 2003 ident: 4092_CR49 publication-title: IEEE Trans Evol Computat doi: 10.1109/TEVC.2003.810758 – volume: 147 start-page: 79 year: 2015 ident: 4092_CR4 publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.10.003 – volume: 34 start-page: 999 issue: 4 year: 1967 ident: 4092_CR23 publication-title: J Appl Mech doi: 10.1115/1.3607869 – volume: 80 start-page: 285 year: 2021 ident: 4092_CR38 publication-title: STRUCTURAL ENGINEERING AND MECHANICS – volume-title: Geometric Programming for Design and Cost Optimization year: 1967 ident: 4092_CR13 – volume: 150 start-page: 03124001 issue: 8 year: 2024 ident: 4092_CR22 publication-title: J Struct Eng doi: 10.1061/JSENDH.STENG-13542 – ident: 4092_CR18 – volume-title: IEA year: 2024 ident: 4092_CR25 – ident: 4092_CR2 – volume: 12 start-page: 101 issue: 1 year: 1997 ident: 4092_CR8 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(96)00084-X – volume: 41 start-page: 490 issue: 7 year: 2009 ident: 4092_CR32 publication-title: Comput Aided des doi: 10.1016/j.cad.2009.03.005 – start-page: 292 volume-title: Parallel Problem Solving from Nature — PPSN year: 1998 ident: 4092_CR48 – volume: 23 start-page: 596 issue: 8 year: 2008 ident: 4092_CR39 publication-title: Computer Aided Civil Eng doi: 10.1111/j.1467-8667.2008.00561.x – volume: 25 start-page: 1 issue: 1 year: 2021 ident: 4092_CR42 publication-title: IEEE Trans Evol Computat doi: 10.1109/TEVC.2020.3013290 – volume: 11 start-page: 1145 issue: 9 year: 2019 ident: 4092_CR41 publication-title: Symmetry doi: 10.3390/sym11091145 – volume: 96 start-page: 366 year: 2018 ident: 4092_CR14 publication-title: Autom Constr doi: 10.1016/j.autcon.2018.10.005 – start-page: 688 volume-title: MICAI 2004: Advances in Artificial Intelligence year: 2004 ident: 4092_CR9 – ident: 4092_CR11 – volume-title: Genetic Algorithms in Search, Optimization and Machine Learning year: 1989 ident: 4092_CR20 – ident: 4092_CR19 – ident: 4092_CR1 – volume: 5 start-page: 4 year: 2019 ident: 4092_CR5 publication-title: EPJ Nuclear Sci Technol doi: 10.1051/epjn/2018050 – volume: 14 start-page: 139 issue: 2 year: 1998 ident: 4092_CR16 publication-title: Engineering with Computers doi: 10.1007/BF01213587 – volume: 30 start-page: 1009 issue: 4 year: 1988 ident: 4092_CR40 publication-title: Comput Struct doi: 10.1016/0045-7949(88)90142-3 – volume: 146 year: 2023 ident: 4092_CR36 publication-title: Autom Constr doi: 10.1016/j.autcon.2022.104677 – volume: 47 start-page: 963 issue: 6 year: 2013 ident: 4092_CR27 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-013-0884-y – volume: 11 issue: 7 year: 2016 ident: 4092_CR37 publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/7/074029 – volume: 84 start-page: 34 issue: 1–2 year: 2005 ident: 4092_CR21 publication-title: Comput Struct doi: 10.1016/j.compstruc.2005.09.001 – volume: 115 start-page: 149 year: 2018 ident: 4092_CR15 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.09.007 – volume: 260 year: 2020 ident: 4092_CR3 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120623 – volume: 42 start-page: 447 issue: 3 year: 1992 ident: 4092_CR6 publication-title: Comput Struct doi: 10.1016/0045-7949(92)90040-7 – volume: 138 year: 2022 ident: 4092_CR45 publication-title: Autom Constr doi: 10.1016/j.autcon.2022.104224 – volume-title: Optimisation multiobjectif year: 2002 ident: 4092_CR10 – volume: 44 year: 2021 ident: 4092_CR46 publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2021.102940 – ident: 4092_CR30 doi: 10.1109/CEC.2002.1007013 – volume: 129 start-page: 762 issue: 6 year: 2003 ident: 4092_CR33 publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2003)129:6(762) – volume: 81 start-page: 1957 year: 2003 ident: 4092_CR34 publication-title: Comput Struct doi: 10.1016/S0045-7949(03)00215-3 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 4092_CR24 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 13 start-page: 43 issue: 1 year: 1998 ident: 4092_CR31 publication-title: Computer Aided Civil Eng doi: 10.1111/0885-9507.00084 – volume-title: Métaheuristiques: recuit simulé, recherche avec tabous, recherche à voisinages variables, méthode GRASP, algorithmes évolutionnaires, fourmis artificielles, essaims particulaires et autres méthodes d’optimisation year: 2014 ident: 4092_CR43 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 4092_CR29 publication-title: Science doi: 10.1126/science.220.4598.671 – ident: 4092_CR17 – volume: 103 start-page: 1605 issue: 8 year: 1977 ident: 4092_CR7 publication-title: J Struct Div doi: 10.1061/JSDEAG.0004697 – volume: 101 start-page: 32 year: 2019 ident: 4092_CR47 publication-title: Autom Constr doi: 10.1016/j.autcon.2019.01.012 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 4092_CR12 publication-title: IEEE Trans Evol Computat doi: 10.1109/4235.996017 – ident: 4092_CR44 doi: 10.1145/298151.298382 – volume: 44 year: 2021 ident: 4092_CR35 publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2021.103310 – ident: 4092_CR28 |
| SSID | ssj0008049 |
| Score | 2.4427338 |
| Snippet | This contribution proposes an optimization method for the detailed design of reinforced concrete (RC) structures subject to NF EN 1992–1-1 requirements,... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 161 |
| SubjectTerms | Case studies Combinatorial analysis Complexity Compliance Computational Mathematics and Numerical Analysis Concrete structures Criteria Design optimization Engineering Engineering Design Engineering Sciences Enumeration Genetic algorithms Methods Multiple objective analysis Optimization algorithms Optimization techniques Parameter sensitivity Parameterization Reinforced concrete Research Paper Searching Theoretical and Applied Mechanics |
| Title | Tailored genetic algorithms for the detailed design optimization of reinforced concrete structures: case study on a flexural beam |
| URI | https://link.springer.com/article/10.1007/s00158-025-04092-x https://www.proquest.com/docview/3241730591 https://hal.science/hal-05217969 |
| Volume | 68 |
| WOSCitedRecordID | wos001556619400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLa4vgnjTQNukTeJNRPEgIr7YW8k0qS64u7K7ilf_uZO0XR_oQa_NpC0zk5kvZOYLIXtCG1mCTlmhBDDBQTCjPeGlTcEl2vHMQLhsQl5cqHZbX9ZNYcOm2r05kgyRetzs5tO7Yv76VXQ8nTBEjtOY7pRfjlfXd-P4qyrQ66EMi4Vs160yP7_jSzqafPDFkJ-Q5rfD0ZBzThf-97eLZL7GmPSocoolMuF6y2TuE_PgCnm7MR3cqTtL0YF8HyM1j_f9QWf00B1SxLEUcSGtyktRxoYyD9rH8NKt-zZpv6QDF2hXC5TAXTXCz5GjFR_tM27iD2mBGZIG_lqKEwwtH92rZ_mg4Ex3ldyentwcn7H6NgZW8DQaMZcqE8VgEM8UNuIghZE6AiudzRIrS27iJAIobAG4J-SgEhCo_sSUzjllDV8jU71-z60TWqaCS4AURRHAWI2TTJYZkYKW4Lhqkf3GKPlTRbqRj-mVg2JzVGweFJu_tsgu2m0s6Pmyz47Oc__MdyZLnemXuEW2GrPm9Sod5ggmY4xwqcbhg8aMH8O_f3Ljb-KbZDYJnoBBKd4iU2gJt01mipdRZzjYCd77DjVO7ZU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELY2QII9AOOH6GBgTXsblpLYieO9oQnUiVIhKFPfLF_s0Eq0RW2HeN1_vrOTdAyxB_aanJPo7nL3nXz3mZDPQhlZgkpZkQtggoNgRnnCS5uCS5TjmYFw2ITsdvN-X13WQ2Gzptu92ZIMkXox7ObTe8788avoeCphiByXBWYs38h3df1jEX_zCvR6KMNiIfv1qMzLz_grHb0d-GbIJ0jz2eZoyDlnG__3tZtkvcaY9KRyivfkjRtvkXdPmAe3ya-eGWKl7ixFB_JzjNTc3U6mw_lgNKOIYyniQlq1l6KMDW0edILhZVTPbdJJSacu0K4WKIFVNcLPuaMVH-1PLOK_0gIzJA38tRQXGFreuUfP8kHBmdEOuTk77X1rs_o0BlbwNJozl-YmisEgnilsxEEKI1UEVjqbJVaW3MRJBFDYArAm5JAnIFD9iSmdc7k1fJcsjSdjt0domQouAVIURQBjFS4yWWZECkqC43mLfGmMou8r0g29oFcOitWoWB0Uqx9b5BPabSHo-bLbJx3tr_nJZKky9RC3yEFjVl3_pTONYDLGCJcqvH3cmPHP7X-_8sPrxI_Iart30dGd793zfbKWBK_AABUfkCW0ivtIVoqH-XA2PQye_BtgAPB5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYGQwgeBgwQZTAstDdmkcROHPOGgIppqEKCob5ZvtiBSrRFbUC87p_v7KSloO0B7TU-J5bvcvdZvvuOkG9CGVmCSlmRC2CCg2BGecJLm4JLlOOZgdBsQnY6eberLmeq-EO2--RKsq5p8CxNg-rwwZaH08I3H-pz5luxohGqhCGK_Ch80yB_Xr-6mfrivAbAHtawWMhuUzbz93e8Ck1zdz4xcgZ1vrkoDfGnvfL_K18lnxrsSY9rY1kjH9zgM1meYSRcJ7-vTQ9P8M5SNCxf30jN_e1w1Kvu-mOK-JYiXqR12inK2JD-QYfodvpNPScdlnTkAh1rgRK4OISllaM1T-0jHu6PaIGRkwZeW4oTDC3v3bNn_6DgTH-D_GqfXZ-cs6ZLAyt4GlXMpbmJYjCIcwobcZDCSBWBlc5miZUlN3ESARS2ADwrcsgTEKiKxJTOudwavknmB8OB2yK0TAWXACmKIrCxCieZLDMiBSXB8bxFDiYK0g81GYee0i6HjdW4sTpsrH5ukX3U4VTQ82ifH19o_8xXLEuVqae4RXYmKtbN3zvWCDJj9HypwuHvE5W-DP_7k9vvE98ji5enbX3xo_PzC1lKglGg34p3yDwqxe2SheKp6o1HX4NR_wH9g_ld |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailored+genetic+algorithms+for+the+detailed+design+optimization+of+reinforced+concrete+structures%3A+case+study+on+a+flexural+beam&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Qu%C3%A9va%2C+Paul&rft.au=Jason%2C+Ludovic&rft.au=Arnaud%2C+Gilles&rft.au=Sarazin%2C+Gabriel&rft.date=2025-08-21&rft.pub=Springer+Nature+B.V&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=68&rft.issue=8&rft.spage=161&rft_id=info:doi/10.1007%2Fs00158-025-04092-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |