ULFAC-Net: Ultra-Lightweight Fully Asymmetric Convolutional Network for Skin Lesion Segmentation

Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of biomedical and health informatics Ročník 27; číslo 6; s. 2886 - 2897
Hlavní autoři: Ma, Yuliang, Wu, Liping, Gao, Yunyuan, Gao, Farong, Zhang, Jianhai, Luo, Zhizeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2194, 2168-2208, 2168-2208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods.
AbstractList Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods.
Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods.Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods.
Author Luo, Zhizeng
Ma, Yuliang
Wu, Liping
Gao, Farong
Zhang, Jianhai
Gao, Yunyuan
Author_xml – sequence: 1
  givenname: Yuliang
  orcidid: 0000-0003-1277-4663
  surname: Ma
  fullname: Ma, Yuliang
  email: mayuliang@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Liping
  surname: Wu
  fullname: Wu, Liping
  email: 202060170@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Yunyuan
  orcidid: 0000-0003-2128-2185
  surname: Gao
  fullname: Gao, Yunyuan
  email: gyy@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Farong
  orcidid: 0000-0003-4984-2500
  surname: Gao
  fullname: Gao, Farong
  email: frgao@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 5
  givenname: Jianhai
  surname: Zhang
  fullname: Zhang, Jianhai
  email: jhzhang@hdu.edu.cn
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China
– sequence: 6
  givenname: Zhizeng
  surname: Luo
  fullname: Luo, Zhizeng
  email: luo@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37030688$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha2KqjzKD0BClaVu2GTqRxI77KYjBqiidkFn7Waca2pwYmonRfPvcTQzEmKBF9eW73eOdO85Rge97wGhM0pmlJLq24_vN7czRhifcVZUkrAP6IjRUmaMEXmwf9MqP0SnMT6QdGT6qspP6JALwkkp5RH6s6qX80X2E4ZLvHJDaLLa3v8dnmGqeDk6t8HzuOk6GILVeOH7_96Ng_V943BSPfvwiI0P-O7R9riGmDr4Du476Idmwj6jj6ZxEU539wlaLa9-L26y-tf17WJeZ5oXZMiAkbZdVzllRq5ZUQhOJGt1y_OcFbqEsiR5BawtSUMBjDBrYUDzNm-pNowZfoIutr5Pwf8bIQ6qs1GDc00PfoyKiUoKmsxIQr--QR_8GNJAiZKMU1lUgibqy44a1x206inYrgkbtd9dAsQW0MHHGMAobbczpzVapyhRU1BqCkpNQaldUElJ3yj35u9pzrcaCwCveCJEnpf8BT-YnPc
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_112461
crossref_primary_10_3390_s23167295
crossref_primary_10_1109_TCSVT_2024_3507383
crossref_primary_10_1016_j_eswa_2025_128635
crossref_primary_10_3390_mi15040440
crossref_primary_10_1016_j_engappai_2023_107316
crossref_primary_10_1109_JBHI_2024_3404273
crossref_primary_10_1016_j_neucom_2024_129009
crossref_primary_10_1093_jcde_qwaf006
crossref_primary_10_1007_s11517_024_03052_9
crossref_primary_10_1016_j_engappai_2025_112306
crossref_primary_10_3390_bioengineering11040390
crossref_primary_10_3390_mi15111346
Cites_doi 10.1016/j.asoc.2020.106881
10.1109/ICASSP40776.2020.9053405
10.1109/EMBC.2013.6610779
10.1007/978-3-030-00934-2_3
10.1016/j.eswa.2022.117069
10.1016/j.bspc.2022.103950
10.1007/s11760-021-02100-3
10.1109/TPAMI.2016.2644615
10.1016/j.patcog.2018.08.001
10.3390/s21103462
10.1007/978-3-319-24574-4_28
10.1016/j.cmpb.2019.07.005
10.1109/CVPR.2016.308
10.1016/j.patcog.2020.107404
10.1109/ICCV.2019.00200
10.1016/S0895-6111(00)00037-9
10.1016/j.asoc.2021.107656
10.1016/j.cmpb.2019.105241
10.1016/j.eswa.2021.115433
10.1109/cvpr.2018.00464
10.1016/j.compbiomed.2022.105545
10.1109/ISBI.2019.8759329
10.3322/caac.21763
10.1109/TMI.2020.2972964
10.3390/s21155172
10.48550/ARXIV.1807.06521
10.1016/j.engappai.2022.105004
10.1007/978-3-030-00889-5_1
10.1007/s10278-020-00343-z
10.1016/j.media.2021.102327
10.1016/j.eswa.2022.117112
10.1109/ACCESS.2019.2943628
10.1007/s12559-020-09805-6
10.1007/s13369-021-06403-y
10.1109/ISBI.2018.8363547
10.1016/j.imu.2021.100640
10.1016/j.media.2020.101716
10.1109/ICMEW46912.2020.9106038
10.1016/j.compmedimag.2020.101774
10.1016/j.compbiomed.2020.103738
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2023.3259802
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2897
ExternalDocumentID 37030688
10_1109_JBHI_2023_3259802
10077446
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62071161; 62171171; 61971168
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Project of Zhejiang Province
  grantid: 2020C04009
– fundername: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c350t-e20ddb9412f8b25573082dcd34425c6e66049e2d60a1eef7fb7fec3d4d1cf22f3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004541400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 09:29:45 EDT 2025
Sun Nov 30 05:12:48 EST 2025
Thu Apr 03 07:07:15 EDT 2025
Tue Nov 18 20:44:36 EST 2025
Sat Nov 29 04:18:32 EST 2025
Wed Aug 27 02:25:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-e20ddb9412f8b25573082dcd34425c6e66049e2d60a1eef7fb7fec3d4d1cf22f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4984-2500
0000-0003-2128-2185
0000-0003-1277-4663
PMID 37030688
PQID 2823185971
PQPubID 85417
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JBHI_2023_3259802
proquest_miscellaneous_2798714250
crossref_primary_10_1109_JBHI_2023_3259802
ieee_primary_10077446
proquest_journals_2823185971
pubmed_primary_37030688
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
Paszke (ref10) 2016
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Codella (ref20)
Gutman (ref21) 2016
Mpp (ref32) 2020; 144
Oktay (ref45) 2018
ref24
ref46
ref26
Jie (ref23)
ref25
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref40
  doi: 10.1016/j.asoc.2020.106881
– volume-title: Proc. Int. Symp. Biomed. Imag., Hosted by Int. Skin Imag. Collaboration
  ident: ref20
  article-title: Skin lesion analysis toward melanoma detection: A challenge
– ident: ref24
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: ref22
  doi: 10.1109/EMBC.2013.6610779
– ident: ref36
  doi: 10.1007/978-3-030-00934-2_3
– start-page: 7132
  volume-title: Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit.
  ident: ref23
  article-title: Squeeze-and-excitation networks
– ident: ref35
  doi: 10.1016/j.eswa.2022.117069
– ident: ref42
  doi: 10.1016/j.bspc.2022.103950
– ident: ref38
  doi: 10.1007/s11760-021-02100-3
– ident: ref43
  doi: 10.1109/TPAMI.2016.2644615
– year: 2016
  ident: ref21
  article-title: Skin lesion analysis toward melanoma detection: Achallenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC)
– ident: ref31
  doi: 10.1016/j.patcog.2018.08.001
– ident: ref5
  doi: 10.3390/s21103462
– ident: ref14
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref37
  doi: 10.1016/j.cmpb.2019.07.005
– ident: ref11
  doi: 10.1109/CVPR.2016.308
– ident: ref46
  doi: 10.1016/j.patcog.2020.107404
– ident: ref13
  doi: 10.1109/ICCV.2019.00200
– volume: 144
  year: 2020
  ident: ref32
  article-title: Transform domain representation-driven convolutional neural networks for skin lesion segmentation
  publication-title: Expert Syst. Appl.
– ident: ref2
  doi: 10.1016/S0895-6111(00)00037-9
– ident: ref8
  doi: 10.1016/j.asoc.2021.107656
– ident: ref3
  doi: 10.1016/j.cmpb.2019.105241
– ident: ref9
  doi: 10.1016/j.eswa.2021.115433
– ident: ref15
  doi: 10.1109/cvpr.2018.00464
– ident: ref39
  doi: 10.1016/j.compbiomed.2022.105545
– ident: ref16
  doi: 10.1109/ISBI.2019.8759329
– ident: ref1
  doi: 10.3322/caac.21763
– ident: ref28
  doi: 10.1109/TMI.2020.2972964
– ident: ref33
  doi: 10.3390/s21155172
– ident: ref17
  doi: 10.48550/ARXIV.1807.06521
– ident: ref30
  doi: 10.1016/j.engappai.2022.105004
– ident: ref44
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref26
  doi: 10.1007/s10278-020-00343-z
– ident: ref6
  doi: 10.1016/j.media.2021.102327
– year: 2016
  ident: ref10
  article-title: Enet: A deep neural network architecture for real-time semantic segmentation
– ident: ref4
  doi: 10.1016/j.eswa.2022.117112
– ident: ref25
  doi: 10.1109/ACCESS.2019.2943628
– year: 2018
  ident: ref45
  article-title: Attention U-Net: Learning where to look for the pancreas
– ident: ref18
  doi: 10.1007/s12559-020-09805-6
– ident: ref34
  doi: 10.1007/s13369-021-06403-y
– ident: ref19
  doi: 10.1109/ISBI.2018.8363547
– ident: ref41
  doi: 10.1016/j.imu.2021.100640
– ident: ref7
  doi: 10.1016/j.media.2020.101716
– ident: ref12
  doi: 10.1109/ICMEW46912.2020.9106038
– ident: ref29
  doi: 10.1016/j.compmedimag.2020.101774
– ident: ref27
  doi: 10.1016/j.compbiomed.2020.103738
SSID ssj0000816896
Score 2.464165
Snippet Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2886
SubjectTerms Asymmetric codec
asymmetric convolution
Asymmetry
Coders
Convolution
Convolutional codes
Datasets
Deep learning
Encoders-Decoders
Feature extraction
Floating point arithmetic
Lesions
Lightweight
lightweight segmentation
Modules
Parameters
Picture archiving and communication systems
Segmentation
Skin
Skin diseases
skin lesion segmentation
Skin lesions
Training
Title ULFAC-Net: Ultra-Lightweight Fully Asymmetric Convolutional Network for Skin Lesion Segmentation
URI https://ieeexplore.ieee.org/document/10077446
https://www.ncbi.nlm.nih.gov/pubmed/37030688
https://www.proquest.com/docview/2823185971
https://www.proquest.com/docview/2798714250
Volume 27
WOSCitedRecordID wos001004541400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fixMxEA7eIeKLP09dPY8IPgnpZZM02fWtFssptQha6NvaJBMRrltptyf335vJptWXE3wLbJINmRky30wmHyGvjQNjXbBM2bJiqpbAKi8008HWoOIB72RIZBNmNqsWi_pzLlZPtTAAkC6fwQCbKZfv126HobJzzOibiF-OyJExui_WOgRUEoNE4uMSscGiJaqcxSx5ff7x3cWHAVKFD2R0-CuOLDYStb3nXPlzJCWOlZvdzXTsTO7_54IfkHvZv6SjXiEeklvQPiJ3PuUM-mPybT6djMZsBt1bOr_sNks2RXj-K0VIKQLSazraXq9WyLTl6HjdXmXljLPO-jvjNDq6FFm76BQw2Ea_wPdVrmFqT8h88v7r-IJllgXm5JB3DAT33taqFKGyEWAYfMDGOy9VNGenQesIIkB4zZclQDDBmgBOeuVLF4QI8gk5btctPCNU2dqKoK2QSkfYbZdWgymHDrgzfih8Qfh-oxuXnyBHJozLJkERXjcopgbF1GQxFeTNYcjP_v2Nf3U-QRn81bHf_oKc7sXZZBPdNgIToFXEU2VBXh0-R-PCjMmyhfUu9jF1BJRxH3hBnvZqcJh8rz3Pb_jpC3IX19ZfKzslx91mBy_JbXfV_dhuzqIGL6qzpMG_AeQ56ZM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BQIwXfo4RGGAknpDcJU4aJ7yViqqDLEJilfYWavs8Ia0patOh_ff4HLfwMiTeLMV2LN-dfN-dzx_AO6lRKm0Vz1RS8KxMkRdG5Dy3qsTMHfA6tZ5sQtZ1cX5efg3F6r4WBhH95TMcUNPn8s1SbyhUdkwZfenwy224Q9RZoVxrF1LxHBKekUu4Bne2mIU8ZhKXx58_Tk8GRBY-SJ3LX8TEY5OSvvesK38OJc-ycrPD6Q-eycP_XPIjeBA8TDbqVeIx3ML2Cdw7DTn0p_B9Vk1GY15j94HNLrvVnFcE0H_5GCkjSHrNRuvrxYK4tjQbL9uroJ5u1rq_Nc6cq8uIt4tVSOE29g0vFqGKqT2A2eTT2XjKA88C1-kw7jiK2BhVZomwhXIQQ9ITNkabNHMGrXPMcwcjUJg8nieIVlolLerUZCbRVgibPoO9dtnic2CZKpWwuRJpljvgreYqR5kMNcZamqEwEcTbjW50eIScuDAuGw9G4rIhMTUkpiaIKYL3uyE_-xc4_tX5gGTwV8d--yM42oqzCUa6bgSlQAuHqJII3u4-O_OinMm8xeXG9ZGlg5RuH-IIDns12E2-1Z4XN_z0DexPz06rpjqpv7yE-7TO_pLZEex1qw2-grv6qvuxXr32evwbtjrr9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ULFAC-Net%3A+Ultra-Lightweight+Fully+Asymmetric+Convolutional+Network+for+Skin+Lesion+Segmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ma%2C+Yuliang&rft.au=Wu%2C+Liping&rft.au=Gao%2C+Yunyuan&rft.au=Gao%2C+Farong&rft.date=2023-06-01&rft.eissn=2168-2208&rft.volume=27&rft.issue=6&rft.spage=2886&rft_id=info:doi/10.1109%2FJBHI.2023.3259802&rft_id=info%3Apmid%2F37030688&rft.externalDocID=37030688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon