ULFAC-Net: Ultra-Lightweight Fully Asymmetric Convolutional Network for Skin Lesion Segmentation
Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually comp...
Uloženo v:
| Vydáno v: | IEEE journal of biomedical and health informatics Ročník 27; číslo 6; s. 2886 - 2897 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods. |
|---|---|
| AbstractList | Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods. Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods.Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy contours and severe noise interference in the skin lesion region. Existing deep learning-based skin lesion segmentation methods are usually computationally expensive, hindering their deployment in dermoscopic devices with poor computational power. To address these challenges, we propose an ultralightweight fully asymmetric convolutional network for skin lesion segmentation, called ULFAC-Net. we use a parallel asymmetric convolutional (PAC) module to extract features instead of the traditional square convolution, and innovatively propose a PAC module with dual attention (Att-PAC) to enhance the feature representation. Based on the PAC and Att-PAC modules, we further propose a lightweight textual information submodule. To balance the number of parameters and performance of the model, we also hand-design an asymmetric encoder-decoder architecture. In this paper, we validate the effectiveness and robustness of the proposed ULFAC-Net on four publicly available skin lesion segmentation datasets (ISIC2018, ISBI2017, ISIC2016 and PH2 datasets). The experimental results show that ULFAC-Net achieves competitive segmentation performance with only 0.842 million(0.842M) parameters and 3.71 gigabytes of floating point operations (GFLOPs) compared to other state-of-the-art methods. |
| Author | Luo, Zhizeng Ma, Yuliang Wu, Liping Gao, Farong Zhang, Jianhai Gao, Yunyuan |
| Author_xml | – sequence: 1 givenname: Yuliang orcidid: 0000-0003-1277-4663 surname: Ma fullname: Ma, Yuliang email: mayuliang@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Liping surname: Wu fullname: Wu, Liping email: 202060170@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Yunyuan orcidid: 0000-0003-2128-2185 surname: Gao fullname: Gao, Yunyuan email: gyy@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Farong orcidid: 0000-0003-4984-2500 surname: Gao fullname: Gao, Farong email: frgao@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Jianhai surname: Zhang fullname: Zhang, Jianhai email: jhzhang@hdu.edu.cn organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China – sequence: 6 givenname: Zhizeng surname: Luo fullname: Luo, Zhizeng email: luo@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37030688$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtP3DAUha2KqjzKD0BClaVu2GTqRxI77KYjBqiidkFn7Waca2pwYmonRfPvcTQzEmKBF9eW73eOdO85Rge97wGhM0pmlJLq24_vN7czRhifcVZUkrAP6IjRUmaMEXmwf9MqP0SnMT6QdGT6qspP6JALwkkp5RH6s6qX80X2E4ZLvHJDaLLa3v8dnmGqeDk6t8HzuOk6GILVeOH7_96Ng_V943BSPfvwiI0P-O7R9riGmDr4Du476Idmwj6jj6ZxEU539wlaLa9-L26y-tf17WJeZ5oXZMiAkbZdVzllRq5ZUQhOJGt1y_OcFbqEsiR5BawtSUMBjDBrYUDzNm-pNowZfoIutr5Pwf8bIQ6qs1GDc00PfoyKiUoKmsxIQr--QR_8GNJAiZKMU1lUgibqy44a1x206inYrgkbtd9dAsQW0MHHGMAobbczpzVapyhRU1BqCkpNQaldUElJ3yj35u9pzrcaCwCveCJEnpf8BT-YnPc |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2025_112461 crossref_primary_10_3390_s23167295 crossref_primary_10_1109_TCSVT_2024_3507383 crossref_primary_10_1016_j_eswa_2025_128635 crossref_primary_10_3390_mi15040440 crossref_primary_10_1016_j_engappai_2023_107316 crossref_primary_10_1109_JBHI_2024_3404273 crossref_primary_10_1016_j_neucom_2024_129009 crossref_primary_10_1093_jcde_qwaf006 crossref_primary_10_1007_s11517_024_03052_9 crossref_primary_10_1016_j_engappai_2025_112306 crossref_primary_10_3390_bioengineering11040390 crossref_primary_10_3390_mi15111346 |
| Cites_doi | 10.1016/j.asoc.2020.106881 10.1109/ICASSP40776.2020.9053405 10.1109/EMBC.2013.6610779 10.1007/978-3-030-00934-2_3 10.1016/j.eswa.2022.117069 10.1016/j.bspc.2022.103950 10.1007/s11760-021-02100-3 10.1109/TPAMI.2016.2644615 10.1016/j.patcog.2018.08.001 10.3390/s21103462 10.1007/978-3-319-24574-4_28 10.1016/j.cmpb.2019.07.005 10.1109/CVPR.2016.308 10.1016/j.patcog.2020.107404 10.1109/ICCV.2019.00200 10.1016/S0895-6111(00)00037-9 10.1016/j.asoc.2021.107656 10.1016/j.cmpb.2019.105241 10.1016/j.eswa.2021.115433 10.1109/cvpr.2018.00464 10.1016/j.compbiomed.2022.105545 10.1109/ISBI.2019.8759329 10.3322/caac.21763 10.1109/TMI.2020.2972964 10.3390/s21155172 10.48550/ARXIV.1807.06521 10.1016/j.engappai.2022.105004 10.1007/978-3-030-00889-5_1 10.1007/s10278-020-00343-z 10.1016/j.media.2021.102327 10.1016/j.eswa.2022.117112 10.1109/ACCESS.2019.2943628 10.1007/s12559-020-09805-6 10.1007/s13369-021-06403-y 10.1109/ISBI.2018.8363547 10.1016/j.imu.2021.100640 10.1016/j.media.2020.101716 10.1109/ICMEW46912.2020.9106038 10.1016/j.compmedimag.2020.101774 10.1016/j.compbiomed.2020.103738 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2023.3259802 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 2897 |
| ExternalDocumentID | 37030688 10_1109_JBHI_2023_3259802 10077446 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62071161; 62171171; 61971168 funderid: 10.13039/501100001809 – fundername: Key Research and Development Project of Zhejiang Province grantid: 2020C04009 – fundername: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c350t-e20ddb9412f8b25573082dcd34425c6e66049e2d60a1eef7fb7fec3d4d1cf22f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004541400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 09:29:45 EDT 2025 Sun Nov 30 05:12:48 EST 2025 Thu Apr 03 07:07:15 EDT 2025 Tue Nov 18 20:44:36 EST 2025 Sat Nov 29 04:18:32 EST 2025 Wed Aug 27 02:25:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-e20ddb9412f8b25573082dcd34425c6e66049e2d60a1eef7fb7fec3d4d1cf22f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4984-2500 0000-0003-2128-2185 0000-0003-1277-4663 |
| PMID | 37030688 |
| PQID | 2823185971 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_JBHI_2023_3259802 proquest_miscellaneous_2798714250 crossref_primary_10_1109_JBHI_2023_3259802 ieee_primary_10077446 proquest_journals_2823185971 pubmed_primary_37030688 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 Paszke (ref10) 2016 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Codella (ref20) Gutman (ref21) 2016 Mpp (ref32) 2020; 144 Oktay (ref45) 2018 ref24 ref46 ref26 Jie (ref23) ref25 ref42 ref41 ref22 ref44 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref40 doi: 10.1016/j.asoc.2020.106881 – volume-title: Proc. Int. Symp. Biomed. Imag., Hosted by Int. Skin Imag. Collaboration ident: ref20 article-title: Skin lesion analysis toward melanoma detection: A challenge – ident: ref24 doi: 10.1109/ICASSP40776.2020.9053405 – ident: ref22 doi: 10.1109/EMBC.2013.6610779 – ident: ref36 doi: 10.1007/978-3-030-00934-2_3 – start-page: 7132 volume-title: Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit. ident: ref23 article-title: Squeeze-and-excitation networks – ident: ref35 doi: 10.1016/j.eswa.2022.117069 – ident: ref42 doi: 10.1016/j.bspc.2022.103950 – ident: ref38 doi: 10.1007/s11760-021-02100-3 – ident: ref43 doi: 10.1109/TPAMI.2016.2644615 – year: 2016 ident: ref21 article-title: Skin lesion analysis toward melanoma detection: Achallenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC) – ident: ref31 doi: 10.1016/j.patcog.2018.08.001 – ident: ref5 doi: 10.3390/s21103462 – ident: ref14 doi: 10.1007/978-3-319-24574-4_28 – ident: ref37 doi: 10.1016/j.cmpb.2019.07.005 – ident: ref11 doi: 10.1109/CVPR.2016.308 – ident: ref46 doi: 10.1016/j.patcog.2020.107404 – ident: ref13 doi: 10.1109/ICCV.2019.00200 – volume: 144 year: 2020 ident: ref32 article-title: Transform domain representation-driven convolutional neural networks for skin lesion segmentation publication-title: Expert Syst. Appl. – ident: ref2 doi: 10.1016/S0895-6111(00)00037-9 – ident: ref8 doi: 10.1016/j.asoc.2021.107656 – ident: ref3 doi: 10.1016/j.cmpb.2019.105241 – ident: ref9 doi: 10.1016/j.eswa.2021.115433 – ident: ref15 doi: 10.1109/cvpr.2018.00464 – ident: ref39 doi: 10.1016/j.compbiomed.2022.105545 – ident: ref16 doi: 10.1109/ISBI.2019.8759329 – ident: ref1 doi: 10.3322/caac.21763 – ident: ref28 doi: 10.1109/TMI.2020.2972964 – ident: ref33 doi: 10.3390/s21155172 – ident: ref17 doi: 10.48550/ARXIV.1807.06521 – ident: ref30 doi: 10.1016/j.engappai.2022.105004 – ident: ref44 doi: 10.1007/978-3-030-00889-5_1 – ident: ref26 doi: 10.1007/s10278-020-00343-z – ident: ref6 doi: 10.1016/j.media.2021.102327 – year: 2016 ident: ref10 article-title: Enet: A deep neural network architecture for real-time semantic segmentation – ident: ref4 doi: 10.1016/j.eswa.2022.117112 – ident: ref25 doi: 10.1109/ACCESS.2019.2943628 – year: 2018 ident: ref45 article-title: Attention U-Net: Learning where to look for the pancreas – ident: ref18 doi: 10.1007/s12559-020-09805-6 – ident: ref34 doi: 10.1007/s13369-021-06403-y – ident: ref19 doi: 10.1109/ISBI.2018.8363547 – ident: ref41 doi: 10.1016/j.imu.2021.100640 – ident: ref7 doi: 10.1016/j.media.2020.101716 – ident: ref12 doi: 10.1109/ICMEW46912.2020.9106038 – ident: ref29 doi: 10.1016/j.compmedimag.2020.101774 – ident: ref27 doi: 10.1016/j.compbiomed.2020.103738 |
| SSID | ssj0000816896 |
| Score | 2.464165 |
| Snippet | Segmentation of skin lesions is a critical step in the process of skin lesion diagnosis. Such segmentation is challenging due to the irregular shape, fuzzy... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2886 |
| SubjectTerms | Asymmetric codec asymmetric convolution Asymmetry Coders Convolution Convolutional codes Datasets Deep learning Encoders-Decoders Feature extraction Floating point arithmetic Lesions Lightweight lightweight segmentation Modules Parameters Picture archiving and communication systems Segmentation Skin Skin diseases skin lesion segmentation Skin lesions Training |
| Title | ULFAC-Net: Ultra-Lightweight Fully Asymmetric Convolutional Network for Skin Lesion Segmentation |
| URI | https://ieeexplore.ieee.org/document/10077446 https://www.ncbi.nlm.nih.gov/pubmed/37030688 https://www.proquest.com/docview/2823185971 https://www.proquest.com/docview/2798714250 |
| Volume | 27 |
| WOSCitedRecordID | wos001004541400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fixMxEA7eIeKLP09dPY8IPgnpZZM02fWtFssptQha6NvaJBMRrltptyf335vJptWXE3wLbJINmRky30wmHyGvjQNjXbBM2bJiqpbAKi8008HWoOIB72RIZBNmNqsWi_pzLlZPtTAAkC6fwQCbKZfv126HobJzzOibiF-OyJExui_WOgRUEoNE4uMSscGiJaqcxSx5ff7x3cWHAVKFD2R0-CuOLDYStb3nXPlzJCWOlZvdzXTsTO7_54IfkHvZv6SjXiEeklvQPiJ3PuUM-mPybT6djMZsBt1bOr_sNks2RXj-K0VIKQLSazraXq9WyLTl6HjdXmXljLPO-jvjNDq6FFm76BQw2Ea_wPdVrmFqT8h88v7r-IJllgXm5JB3DAT33taqFKGyEWAYfMDGOy9VNGenQesIIkB4zZclQDDBmgBOeuVLF4QI8gk5btctPCNU2dqKoK2QSkfYbZdWgymHDrgzfih8Qfh-oxuXnyBHJozLJkERXjcopgbF1GQxFeTNYcjP_v2Nf3U-QRn81bHf_oKc7sXZZBPdNgIToFXEU2VBXh0-R-PCjMmyhfUu9jF1BJRxH3hBnvZqcJh8rz3Pb_jpC3IX19ZfKzslx91mBy_JbXfV_dhuzqIGL6qzpMG_AeQ56ZM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BQIwXfo4RGGAknpDcJU4aJ7yViqqDLEJilfYWavs8Ia0patOh_ff4HLfwMiTeLMV2LN-dfN-dzx_AO6lRKm0Vz1RS8KxMkRdG5Dy3qsTMHfA6tZ5sQtZ1cX5efg3F6r4WBhH95TMcUNPn8s1SbyhUdkwZfenwy224Q9RZoVxrF1LxHBKekUu4Bne2mIU8ZhKXx58_Tk8GRBY-SJ3LX8TEY5OSvvesK38OJc-ycrPD6Q-eycP_XPIjeBA8TDbqVeIx3ML2Cdw7DTn0p_B9Vk1GY15j94HNLrvVnFcE0H_5GCkjSHrNRuvrxYK4tjQbL9uroJ5u1rq_Nc6cq8uIt4tVSOE29g0vFqGKqT2A2eTT2XjKA88C1-kw7jiK2BhVZomwhXIQQ9ITNkabNHMGrXPMcwcjUJg8nieIVlolLerUZCbRVgibPoO9dtnic2CZKpWwuRJpljvgreYqR5kMNcZamqEwEcTbjW50eIScuDAuGw9G4rIhMTUkpiaIKYL3uyE_-xc4_tX5gGTwV8d--yM42oqzCUa6bgSlQAuHqJII3u4-O_OinMm8xeXG9ZGlg5RuH-IIDns12E2-1Z4XN_z0DexPz06rpjqpv7yE-7TO_pLZEex1qw2-grv6qvuxXr32evwbtjrr9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ULFAC-Net%3A+Ultra-Lightweight+Fully+Asymmetric+Convolutional+Network+for+Skin+Lesion+Segmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ma%2C+Yuliang&rft.au=Wu%2C+Liping&rft.au=Gao%2C+Yunyuan&rft.au=Gao%2C+Farong&rft.date=2023-06-01&rft.eissn=2168-2208&rft.volume=27&rft.issue=6&rft.spage=2886&rft_id=info:doi/10.1109%2FJBHI.2023.3259802&rft_id=info%3Apmid%2F37030688&rft.externalDocID=37030688 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |