Measuring and Replicating the 1–20 μm Energy Distributions of the Coldest Brown Dwarfs: Rotating, Turbulent, and Nonadiabatic Atmospheres

Cold, low-mass, field brown dwarfs are important for constraining the terminus of the stellar mass function, and also for optimizing atmospheric studies of exoplanets. In 2020 new model grids for such objects were made available: Sonora-Bobcat and ATMO 2020. Also, new candidate cold brown dwarfs wer...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Astrophysical journal Ročník 918; číslo 1; s. 11 - 41
Hlavní autori: Leggett, S. K., Tremblin, Pascal, Phillips, Mark W., Dupuy, Trent J., Marley, Mark, Morley, Caroline, Schneider, Adam, Caselden, Dan, Guillaume, Colin, Logsdon, Sarah E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia The American Astronomical Society 01.09.2021
IOP Publishing
Predmet:
ISSN:0004-637X, 1538-4357
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cold, low-mass, field brown dwarfs are important for constraining the terminus of the stellar mass function, and also for optimizing atmospheric studies of exoplanets. In 2020 new model grids for such objects were made available: Sonora-Bobcat and ATMO 2020. Also, new candidate cold brown dwarfs were announced, and new spectroscopic observations at λ ≈ 4.8 μ m were published. In this paper we present new infrared photometry for some of the coldest brown dwarfs, and put the new data and models together to explore the properties of these objects. We reconfirm the importance of mixing in these atmospheres, which leads to CO and NH 3 abundances that differ by orders of magnitude from chemical equilibrium values. We also demonstrate that the new models retain the known factor ≳3 discrepancy with observations at 2 ≲ λ μ m ≲ 4, for brown dwarfs cooler than 600 K. We show that the entire 1 ≲ λ μ m ≲ 20 energy distribution of six brown dwarfs with 260 ≤ T eff K ≤ 475 can be well reproduced, for the first time, by model atmospheres which include disequilibrium chemistry as well as a photospheric temperature gradient which deviates from the standard radiative/convective equilibrium value. This change to the pressure–temperature profile is not unexpected for rotating and turbulent atmospheres that are subject to diabatic processes. A limited grid of modified-adiabat model colors is generated, and used to estimate temperatures and metallicities for the currently known Y dwarfs. A compilation of the photometric data used here is given in Appendix C.
AbstractList Cold, low-mass, field brown dwarfs are important for constraining the terminus of the stellar mass function, and also for optimizing atmospheric studies of exoplanets. In 2020 new model grids for such objects were made available: Sonora-Bobcat and ATMO 2020. Also, new candidate cold brown dwarfs were announced, and new spectroscopic observations at λ ≈ 4.8 μm were published. In this paper we present new infrared photometry for some of the coldest brown dwarfs, and put the new data and models together to explore the properties of these objects. We reconfirm the importance of mixing in these atmospheres, which leads to CO and NH3 abundances that differ by orders of magnitude from chemical equilibrium values. We also demonstrate that the new models retain the known factor ≳3 discrepancy with observations at 2 ≲ λ μm ≲ 4, for brown dwarfs cooler than 600 K. We show that the entire 1 ≲ λ μm ≲ 20 energy distribution of six brown dwarfs with 260 ≤ T eff K ≤ 475 can be well reproduced, for the first time, by model atmospheres which include disequilibrium chemistry as well as a photospheric temperature gradient which deviates from the standard radiative/convective equilibrium value. This change to the pressure–temperature profile is not unexpected for rotating and turbulent atmospheres that are subject to diabatic processes. A limited grid of modified-adiabat model colors is generated, and used to estimate temperatures and metallicities for the currently known Y dwarfs. A compilation of the photometric data used here is given in Appendix C.
Cold, low-mass, field brown dwarfs are important for constraining the terminus of the stellar mass function, and also for optimizing atmospheric studies of exoplanets. In 2020 new model grids for such objects were made available: Sonora-Bobcat and ATMO 2020. Also, new candidate cold brown dwarfs were announced, and new spectroscopic observations at λ ≈ 4.8 μ m were published. In this paper we present new infrared photometry for some of the coldest brown dwarfs, and put the new data and models together to explore the properties of these objects. We reconfirm the importance of mixing in these atmospheres, which leads to CO and NH 3 abundances that differ by orders of magnitude from chemical equilibrium values. We also demonstrate that the new models retain the known factor ≳3 discrepancy with observations at 2 ≲ λ μ m ≲ 4, for brown dwarfs cooler than 600 K. We show that the entire 1 ≲ λ μ m ≲ 20 energy distribution of six brown dwarfs with 260 ≤ T eff K ≤ 475 can be well reproduced, for the first time, by model atmospheres which include disequilibrium chemistry as well as a photospheric temperature gradient which deviates from the standard radiative/convective equilibrium value. This change to the pressure–temperature profile is not unexpected for rotating and turbulent atmospheres that are subject to diabatic processes. A limited grid of modified-adiabat model colors is generated, and used to estimate temperatures and metallicities for the currently known Y dwarfs. A compilation of the photometric data used here is given in Appendix C.
Author Caselden, Dan
Leggett, S. K.
Phillips, Mark W.
Morley, Caroline
Dupuy, Trent J.
Guillaume, Colin
Schneider, Adam
Marley, Mark
Logsdon, Sarah E.
Tremblin, Pascal
Author_xml – sequence: 1
  givenname: S. K.
  orcidid: 0000-0002-3681-2989
  surname: Leggett
  fullname: Leggett, S. K.
  organization: Gemini Observatory/NSF’s NOIRLab, 670 N. A’ohoku Place, Hilo, HI 96720, USA
– sequence: 2
  givenname: Pascal
  orcidid: 0000-0001-6172-3403
  surname: Tremblin
  fullname: Tremblin, Pascal
  organization: Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, F-91191, Gif-sur-Yvette, France
– sequence: 3
  givenname: Mark W.
  orcidid: 0000-0001-6041-7092
  surname: Phillips
  fullname: Phillips, Mark W.
  organization: University of Exeter , Stocker Road, Exeter EX4 4PY, UK
– sequence: 4
  givenname: Trent J.
  orcidid: 0000-0001-9823-1445
  surname: Dupuy
  fullname: Dupuy, Trent J.
  organization: University of Edinburgh Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
– sequence: 5
  givenname: Mark
  orcidid: 0000-0002-5251-2943
  surname: Marley
  fullname: Marley, Mark
  organization: NASA Ames Research Center, Moffett Field, CA 94035, USA
– sequence: 6
  givenname: Caroline
  orcidid: 0000-0002-4404-0456
  surname: Morley
  fullname: Morley, Caroline
  organization: University of Texas Department of Astronomy, Austin, TX 78712, USA
– sequence: 7
  givenname: Adam
  orcidid: 0000-0002-6294-5937
  surname: Schneider
  fullname: Schneider, Adam
  organization: George Mason University Department of Physics and Astronomy, MS3F3, 4400 University Drive, Fairfax, VA 22030, USA
– sequence: 8
  givenname: Dan
  surname: Caselden
  fullname: Caselden, Dan
  organization: Backyard Worlds: Planet 9, USA
– sequence: 9
  givenname: Colin
  surname: Guillaume
  fullname: Guillaume, Colin
  organization: Backyard Worlds: Planet 9, USA
– sequence: 10
  givenname: Sarah E.
  orcidid: 0000-0002-9632-9382
  surname: Logsdon
  fullname: Logsdon, Sarah E.
  organization: Kitt Peak National Observatory/NSF’s NOIRLab, 950 North Cherry Avenue, Tucson, AZ 85719, USA
BookMark eNp9UMtKxDAUDaLg-Ni7DLidapo0beNunPEFPkAU3JU0TTRDJ6lJyuDOD3Dn7_gNfoRfYjsjCoKuLvfec-4592yAVWONBGAnRnskT7L9mJI8SgjN9rlAQskVMPgerYIBQiiJUpLdrYMN76d9ixkbgJcLyX3rtLmH3FTwWja1Fjz0fXiQMP54fsUIvr_N4JGR7v4JTrQPTpdt0NZ4aNUCNrZ1JX2Ah87ODZzMuVP-AF7bsLg0hDetK9tamjBcqFxawyvNy24r4CjMrG8epJN-C6wpXnu5_VU3we3x0c34NDq_Ojkbj84jQSgKUZVyyVnFkjhhtMKC5KzCBJUZVjQRVMluIhUlBDGKBcOszGUVk1KorEwFL8km2F3ebZx9bDvjxdS2znSSBaYpS3Ocx0mHSpco4az3TqpC6P4ha4Ljui5iVPTJF33MRR9zsUy-I6JfxMbpGXdP_1GGS4q2zY-ZP-Gfdlma8Q
CitedBy_id crossref_primary_10_3847_1538_4357_ad6c4c
crossref_primary_10_3847_2041_8213_ac8e5f
crossref_primary_10_3847_2041_8213_adf53f
crossref_primary_10_3847_1538_4357_acfdad
crossref_primary_10_3847_1538_4357_ace32e
crossref_primary_10_3847_1538_4357_ad76a7
crossref_primary_10_3847_1538_4357_ad8fa6
crossref_primary_10_3847_1538_4357_adb61e
crossref_primary_10_3847_2041_8213_adfee1
crossref_primary_10_3847_1538_4357_ad30ff
crossref_primary_10_3847_1538_3881_ad0b72
crossref_primary_10_1051_0004_6361_202453246
crossref_primary_10_3847_1538_4357_acbf1e
crossref_primary_10_3847_2041_8213_adc91f
crossref_primary_10_1051_0004_6361_202452547
crossref_primary_10_3847_1538_3881_acdb68
crossref_primary_10_1093_mnras_stad1715
crossref_primary_10_3847_2515_5172_aded0b
crossref_primary_10_1038_s41586_024_07190_w
crossref_primary_10_1051_0004_6361_202347581
crossref_primary_10_3847_2041_8213_ad517b
crossref_primary_10_3847_1538_3881_ad3425
crossref_primary_10_3847_1538_4357_ad0043
crossref_primary_10_1093_mnras_stad2870
crossref_primary_10_3847_2041_8213_ad9744
crossref_primary_10_3847_1538_4357_addd06
crossref_primary_10_3847_1538_3881_adadf9
crossref_primary_10_3847_1538_3881_ad8b2d
crossref_primary_10_3847_1538_4357_acc8cb
crossref_primary_10_3847_2041_8213_acc86d
crossref_primary_10_3847_2515_5172_ad1b61
crossref_primary_10_3847_2515_5172_ad7d0e
Cites_doi 10.1086/324078
10.1088/0004-637X/757/1/104
10.1086/306811
10.1111/j.1365-2966.2011.18424.x
10.1111/j.1365-2966.2009.14620.x
10.3847/1538-4357/ab16db
10.3847/1538-4357/aabfbe
10.1117/12.672095
10.1111/j.1365-2966.2012.20549.x
10.3847/1538-3881/aae982
10.3847/1538-4357/ab384a
10.1088/0004-637X/780/1/62
10.1086/381135
10.3847/1538-3881/ab9642
10.1146/annurev.earth.32.101802.120325
10.3847/1538-4357/aba633
10.1088/0004-637X/759/1/60
10.1088/0004-6256/145/3/84
10.3847/0004-6256/152/3/78
10.1086/491734
10.1051/0004-6361/200913633
10.1086/505419
10.1088/0004-637X/750/1/74
10.1016/j.icarus.2009.03.023
10.1086/312221
10.1086/312218
10.1086/321540
10.1016/j.icarus.2016.04.027
10.1086/595747
10.3847/0004-637X/832/1/58
10.1088/0004-637X/726/1/30
10.1088/0004-637X/752/1/56
10.3847/1538-4357/aa7ff0
10.1088/0004-637X/799/1/37
10.1088/0004-637X/744/2/135
10.1088/0004-637X/743/1/50
10.3847/1538-4357/ab8d25
10.1088/0004-637X/763/2/130
10.1086/163775
10.1086/498563
10.3847/1538-4357/aaf99f
10.1086/507264
10.3847/1538-3881/abeb67
10.1051/0004-6361/201936588
10.1088/0004-637X/738/1/72
10.1088/0004-637X/814/2/118
10.1051/0004-6361/201014078
10.3847/1538-3881/ab3ebe
10.1086/307387
10.1086/505484
10.1093/mnras/stt1437
10.3847/1538-4365/aa5e4c
10.1088/0004-637X/710/2/1627
10.1051/0004-6361/201937381
10.3847/1538-3881/ab96bb
10.1088/2041-8205/804/1/L17
10.1093/mnras/staa2289
10.1093/mnras/stt740
10.1086/338545
10.1088/2041-8205/718/1/L38
10.1146/annurev-astro-082214-122522
10.3847/1538-4365/aaf6af
10.1086/383549
10.1088/0004-637X/777/1/36
10.1051/0004-6361/201014264
10.1051/0004-6361:20079317
10.1086/422992
10.1111/j.1745-3933.2011.01062.x
10.1088/0004-637X/803/2/102
10.3847/1538-4357/ab3393
10.1006/icar.1994.1189
10.1086/324037
10.1051/0004-6361/201321720
10.1088/0004-637X/753/2/156
10.3847/1538-4357/ab0b3d
10.3847/2041-8213/ab6201
10.1088/0067-0049/197/2/19
10.1086/420707
10.3847/1538-4357/aa6fb5
10.1088/0004-637X/787/1/78
10.1086/310954
10.1038/nature18940
10.1086/305002
10.1088/0004-637X/776/2/85
10.1117/12.550288
10.1093/mnras/stu1087
10.1086/324033
10.1051/0004-6361/201015394
10.1093/mnras/stx1246
10.1086/312522
10.3847/0004-637X/830/2/141
10.1088/2041-8205/786/2/L18
10.1088/1674-4527/20/7/99
10.1051/0004-6361/201833218
10.1093/mnras/stx2622
10.3847/0004-637X/819/1/17
10.1086/192204
10.3847/1538-4357/aae1af
10.3847/2041-8213/aa76df
10.1080/00268970701196983
10.1086/175708
10.1111/j.1365-2966.2010.16524.x
10.1088/0004-637X/810/2/158
10.1088/0004-6256/144/5/148
10.1051/0004-6361/201424973
10.1088/0004-637X/764/1/101
10.1051/0004-6361/201220182
10.1111/j.1365-2966.2010.16411.x
10.1103/RevModPhys.65.301
10.1051/0004-6361:20021734
10.1086/311070
10.1086/592734
10.1016/S0019-1035(03)00078-2
10.1086/376481
10.1086/428040
10.1088/0004-637X/797/1/41
10.1088/0004-6256/142/2/57
10.3847/2041-8205/826/2/L17
10.1093/mnras/sty1682
10.1088/0004-637X/756/2/172
10.1051/0004-6361/201628270
10.1086/163470
10.3847/1538-4357/aa961c
10.1086/510014
10.1088/0004-6256/141/6/203
10.1016/j.icarus.2010.03.029
10.3847/1538-4357/aa62a5
10.1086/309410
10.1086/671426
10.1086/378608
10.1088/0004-6256/148/5/82
10.1051/0004-6361/201117297
10.1088/0004-6256/147/5/113
10.1051/0004-6361/201014277
10.1088/0067-0049/205/1/6
10.1088/0004-637X/740/2/108
10.1111/j.1365-2966.2008.13729.x
10.3847/1538-3881/ab5b11
10.1088/2041-8205/730/1/L9
10.3847/1538-3881/ab16e9
10.1126/science.aam9848
10.1111/j.1365-2966.2007.12040.x
10.1111/j.1365-2966.2007.12023.x
10.1088/0067-0049/201/2/19
10.1111/j.1365-2966.2010.16800.x
10.1088/0004-637X/695/2/1517
10.1088/0004-6256/137/6/4547
10.1086/312515
10.1086/379669
10.1088/0004-637X/804/2/92
10.3847/1538-4357/aa73cf
10.1088/0004-637X/776/2/128
10.1093/mnras/stab401
10.1086/501431
10.1088/0004-637X/758/1/57
10.3847/1538-4365/abd107
10.1086/422843
10.3847/0004-637X/823/2/152
10.3847/0004-637X/824/1/2
10.3847/1538-4365/aabad3
10.1111/j.1745-3933.2010.00927.x
10.1086/510557
10.3847/1538-4357/ab9a40
10.1086/344525
10.3847/1538-4357/aabe8b
10.1051/0004-6361/201833051
10.3847/1538-3881/aa859b
10.1088/0004-637X/796/1/39
10.1093/mnras/stu1540
10.1086/520645
10.1126/science.1241917
10.3847/1538-3881/ab84f4
10.1080/03091927808242636
10.1111/j.1365-2966.2008.14384.x
10.3847/1538-4357/ab2bf0
10.3847/1538-4357/ab5303
10.1088/0004-637X/807/2/183
10.3847/1538-4357/ab05db
10.3847/1538-3881/ab9114
10.1088/0004-6256/140/6/1868
10.1111/j.1365-2966.2008.13885.x
10.3847/1538-4357/ab1904
10.1111/j.1365-2966.2007.12348.x
10.1086/383554
10.1088/0004-637X/748/2/74
10.1111/j.1365-2966.2006.11069.x
10.3847/1538-4357/ab6215
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Sep 01, 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Sep 01, 2021
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ac0cfe
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ac0cfe
apjac0cfe
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c350t-d6aea9d941495d2c389d230b72f54c5fec38ef5330952c929b8ed13bcf7b6cab3
IEDL.DBID O3W
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691053500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-637X
IngestDate Wed Aug 13 04:41:02 EDT 2025
Tue Nov 18 21:31:41 EST 2025
Sat Nov 29 05:31:04 EST 2025
Wed Aug 21 03:33:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-d6aea9d941495d2c389d230b72f54c5fec38ef5330952c929b8ed13bcf7b6cab3
Notes AAS28788
Stars and Stellar Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3681-2989
0000-0002-5251-2943
0000-0002-4404-0456
0000-0001-6172-3403
0000-0002-6294-5937
0000-0001-9823-1445
0000-0002-9632-9382
0000-0001-6041-7092
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ac0cfe/pdf
PQID 2569682814
PQPubID 4562441
PageCount 31
ParticipantIDs iop_journals_10_3847_1538_4357_ac0cfe
crossref_citationtrail_10_3847_1538_4357_ac0cfe
proquest_journals_2569682814
crossref_primary_10_3847_1538_4357_ac0cfe
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Morley (apjac0cfebib123) 2012; 756
Faherty (apjac0cfebib52) 2020; 889
Vazan (apjac0cfebib176) 2020; 633
Robinson (apjac0cfebib139) 2012; 757
Vrba (apjac0cfebib181) 2004; 127
Lawrence (apjac0cfebib78) 2007; 379
Burningham (apjac0cfebib28) 2009; 395
Liu (apjac0cfebib94) 2011; 740
Line (apjac0cfebib93) 2015; 807
Dantona (apjac0cfebib40) 1985; 296
Leggett (apjac0cfebib83) 2019; 882
Saumon (apjac0cfebib144) 2012; 750
Miles (apjac0cfebib122) 2020; 160
Geballe (apjac0cfebib60) 2002; 564
Burningham (apjac0cfebib24) 2010; 404
Saumon (apjac0cfebib143) 2008; 689
Saumon (apjac0cfebib146) 2007; 656
Wagner (apjac0cfebib182) 2019; 877
Flasar (apjac0cfebib56) 1978; 10
Nikutta (apjac0cfebib128) 2014; 442
Schneider (apjac0cfebib148) 2020; 898
Tinney (apjac0cfebib167) 2005; 130
Fegley (apjac0cfebib54) 1985; 299
Luhman (apjac0cfebib106) 2016; 152
Bardalez Gagliuffi (apjac0cfebib9) 2020; 895
Subasavage (apjac0cfebib161) 2009; 137
Tannock (apjac0cfebib163) 2021; 161
Pinfield (apjac0cfebib137) 2014a; 437
Schubert (apjac0cfebib154) 2003; 163
Kilic (apjac0cfebib70) 2017; 837
Luhman (apjac0cfebib103) 2014; 786
Kirkpatrick (apjac0cfebib72) 2013; 776
Nielsen (apjac0cfebib127) 2019; 158
Scholz (apjac0cfebib153) 2011; 532
Kirkpatrick (apjac0cfebib71) 2011; 197
Morley (apjac0cfebib124) 2014; 787
Lodders (apjac0cfebib96) 1999; 519
Apai (apjac0cfebib5) 2017; 357
Tremblin (apjac0cfebib173) 2019; 876
Cushing (apjac0cfebib38) 2003; 582
Buder (apjac0cfebib15) 2019; 624
Ruiz (apjac0cfebib140) 1997; 491
Burningham (apjac0cfebib23) 2013; 433
Chiu (apjac0cfebib34) 2006; 131
Tinney (apjac0cfebib168) 2012; 759
Saumon (apjac0cfebib141) 1995; 99
Opitz (apjac0cfebib131) 2016; 819
Cushing (apjac0cfebib37) 2014; 147
Lodieu (apjac0cfebib98) 2009; 397
Eikenberry (apjac0cfebib48) 2006; 6269
Labrie (apjac0cfebib77) 2019
Kirkpatrick (apjac0cfebib75) 2019; 240
Bowler (apjac0cfebib14) 2020; 159
Ackerman (apjac0cfebib1) 2001; 556
Luhman (apjac0cfebib107) 2020; 160
Burrows (apjac0cfebib31) 1997; 491
Augustson (apjac0cfebib7) 2019; 874
Burgasser (apjac0cfebib19) 2000; 531
Marley (apjac0cfebib195) 2021
Leggett (apjac0cfebib81) 2016b; 830
Phillips (apjac0cfebib133) 2020; 637
Tremblin (apjac0cfebib172) 2015; 804
Leggett (apjac0cfebib88) 2007; 655
Showman (apjac0cfebib156) 2019; 883
Wright (apjac0cfebib187) 2010; 140
Marocco (apjac0cfebib116) 2010; 524
Faherty (apjac0cfebib51) 2012; 752
Gonzales (apjac0cfebib63) 2020
Leggett (apjac0cfebib90) 2017; 842
Burgasser (apjac0cfebib17) 1999; 522
Griffith (apjac0cfebib65) 2012; 144
Fontanive (apjac0cfebib58) 2018; 479
Zahnle (apjac0cfebib190) 2014; 797
Esplin (apjac0cfebib50) 2016; 832
Schlaufman (apjac0cfebib147) 2018; 853
Dye (apjac0cfebib47) 2018; 473
Vos (apjac0cfebib180) 2020; 160
Meisner (apjac0cfebib120) 2020a; 889
Noll (apjac0cfebib129) 1997; 489
Liu (apjac0cfebib95) 2012; 758
Mainzer (apjac0cfebib110) 2011; 726
Albert (apjac0cfebib2) 2011; 141
Scholz (apjac0cfebib152) 2010b; 515
Tinney (apjac0cfebib170) 2018; 236
Dupuy (apjac0cfebib44) 2012; 201
Patten (apjac0cfebib132) 2006; 651
Kirkpatrick (apjac0cfebib73) 2012; 753
Sutherland (apjac0cfebib162) 2015; 575
Guillot (apjac0cfebib67) 1994; 112
Lodieu (apjac0cfebib100) 2007; 379
Greco (apjac0cfebib64) 2019; 158
Stephens (apjac0cfebib159) 2004; 116
Strauss (apjac0cfebib160) 1999; 522
Kirkpatrick (apjac0cfebib74) 2021; 253
Leggett (apjac0cfebib80) 2006; 373
Lodieu (apjac0cfebib99) 2021; 503
Visscher (apjac0cfebib177) 2011; 738
Saumon (apjac0cfebib142) 2000; 541
Allard (apjac0cfebib3) 1995; 445
Leggett (apjac0cfebib85) 2014; 780
Werner (apjac0cfebib185) 2004; 154
Burgasser (apjac0cfebib18) 2002; 564
Schneider (apjac0cfebib149) 2015; 804
Tsuji (apjac0cfebib174) 1996; 305
Tokunaga (apjac0cfebib171) 2002; 114
Leggett (apjac0cfebib91) 2016a; 824
Baraffe (apjac0cfebib8) 1998; 337
Burningham (apjac0cfebib25) 2011; 414
McMahon (apjac0cfebib119) 2013; 154
Tennyson (apjac0cfebib164) 2007; 105
Chabrier (apjac0cfebib33) 2019; 872
Kesseli (apjac0cfebib69) 2019; 157
Scholz (apjac0cfebib151) 2010a; 510
Allard (apjac0cfebib4) 2016; 589
Meisner (apjac0cfebib121) 2020b; 899
Wright (apjac0cfebib188) 2014; 148
Delorme (apjac0cfebib41) 2010; 518
Dupuy (apjac0cfebib46) 2015; 803
Burningham (apjac0cfebib26) 2017; 470
Burgasser (apjac0cfebib16) 2006; 637
Gaia Collaboration (apjac0cfebib59) 2018; 616
Leggett (apjac0cfebib79) 2010; 710
O’Donoghue (apjac0cfebib130) 2016; 536
Burrows (apjac0cfebib30) 1993; 65
Filippazzo (apjac0cfebib55) 2015; 810
Visscher (apjac0cfebib178) 2010; 209
Goldman (apjac0cfebib62) 2010; 405
Fazio (apjac0cfebib53) 2004; 154
Marocco (apjac0cfebib115) 2020; 888
Tinney (apjac0cfebib166) 2003; 126
Mace (apjac0cfebib109) 2013b; 205
Cushing (apjac0cfebib194) 2021
Luhman (apjac0cfebib105) 2012; 744
Burgasser (apjac0cfebib20) 2003; 126
Looper (apjac0cfebib101) 2007; 134
Fletcher (apjac0cfebib57) 2009; 202
Piette (apjac0cfebib134) 2020; 497
Burningham (apjac0cfebib29) 2010; 406
Leggett (apjac0cfebib89) 2012; 748
Leggett (apjac0cfebib87) 2015; 799
Mace (apjac0cfebib108) 2013a; 777
Marocco (apjac0cfebib114) 2019; 881
Cushing (apjac0cfebib39) 2005; 623
Cushing (apjac0cfebib35) 2016; 823
Vos (apjac0cfebib179) 2017; 842
Burgasser (apjac0cfebib22) 2008; 689
Burningham (apjac0cfebib27) 2008; 391
Dupuy (apjac0cfebib43) 2013; 341
McGregor (apjac0cfebib118) 2004; 5492
Leggett (apjac0cfebib86) 2013; 763
Showman (apjac0cfebib155) 2013; 776
Best (apjac0cfebib12) 2015; 814
Murray (apjac0cfebib126) 2011; 414
Knapp (apjac0cfebib76) 2004; 127
Morley (apjac0cfebib125) 2018; 858
Artigau (apjac0cfebib6) 2010; 718
Smart (apjac0cfebib158) 2010; 511
Burgasser (apjac0cfebib21) 2004; 127
Manjavacas (apjac0cfebib111) 2013; 560
Zalesky (apjac0cfebib191) 2019; 877
Tinney (apjac0cfebib169) 2014; 796
Hodapp (apjac0cfebib68) 2003; 115
Lodieu (apjac0cfebib97) 2012; 548
Tsvetanov (apjac0cfebib175) 2000; 531
Marley (apjac0cfebib112) 2015; 53
Leggett (apjac0cfebib84) 2002; 564
Line (apjac0cfebib92) 2017; 848
Beichman (apjac0cfebib10) 2013; 764
Saumon (apjac0cfebib145) 2006; 647
Wright (apjac0cfebib189) 2013; 145
Gelino (apjac0cfebib61) 2011; 142
Dupuy (apjac0cfebib45) 2017; 231
Esplin (apjac0cfebib49) 2017; 154
Zhang (apjac0cfebib193) 2020; 20
Scholz (apjac0cfebib150) 2018; 859
Wang (apjac0cfebib183) 2016; 276
Pinfield (apjac0cfebib136) 2008; 390
Pinfield (apjac0cfebib138) 2014b; 444
Marley (apjac0cfebib113) 2017; 230
Zapatero Osorio (apjac0cfebib192) 2006; 647
Burrows (apjac0cfebib32) 1999; 512
Martin (apjac0cfebib117) 2018; 867
Skemer (apjac0cfebib157) 2016; 826
Lucas (apjac0cfebib102) 2010; 408
Best (apjac0cfebib11) 2017; 843
Cushing (apjac0cfebib36) 2011; 743
Thompson (apjac0cfebib165) 2013; 125
Pinfield (apjac0cfebib135) 2012; 422
Leggett (apjac0cfebib82) 2009; 695
Luhman (apjac0cfebib104) 2011; 730
Warren (apjac0cfebib184) 2007; 381
Best (apjac0cfebib13) 2020; 159
Delorme (apjac0cfebib42) 2008; 482
Guillot (apjac0cfebib66) 2005; 33
Woitke (apjac0cfebib186) 2003; 399
References_xml – volume: 564
  start-page: 466
  year: 2002
  ident: apjac0cfebib60
  publication-title: ApJ
  doi: 10.1086/324078
– volume: 757
  start-page: 104
  year: 2012
  ident: apjac0cfebib139
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/1/104
– volume: 512
  start-page: 843
  year: 1999
  ident: apjac0cfebib32
  publication-title: ApJ
  doi: 10.1086/306811
– volume: 414
  start-page: 575
  year: 2011
  ident: apjac0cfebib126
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18424.x
– volume: 395
  start-page: 1237
  year: 2009
  ident: apjac0cfebib28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14620.x
– volume: 877
  start-page: 24
  year: 2019
  ident: apjac0cfebib191
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab16db
– volume: 859
  start-page: 153
  year: 2018
  ident: apjac0cfebib150
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabfbe
– volume: 6269
  start-page: 626917
  year: 2006
  ident: apjac0cfebib48
  publication-title: Proc. SPIE
  doi: 10.1117/12.672095
– volume: 422
  start-page: 1922
  year: 2012
  ident: apjac0cfebib135
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20549.x
– volume: 157
  start-page: 63
  year: 2019
  ident: apjac0cfebib69
  publication-title: AJ
  doi: 10.3847/1538-3881/aae982
– volume: 883
  start-page: 4
  year: 2019
  ident: apjac0cfebib156
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab384a
– volume: 780
  start-page: 62
  year: 2014
  ident: apjac0cfebib85
  publication-title: ApJ
  doi: 10.1088/0004-637X/780/1/62
– volume: 116
  start-page: 9
  year: 2004
  ident: apjac0cfebib159
  publication-title: PASP
  doi: 10.1086/381135
– volume: 160
  start-page: 38
  year: 2020
  ident: apjac0cfebib180
  publication-title: ApJ
  doi: 10.3847/1538-3881/ab9642
– volume: 33
  start-page: 493
  year: 2005
  ident: apjac0cfebib66
  publication-title: AREPS
  doi: 10.1146/annurev.earth.32.101802.120325
– volume: 899
  start-page: 123
  year: 2020b
  ident: apjac0cfebib121
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba633
– volume: 759
  start-page: 60
  year: 2012
  ident: apjac0cfebib168
  publication-title: ApJ
  doi: 10.1088/0004-637X/759/1/60
– volume: 145
  start-page: 84
  year: 2013
  ident: apjac0cfebib189
  publication-title: AJ
  doi: 10.1088/0004-6256/145/3/84
– volume: 152
  start-page: 78
  year: 2016
  ident: apjac0cfebib106
  publication-title: AJ
  doi: 10.3847/0004-6256/152/3/78
– volume: 130
  start-page: 2326
  year: 2005
  ident: apjac0cfebib167
  publication-title: AJ
  doi: 10.1086/491734
– volume: 337
  start-page: 403
  year: 1998
  ident: apjac0cfebib8
  publication-title: A&A
– volume: 511
  start-page: A30
  year: 2010
  ident: apjac0cfebib158
  publication-title: A&A
  doi: 10.1051/0004-6361/200913633
– volume: 647
  start-page: 552
  year: 2006
  ident: apjac0cfebib145
  publication-title: ApJ
  doi: 10.1086/505419
– volume: 750
  start-page: 74
  year: 2012
  ident: apjac0cfebib144
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/1/74
– volume: 202
  start-page: 543
  year: 2009
  ident: apjac0cfebib57
  publication-title: Icar
  doi: 10.1016/j.icarus.2009.03.023
– volume: 522
  start-page: L65
  year: 1999
  ident: apjac0cfebib17
  publication-title: ApJL
  doi: 10.1086/312221
– volume: 522
  start-page: L61
  year: 1999
  ident: apjac0cfebib160
  publication-title: ApJL
  doi: 10.1086/312218
– volume: 556
  start-page: 872
  year: 2001
  ident: apjac0cfebib1
  publication-title: ApJ
  doi: 10.1086/321540
– volume: 276
  start-page: 21
  year: 2016
  ident: apjac0cfebib183
  publication-title: Icar
  doi: 10.1016/j.icarus.2016.04.027
– volume: 689
  start-page: L53
  year: 2008
  ident: apjac0cfebib22
  publication-title: ApJL
  doi: 10.1086/595747
– volume: 832
  start-page: 58
  year: 2016
  ident: apjac0cfebib50
  publication-title: ApJ
  doi: 10.3847/0004-637X/832/1/58
– volume: 726
  start-page: 30
  year: 2011
  ident: apjac0cfebib110
  publication-title: ApJ
  doi: 10.1088/0004-637X/726/1/30
– volume: 752
  start-page: 56
  year: 2012
  ident: apjac0cfebib51
  publication-title: ApJ
  doi: 10.1088/0004-637X/752/1/56
– volume: 848
  start-page: 83
  year: 2017
  ident: apjac0cfebib92
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7ff0
– volume: 799
  start-page: 37
  year: 2015
  ident: apjac0cfebib87
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/1/37
– volume: 744
  start-page: 135
  year: 2012
  ident: apjac0cfebib105
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/2/135
– volume: 743
  start-page: 50
  year: 2011
  ident: apjac0cfebib36
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/1/50
– volume: 895
  start-page: 145
  year: 2020
  ident: apjac0cfebib9
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8d25
– volume: 763
  start-page: 130
  year: 2013
  ident: apjac0cfebib86
  publication-title: ApJ
  doi: 10.1088/0004-637X/763/2/130
– volume: 299
  start-page: 1067
  year: 1985
  ident: apjac0cfebib54
  publication-title: ApJ
  doi: 10.1086/163775
– volume: 637
  start-page: 1067
  year: 2006
  ident: apjac0cfebib16
  publication-title: ApJ
  doi: 10.1086/498563
– volume: 872
  start-page: 51
  year: 2019
  ident: apjac0cfebib33
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf99f
– volume: 651
  start-page: 502
  year: 2006
  ident: apjac0cfebib132
  publication-title: ApJ
  doi: 10.1086/507264
– volume: 161
  start-page: 224
  year: 2021
  ident: apjac0cfebib163
  publication-title: AJ
  doi: 10.3847/1538-3881/abeb67
– volume: 633
  start-page: A50
  year: 2020
  ident: apjac0cfebib176
  publication-title: A&A
  doi: 10.1051/0004-6361/201936588
– volume: 738
  start-page: 72
  year: 2011
  ident: apjac0cfebib177
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/72
– volume: 814
  start-page: 118
  year: 2015
  ident: apjac0cfebib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/2/118
– volume: 510
  start-page: L8
  year: 2010a
  ident: apjac0cfebib151
  publication-title: A&A
  doi: 10.1051/0004-6361/201014078
– volume: 158
  start-page: 182
  year: 2019
  ident: apjac0cfebib64
  publication-title: AJ
  doi: 10.3847/1538-3881/ab3ebe
– volume: 519
  start-page: 793
  year: 1999
  ident: apjac0cfebib96
  publication-title: ApJ
  doi: 10.1086/307387
– volume: 647
  start-page: 1405
  year: 2006
  ident: apjac0cfebib192
  publication-title: ApJ
  doi: 10.1086/505484
– year: 2021
  ident: apjac0cfebib194
– volume: 437
  start-page: 1009
  year: 2014a
  ident: apjac0cfebib137
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1437
– volume: 231
  start-page: 15
  year: 2017
  ident: apjac0cfebib45
  publication-title: ApJS
  doi: 10.3847/1538-4365/aa5e4c
– volume: 710
  start-page: 1627
  year: 2010
  ident: apjac0cfebib79
  publication-title: ApJ
  doi: 10.1088/0004-637X/710/2/1627
– volume: 637
  start-page: A38
  year: 2020
  ident: apjac0cfebib133
  publication-title: A&A
  doi: 10.1051/0004-6361/201937381
– volume: 230
  start-page: 315.07
  year: 2017
  ident: apjac0cfebib113
  publication-title: AAS Meeting
– volume: 305
  start-page: L1
  year: 1996
  ident: apjac0cfebib174
  publication-title: A&A
– volume: 160
  start-page: 57
  year: 2020
  ident: apjac0cfebib107
  publication-title: AJ
  doi: 10.3847/1538-3881/ab96bb
– volume: 804
  start-page: L17
  year: 2015
  ident: apjac0cfebib172
  publication-title: ApJL
  doi: 10.1088/2041-8205/804/1/L17
– volume: 497
  start-page: 5136
  year: 2020
  ident: apjac0cfebib134
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2289
– volume: 433
  start-page: 457
  year: 2013
  ident: apjac0cfebib23
  publication-title: MNRAS
  doi: 10.1093/mnras/stt740
– volume: 114
  start-page: 180
  year: 2002
  ident: apjac0cfebib171
  publication-title: PASP
  doi: 10.1086/338545
– volume: 718
  start-page: L38
  year: 2010
  ident: apjac0cfebib6
  publication-title: ApJL
  doi: 10.1088/2041-8205/718/1/L38
– volume: 53
  start-page: 279
  year: 2015
  ident: apjac0cfebib112
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082214-122522
– volume: 240
  start-page: 19
  year: 2019
  ident: apjac0cfebib75
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaf6af
– volume: 127
  start-page: 2856
  year: 2004
  ident: apjac0cfebib21
  publication-title: AJ
  doi: 10.1086/383549
– volume: 777
  start-page: 36
  year: 2013a
  ident: apjac0cfebib108
  publication-title: ApJ
  doi: 10.1088/0004-637X/777/1/36
– volume: 515
  start-page: A92
  year: 2010b
  ident: apjac0cfebib152
  publication-title: A&A
  doi: 10.1051/0004-6361/201014264
– volume: 482
  start-page: 961
  year: 2008
  ident: apjac0cfebib42
  publication-title: A&A
  doi: 10.1051/0004-6361:20079317
– volume: 154
  start-page: 1
  year: 2004
  ident: apjac0cfebib185
  publication-title: ApJS
  doi: 10.1086/422992
– volume: 414
  start-page: L90
  year: 2011
  ident: apjac0cfebib25
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2011.01062.x
– volume: 803
  start-page: 102
  year: 2015
  ident: apjac0cfebib46
  publication-title: ApJ
  doi: 10.1088/0004-637X/803/2/102
– volume: 882
  start-page: 117
  year: 2019
  ident: apjac0cfebib83
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab3393
– volume: 112
  start-page: 354
  year: 1994
  ident: apjac0cfebib67
  publication-title: Icar
  doi: 10.1006/icar.1994.1189
– volume: 564
  start-page: 452
  year: 2002
  ident: apjac0cfebib84
  publication-title: ApJ
  doi: 10.1086/324037
– volume: 560
  start-page: A52
  year: 2013
  ident: apjac0cfebib111
  publication-title: A&A
  doi: 10.1051/0004-6361/201321720
– volume: 753
  start-page: 156
  year: 2012
  ident: apjac0cfebib73
  publication-title: ApJ
  doi: 10.1088/0004-637X/753/2/156
– volume: 874
  start-page: 83
  year: 2019
  ident: apjac0cfebib7
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab0b3d
– volume: 888
  start-page: L19
  year: 2020
  ident: apjac0cfebib115
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab6201
– volume: 197
  start-page: 19
  year: 2011
  ident: apjac0cfebib71
  publication-title: ApJS
  doi: 10.1088/0067-0049/197/2/19
– volume: 127
  start-page: 3553
  year: 2004
  ident: apjac0cfebib76
  publication-title: AJ
  doi: 10.1086/420707
– volume: 842
  start-page: 118
  year: 2017
  ident: apjac0cfebib90
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6fb5
– volume: 787
  start-page: 78
  year: 2014
  ident: apjac0cfebib124
  publication-title: ApJ
  doi: 10.1088/0004-637X/787/1/78
– volume: 489
  start-page: L87
  year: 1997
  ident: apjac0cfebib129
  publication-title: ApJL
  doi: 10.1086/310954
– volume: 536
  start-page: 190
  year: 2016
  ident: apjac0cfebib130
  publication-title: Natur
  doi: 10.1038/nature18940
– start-page: 321
  year: 2019
  ident: apjac0cfebib77
– volume: 491
  start-page: 856
  year: 1997
  ident: apjac0cfebib31
  publication-title: ApJ
  doi: 10.1086/305002
– volume: 776
  start-page: 85
  year: 2013
  ident: apjac0cfebib155
  publication-title: ApJ
  doi: 10.1088/0004-637X/776/2/85
– volume: 5492
  start-page: 1033
  year: 2004
  ident: apjac0cfebib118
  publication-title: Proc. SPIE
  doi: 10.1117/12.550288
– volume: 442
  start-page: 3361
  year: 2014
  ident: apjac0cfebib128
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1087
– volume: 564
  start-page: 421
  year: 2002
  ident: apjac0cfebib18
  publication-title: ApJ
  doi: 10.1086/324033
– volume: 524
  start-page: A38
  year: 2010
  ident: apjac0cfebib116
  publication-title: A&A
  doi: 10.1051/0004-6361/201015394
– volume: 470
  start-page: 1177
  year: 2017
  ident: apjac0cfebib26
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1246
– volume: 531
  start-page: L57
  year: 2000
  ident: apjac0cfebib19
  publication-title: ApJL
  doi: 10.1086/312522
– volume: 830
  start-page: 141
  year: 2016b
  ident: apjac0cfebib81
  publication-title: ApJ
  doi: 10.3847/0004-637X/830/2/141
– volume: 786
  start-page: L18
  year: 2014
  ident: apjac0cfebib103
  publication-title: ApJL
  doi: 10.1088/2041-8205/786/2/L18
– volume: 20
  start-page: 099
  year: 2020
  ident: apjac0cfebib193
  publication-title: RAA
  doi: 10.1088/1674-4527/20/7/99
– volume: 624
  start-page: A19
  year: 2019
  ident: apjac0cfebib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201833218
– volume: 473
  start-page: 5113
  year: 2018
  ident: apjac0cfebib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2622
– volume: 819
  start-page: 17
  year: 2016
  ident: apjac0cfebib131
  publication-title: ApJ
  doi: 10.3847/0004-637X/819/1/17
– year: 2021
  ident: apjac0cfebib195
– volume: 99
  start-page: 713
  year: 1995
  ident: apjac0cfebib141
  publication-title: ApJS
  doi: 10.1086/192204
– volume: 867
  start-page: 109
  year: 2018
  ident: apjac0cfebib117
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae1af
– volume: 843
  start-page: L4
  year: 2017
  ident: apjac0cfebib11
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa76df
– volume: 105
  start-page: 701
  year: 2007
  ident: apjac0cfebib164
  publication-title: MolPh
  doi: 10.1080/00268970701196983
– volume: 445
  start-page: 433
  year: 1995
  ident: apjac0cfebib3
  publication-title: ApJ
  doi: 10.1086/175708
– volume: 405
  start-page: 1140
  year: 2010
  ident: apjac0cfebib62
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16524.x
– volume: 810
  start-page: 158
  year: 2015
  ident: apjac0cfebib55
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/2/158
– volume: 144
  start-page: 148
  year: 2012
  ident: apjac0cfebib65
  publication-title: AJ
  doi: 10.1088/0004-6256/144/5/148
– volume: 575
  start-page: A25
  year: 2015
  ident: apjac0cfebib162
  publication-title: A&A
  doi: 10.1051/0004-6361/201424973
– volume: 764
  start-page: 101
  year: 2013
  ident: apjac0cfebib10
  publication-title: ApJ
  doi: 10.1088/0004-637X/764/1/101
– volume: 548
  start-page: A53
  year: 2012
  ident: apjac0cfebib97
  publication-title: A&A
  doi: 10.1051/0004-6361/201220182
– volume: 404
  start-page: 1952
  year: 2010
  ident: apjac0cfebib24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16411.x
– volume: 65
  start-page: 301
  year: 1993
  ident: apjac0cfebib30
  publication-title: RvMP
  doi: 10.1103/RevModPhys.65.301
– volume: 399
  start-page: 297
  year: 2003
  ident: apjac0cfebib186
  publication-title: A&A
  doi: 10.1051/0004-6361:20021734
– volume: 491
  start-page: L107
  year: 1997
  ident: apjac0cfebib140
  publication-title: ApJL
  doi: 10.1086/311070
– volume: 689
  start-page: 1327
  year: 2008
  ident: apjac0cfebib143
  publication-title: ApJ
  doi: 10.1086/592734
– volume: 163
  start-page: 398
  year: 2003
  ident: apjac0cfebib154
  publication-title: Icar
  doi: 10.1016/S0019-1035(03)00078-2
– volume: 126
  start-page: 975
  year: 2003
  ident: apjac0cfebib166
  publication-title: AJ
  doi: 10.1086/376481
– volume: 623
  start-page: 1115
  year: 2005
  ident: apjac0cfebib39
  publication-title: ApJ
  doi: 10.1086/428040
– volume: 797
  start-page: 41
  year: 2014
  ident: apjac0cfebib190
  publication-title: ApJ
  doi: 10.1088/0004-637X/797/1/41
– volume: 142
  start-page: 57
  year: 2011
  ident: apjac0cfebib61
  publication-title: AJ
  doi: 10.1088/0004-6256/142/2/57
– volume: 826
  start-page: L17
  year: 2016
  ident: apjac0cfebib157
  publication-title: ApJL
  doi: 10.3847/2041-8205/826/2/L17
– volume: 479
  start-page: 2702
  year: 2018
  ident: apjac0cfebib58
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1682
– volume: 756
  start-page: 172
  year: 2012
  ident: apjac0cfebib123
  publication-title: ApJ
  doi: 10.1088/0004-637X/756/2/172
– volume: 589
  start-page: A21
  year: 2016
  ident: apjac0cfebib4
  publication-title: A&A
  doi: 10.1051/0004-6361/201628270
– volume: 296
  start-page: 502
  year: 1985
  ident: apjac0cfebib40
  publication-title: ApJ
  doi: 10.1086/163470
– volume: 853
  start-page: 37
  year: 2018
  ident: apjac0cfebib147
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa961c
– volume: 655
  start-page: 1079
  year: 2007
  ident: apjac0cfebib88
  publication-title: ApJ
  doi: 10.1086/510014
– volume: 141
  start-page: 203
  year: 2011
  ident: apjac0cfebib2
  publication-title: AJ
  doi: 10.1088/0004-6256/141/6/203
– volume: 209
  start-page: 602
  year: 2010
  ident: apjac0cfebib178
  publication-title: Icar
  doi: 10.1016/j.icarus.2010.03.029
– year: 2020
  ident: apjac0cfebib63
– volume: 837
  start-page: 162
  year: 2017
  ident: apjac0cfebib70
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa62a5
– volume: 541
  start-page: 374
  year: 2000
  ident: apjac0cfebib142
  publication-title: ApJ
  doi: 10.1086/309410
– volume: 125
  start-page: 809
  year: 2013
  ident: apjac0cfebib165
  publication-title: PASP
  doi: 10.1086/671426
– volume: 126
  start-page: 2487
  year: 2003
  ident: apjac0cfebib20
  publication-title: AJ
  doi: 10.1086/378608
– volume: 148
  start-page: 82
  year: 2014
  ident: apjac0cfebib188
  publication-title: AJ
  doi: 10.1088/0004-6256/148/5/82
– volume: 532
  start-page: L5
  year: 2011
  ident: apjac0cfebib153
  publication-title: A&A
  doi: 10.1051/0004-6361/201117297
– volume: 147
  start-page: 113
  year: 2014
  ident: apjac0cfebib37
  publication-title: AJ
  doi: 10.1088/0004-6256/147/5/113
– volume: 518
  start-page: A39
  year: 2010
  ident: apjac0cfebib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201014277
– volume: 205
  start-page: 6
  year: 2013b
  ident: apjac0cfebib109
  publication-title: ApJS
  doi: 10.1088/0067-0049/205/1/6
– volume: 740
  start-page: 108
  year: 2011
  ident: apjac0cfebib94
  publication-title: ApJ
  doi: 10.1088/0004-637X/740/2/108
– volume: 390
  start-page: 304
  year: 2008
  ident: apjac0cfebib136
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13729.x
– volume: 159
  start-page: 63
  year: 2020
  ident: apjac0cfebib14
  publication-title: AJ
  doi: 10.3847/1538-3881/ab5b11
– volume: 730
  start-page: L9
  year: 2011
  ident: apjac0cfebib104
  publication-title: ApJL
  doi: 10.1088/2041-8205/730/1/L9
– volume: 158
  start-page: 13
  year: 2019
  ident: apjac0cfebib127
  publication-title: AJ
  doi: 10.3847/1538-3881/ab16e9
– volume: 357
  start-page: 683
  year: 2017
  ident: apjac0cfebib5
  publication-title: Sci
  doi: 10.1126/science.aam9848
– volume: 379
  start-page: 1599
  year: 2007
  ident: apjac0cfebib78
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12040.x
– volume: 379
  start-page: 1423
  year: 2007
  ident: apjac0cfebib100
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12023.x
– volume: 201
  start-page: 19
  year: 2012
  ident: apjac0cfebib44
  publication-title: ApJS
  doi: 10.1088/0067-0049/201/2/19
– volume: 406
  start-page: 1885
  year: 2010
  ident: apjac0cfebib29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16800.x
– volume: 695
  start-page: 1517
  year: 2009
  ident: apjac0cfebib82
  publication-title: ApJ
  doi: 10.1088/0004-637X/695/2/1517
– volume: 137
  start-page: 4547
  year: 2009
  ident: apjac0cfebib161
  publication-title: AJ
  doi: 10.1088/0004-6256/137/6/4547
– volume: 531
  start-page: L61
  year: 2000
  ident: apjac0cfebib175
  publication-title: ApJL
  doi: 10.1086/312515
– volume: 115
  start-page: 1388
  year: 2003
  ident: apjac0cfebib68
  publication-title: PASP
  doi: 10.1086/379669
– volume: 804
  start-page: 92
  year: 2015
  ident: apjac0cfebib149
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/2/92
– volume: 842
  start-page: 78
  year: 2017
  ident: apjac0cfebib179
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa73cf
– volume: 776
  start-page: 128
  year: 2013
  ident: apjac0cfebib72
  publication-title: ApJ
  doi: 10.1088/0004-637X/776/2/128
– volume: 503
  start-page: 2265
  year: 2021
  ident: apjac0cfebib99
  publication-title: MNRAS
  doi: 10.1093/mnras/stab401
– volume: 131
  start-page: 2722
  year: 2006
  ident: apjac0cfebib34
  publication-title: AJ
  doi: 10.1086/501431
– volume: 758
  start-page: 57
  year: 2012
  ident: apjac0cfebib95
  publication-title: ApJ
  doi: 10.1088/0004-637X/758/1/57
– volume: 253
  start-page: 7
  year: 2021
  ident: apjac0cfebib74
  publication-title: ApJS
  doi: 10.3847/1538-4365/abd107
– volume: 154
  start-page: 10
  year: 2004
  ident: apjac0cfebib53
  publication-title: ApJS
  doi: 10.1086/422843
– volume: 823
  start-page: 152
  year: 2016
  ident: apjac0cfebib35
  publication-title: ApJ
  doi: 10.3847/0004-637X/823/2/152
– volume: 824
  start-page: 2
  year: 2016a
  ident: apjac0cfebib91
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/1/2
– volume: 236
  start-page: 28
  year: 2018
  ident: apjac0cfebib170
  publication-title: ApJS
  doi: 10.3847/1538-4365/aabad3
– volume: 408
  start-page: L56
  year: 2010
  ident: apjac0cfebib102
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2010.00927.x
– volume: 656
  start-page: 1136
  year: 2007
  ident: apjac0cfebib146
  publication-title: ApJ
  doi: 10.1086/510557
– volume: 898
  start-page: 77
  year: 2020
  ident: apjac0cfebib148
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9a40
– volume: 582
  start-page: 1066
  year: 2003
  ident: apjac0cfebib38
  publication-title: ApJ
  doi: 10.1086/344525
– volume: 858
  start-page: 97
  year: 2018
  ident: apjac0cfebib125
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabe8b
– volume: 616
  start-page: A1
  year: 2018
  ident: apjac0cfebib59
  publication-title: A&A
  doi: 10.1051/0004-6361/201833051
– volume: 154
  start-page: 134
  year: 2017
  ident: apjac0cfebib49
  publication-title: AJ
  doi: 10.3847/1538-3881/aa859b
– volume: 796
  start-page: 39
  year: 2014
  ident: apjac0cfebib169
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/1/39
– volume: 444
  start-page: 1931
  year: 2014b
  ident: apjac0cfebib138
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1540
– volume: 134
  start-page: 1162
  year: 2007
  ident: apjac0cfebib101
  publication-title: AJ
  doi: 10.1086/520645
– volume: 341
  start-page: 1492
  year: 2013
  ident: apjac0cfebib43
  publication-title: Sci
  doi: 10.1126/science.1241917
– volume: 159
  start-page: 257
  year: 2020
  ident: apjac0cfebib13
  publication-title: AJ
  doi: 10.3847/1538-3881/ab84f4
– volume: 10
  start-page: 175
  year: 1978
  ident: apjac0cfebib56
  publication-title: GApFD
  doi: 10.1080/03091927808242636
– volume: 397
  start-page: 258
  year: 2009
  ident: apjac0cfebib98
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14384.x
– volume: 881
  start-page: 17
  year: 2019
  ident: apjac0cfebib114
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab2bf0
– volume: 889
  start-page: 176
  year: 2020
  ident: apjac0cfebib52
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5303
– volume: 154
  start-page: 35
  year: 2013
  ident: apjac0cfebib119
  publication-title: Msngr
– volume: 807
  start-page: 183
  year: 2015
  ident: apjac0cfebib93
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/2/183
– volume: 876
  start-page: 144
  year: 2019
  ident: apjac0cfebib173
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab05db
– volume: 160
  start-page: 63
  year: 2020
  ident: apjac0cfebib122
  publication-title: ApJ
  doi: 10.3847/1538-3881/ab9114
– volume: 140
  start-page: 1868
  year: 2010
  ident: apjac0cfebib187
  publication-title: AJ
  doi: 10.1088/0004-6256/140/6/1868
– volume: 391
  start-page: 320
  year: 2008
  ident: apjac0cfebib27
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13885.x
– volume: 877
  start-page: 46
  year: 2019
  ident: apjac0cfebib182
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1904
– volume: 381
  start-page: 1400
  year: 2007
  ident: apjac0cfebib184
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12348.x
– volume: 127
  start-page: 2948
  year: 2004
  ident: apjac0cfebib181
  publication-title: AJ
  doi: 10.1086/383554
– volume: 748
  start-page: 74
  year: 2012
  ident: apjac0cfebib89
  publication-title: ApJ
  doi: 10.1088/0004-637X/748/2/74
– volume: 373
  start-page: 781
  year: 2006
  ident: apjac0cfebib80
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11069.x
– volume: 889
  start-page: 74
  year: 2020a
  ident: apjac0cfebib120
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6215
SSID ssj0004299
Score 2.5724726
Snippet Cold, low-mass, field brown dwarfs are important for constraining the terminus of the stellar mass function, and also for optimizing atmospheric studies of...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Ammonia
Astrophysics
Atmosphere
Atmospheric models
Atmospheric pressure
Brown dwarf stars
Brown dwarfs
Energy distribution
Extrasolar planets
Infrared photometry
Infrared sources
Photometry
Photosphere
Rotation
Stellar atmospheres
Stellar convective zones
Stellar mass
Temperature gradients
Temperature profiles
Yttrium
Title Measuring and Replicating the 1–20 μm Energy Distributions of the Coldest Brown Dwarfs: Rotating, Turbulent, and Nonadiabatic Atmospheres
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac0cfe
https://www.proquest.com/docview/2569682814
Volume 918
WOSCitedRecordID wos000691053500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NShxBEC5cjeAlGmNw_aMPSSDgZHem51dPi67kEDcSDNnb0H8DAXdHdmaVXEIewJuv4zP4ED6JVd2jIgkieOsZarpnqrrrb6q_BniPSk9qyZUXRDzCAEWkXhpr48WGS8OzAmMfK-mvyWCQDofZ0Qzs3u-FKU8b1f8Zmw4o2LGQ1jdHXdqxaxStfNIRqqsK04I5nkYxTfJv_OfDpsgga3zf0It5MnT_KP_bwyOb1MJx_1HM1tocLL7oPZfgdeNksp4jfQMzZrwMq72K0t7l6Df7yGzbZTWqZZg_cq23cHFoc4Zoz5gYa4buuUvq4TV6isy_-XsZdNn11Yj17aZBtk_Au82ZWRUrC0u2V55o_ChmY3y2fy4mRbXDvpe17WmbHU9RlmTutu0og9IiJEgCj2W9elRWhHVgqhX4cdA_3vviNQc2eIpH3drTsTAi01lIYZcOFDpDGkMcmQRFFFJZG94xBdWzZlGg0DGTqdE-l6pIZKyE5O9gdlyOzSowwsXH0FLEfkqINiYrklCHPDQoVeOLbhs6dyLLVYNmTodqnOQY1RD7c2J_TuzPHfvb8On-iVOH5PEE7QeUat4s5-oJuo27efJAjE5kFmMg64drz-xmHRYCKpWxpWsbMFtPpmYTXqmz-lc12YLW4Z_-lp3ct5Io--o
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD4RvIQXRMRwU-ZBTUwou-306tuGZaMR143BuG_NXBMSdrvZFoxv_ADe-Dv8Bn6Ev8RzZorEaIiJb9PmdKbt1zm3znwH4CUqPaklV0GU8AQDFJEHeapNkBouDS8sxj4O6cNsOMzH42LU1jl1e2GqWav697DpiYL9K6T5zVGXdtwcRSufdYTqKms6M20X4D6Oxal2wyf-9XZjZFS0_m8cpDwb-_-Uf-3lN7u0gGP_oZydxRk8_u97XYHl1tlkPS_-BO6Z6Sqs92pKf1eT7-w1c22f3ahX4eHIt57CxUeXO0S7xsRUM3TTfXIPj9FjZOGP88uoy66vJuzAbR5kfSLgbWtn1ayyTmy_OtH4YMzF-qz_Tcxt_ZZ9rhrX0y47OkVMyeztulGGlWNKkEQiy3rNpKqJ88DUa_BlcHC0_y5oCzcEiifdJtCpMKLQRUzhl44UOkUaQx2ZRTaJaXkbnjGW1rUWSaTQQZO50SGXymYyVULyZ7A4raZmHRjx42OIKdIwJ2YbU9gs1jGPDSJrQtHdgM4NbKVqWc2puMZJidENQVASBCVBUHoINuDNrytmntHjDtlXiGzZTuv6Drntm2_lVhidySLFgDaMN_-xmx14NOoPysP3ww9bsBTR6hm3mm0bFpv5qXkOD9RZc1zPX7iv_CeJbAAn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+and+Replicating+the+1%E2%80%9320+%CE%BCm+Energy+Distributions+of+the+Coldest+Brown+Dwarfs%3A+Rotating%2C+Turbulent%2C+and+Nonadiabatic+Atmospheres&rft.jtitle=The+Astrophysical+journal&rft.au=Leggett%2C+S.+K.&rft.au=Tremblin%2C+Pascal&rft.au=Phillips%2C+Mark+W.&rft.au=Dupuy%2C+Trent+J.&rft.date=2021-09-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=918&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fac0cfe&rft.externalDocID=apjac0cfe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon