Semi-Supervised Learning for Low-cost Personalized Obstructive Sleep Apnea Detection Using Unsupervised Deep Learning and Single-Lead Electrocardiogram
Objective: Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder that can lead to a wide range of health issues if left untreated. This study aims to address the lack of research on personalized models for single-lead electrocardiogram (ECG)-based OSA detection, by proposing an...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of biomedical and health informatics Jg. 27; H. 11; S. 1 - 12 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!