Robust Optimal Parallel Tracking Control Based on Adaptive Dynamic Programming

This article focuses on a novel robust optimal parallel tracking control method for continuous-time (CT) nonlinear systems subject to uncertainties. First, the designed virtual controller facilitates the transformation of the original nonlinear system into an affine system with an augmented state ve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 54; číslo 7; s. 4308 - 4321
Hlavní autori: Wei, Qinglai, Jiao, Shanshan, Wang, Fei-Yue, Dong, Qi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article focuses on a novel robust optimal parallel tracking control method for continuous-time (CT) nonlinear systems subject to uncertainties. First, the designed virtual controller facilitates the transformation of the original nonlinear system into an affine system with an augmented state vector, which promotes the introduction of the optimal parallel tracking control problem. Then, this article generates fresh insight into counteracting the effects of uncertainty by developing a novel parallel control system that invokes the formulated virtual control law and an auxiliary variable obtained from the relationship between the solutions of the optimal control problems for the uncertain system and the nominal one. Next, critic neural networks (NNs) approximate the Hamilton-Jacobi-Bellman (HJB) equations' solution to implement the proposed robust optimal control method via adaptive dynamic programming (ADP). Finally, simulation experiments demonstrate the proposed method's remarkable effectiveness.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2023.3312543