Real-Time Seamless Multi-Projector Displays on Deformable Surfaces

Prior works on multi-projector displays have focused primarily on static rigid objects, some focusing on dynamic rigid objects. However, works on projection based displays on deformable dynamic objects have focused only on small scale single projector displays. Tracking a deformable dynamic surface...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics Vol. 30; no. 5; pp. 2527 - 2537
Main Authors: Ibrahim, Muhammad Twaha, Gopi, M., Majumder, Aditi
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1077-2626, 1941-0506, 1941-0506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Prior works on multi-projector displays have focused primarily on static rigid objects, some focusing on dynamic rigid objects. However, works on projection based displays on deformable dynamic objects have focused only on small scale single projector displays. Tracking a deformable dynamic surface and updating projections precisely in real time on it is a significantly challenging task, even for a single projector system. In this paper, we present the first end-to-end solution for achieving a real-time, seamless display on deformable surfaces using mutliple unsychronized projectors without requiring any prior knowledge of the surface or device parameters. The system first accurately calibrates multiple RGB-D cameras and projectors using the deformable display surface itself, and then using those calibrated devices, tracks the continuous changes in the surface shape. Based on the deformation and projector calibration, the system warps and blends the image content in real-time to create a seamless display on a surface that continuously changes shape. Using multiple projectors and RGB-D cameras, we provide the much desired aspect of scale to the displays on deformable surfaces. Most prior dynamic multi-projector systems assume rigid objects and depend critically on the constancy of surface normals and non-existence of local shape deformations. These assumptions break in deformable surfaces making prior techniques inapplicable. Point-based correspondences become inadequate for calibration, exacerbated with no synchronization between the projectors. A few works address non-rigid objects with several restrictions like targeting semi-deformable surfaces (e.g. human face), or using single coaxial (optically aligned) projector-camera pairs, or temporally synchronized cameras. We break loose from such restrictions and handle multiple projector systems for dynamic deformable fabric-like objects using temporally unsynchronized devices. We devise novel methods using ray and plane-based constraints imposed by the pinhole camera model to address these issues and design new blending methods dependent on 3D distances suitable for deformable surfaces. Finally, unlike all prior work with rigid dynamic surfaces that use a single RGB-D camera, we devise a method that involve all RGB-D cameras for tracking since the surface is not seen completely by a single camera. These methods enable a seamless display at scale in the presence of continuous movements and deformations. This work has tremendous applications on mobile and expeditionary systems where environmentals (e.g. wind, vibrations, suction) cannot be avoided. One can create large displays on tent walls in remote, austere military or emergency operations in minutes to support large scale command and control, mission rehearsal or training operations. It can be used to create displays on mobile and inflatable objects for tradeshows/events and touring edutainment applications.
AbstractList Prior works on multi-projector displays have focused primarily on static rigid objects, some focusing on dynamic rigid objects. However, works on projection based displays on deformable dynamic objects have focused only on small scale single projector displays. Tracking a deformable dynamic surface and updating projections precisely in real time on it is a significantly challenging task, even for a single projector system. In this paper, we present the first end-to-end solution for achieving a real-time, seamless display on deformable surfaces using mutliple unsychronized projectors without requiring any prior knowledge of the surface or device parameters. The system first accurately calibrates multiple RGB-D cameras and projectors using the deformable display surface itself, and then using those calibrated devices, tracks the continuous changes in the surface shape. Based on the deformation and projector calibration, the system warps and blends the image content in real-time to create a seamless display on a surface that continuously changes shape. Using multiple projectors and RGB-D cameras, we provide the much desired aspect of scale to the displays on deformable surfaces. Most prior dynamic multi-projector systems assume rigid objects and depend critically on the constancy of surface normals and non-existence of local shape deformations. These assumptions break in deformable surfaces making prior techniques inapplicable. Point-based correspondences become inadequate for calibration, exacerbated with no synchronization between the projectors. A few works address non-rigid objects with several restrictions like targeting semi-deformable surfaces (e.g. human face), or using single coaxial (optically aligned) projector-camera pairs, or temporally synchronized cameras. We break loose from such restrictions and handle multiple projector systems for dynamic deformable fabric-like objects using temporally unsynchronized devices. We devise novel methods using ray and plane-based constraints imposed by the pinhole camera model to address these issues and design new blending methods dependent on 3D distances suitable for deformable surfaces. Finally, unlike all prior work with rigid dynamic surfaces that use a single RGB-D camera, we devise a method that involve all RGB-D cameras for tracking since the surface is not seen completely by a single camera. These methods enable a seamless display at scale in the presence of continuous movements and deformations. This work has tremendous applications on mobile and expeditionary systems where environmentals (e.g. wind, vibrations, suction) cannot be avoided. One can create large displays on tent walls in remote, austere military or emergency operations in minutes to support large scale command and control, mission rehearsal or training operations. It can be used to create displays on mobile and inflatable objects for tradeshows/events and touring edutainment applications.
Prior works on multi-projector displays have focused primarily on static rigid objects, some focusing on dynamic rigid objects. However, works on projection based displays on deformable dynamic objects have focused only on small scale single projector displays. Tracking a deformable dynamic surface and updating projections precisely in real time on it is a significantly challenging task, even for a single projector system. In this paper, we present the first end-to-end solution for achieving a real-time, seamless display on deformable surfaces using mutliple unsychronized projectors without requiring any prior knowledge of the surface or device parameters. The system first accurately calibrates multiple RGB-D cameras and projectors using the deformable display surface itself, and then using those calibrated devices, tracks the continuous changes in the surface shape. Based on the deformation and projector calibration, the system warps and blends the image content in real-time to create a seamless display on a surface that continuously changes shape. Using multiple projectors and RGB-D cameras, we provide the much desired aspect of scale to the displays on deformable surfaces. Most prior dynamic multi-projector systems assume rigid objects and depend critically on the constancy of surface normals and non-existence of local shape deformations. These assumptions break in deformable surfaces making prior techniques inapplicable. Point-based correspondences become inadequate for calibration, exacerbated with no synchronization between the projectors. A few works address non-rigid objects with several restrictions like targeting semi-deformable surfaces (e.g. human face), or using single coaxial (optically aligned) projector-camera pairs, or temporally synchronized cameras. We break loose from such restrictions and handle multiple projector systems for dynamic deformable fabric-like objects using temporally unsynchronized devices. We devise novel methods using ray and plane-based constraints imposed by the pinhole camera model to address these issues and design new blending methods dependent on 3D distances suitable for deformable surfaces. Finally, unlike all prior work with rigid dynamic surfaces that use a single RGB-D camera, we devise a method that involve all RGB-D cameras for tracking since the surface is not seen completely by a single camera. These methods enable a seamless display at scale in the presence of continuous movements and deformations. This work has tremendous applications on mobile and expeditionary systems where environmentals (e.g. wind, vibrations, suction) cannot be avoided. One can create large displays on tent walls in remote, austere military or emergency operations in minutes to support large scale command and control, mission rehearsal or training operations. It can be used to create displays on mobile and inflatable objects for tradeshows/events and touring edutainment applications.Prior works on multi-projector displays have focused primarily on static rigid objects, some focusing on dynamic rigid objects. However, works on projection based displays on deformable dynamic objects have focused only on small scale single projector displays. Tracking a deformable dynamic surface and updating projections precisely in real time on it is a significantly challenging task, even for a single projector system. In this paper, we present the first end-to-end solution for achieving a real-time, seamless display on deformable surfaces using mutliple unsychronized projectors without requiring any prior knowledge of the surface or device parameters. The system first accurately calibrates multiple RGB-D cameras and projectors using the deformable display surface itself, and then using those calibrated devices, tracks the continuous changes in the surface shape. Based on the deformation and projector calibration, the system warps and blends the image content in real-time to create a seamless display on a surface that continuously changes shape. Using multiple projectors and RGB-D cameras, we provide the much desired aspect of scale to the displays on deformable surfaces. Most prior dynamic multi-projector systems assume rigid objects and depend critically on the constancy of surface normals and non-existence of local shape deformations. These assumptions break in deformable surfaces making prior techniques inapplicable. Point-based correspondences become inadequate for calibration, exacerbated with no synchronization between the projectors. A few works address non-rigid objects with several restrictions like targeting semi-deformable surfaces (e.g. human face), or using single coaxial (optically aligned) projector-camera pairs, or temporally synchronized cameras. We break loose from such restrictions and handle multiple projector systems for dynamic deformable fabric-like objects using temporally unsynchronized devices. We devise novel methods using ray and plane-based constraints imposed by the pinhole camera model to address these issues and design new blending methods dependent on 3D distances suitable for deformable surfaces. Finally, unlike all prior work with rigid dynamic surfaces that use a single RGB-D camera, we devise a method that involve all RGB-D cameras for tracking since the surface is not seen completely by a single camera. These methods enable a seamless display at scale in the presence of continuous movements and deformations. This work has tremendous applications on mobile and expeditionary systems where environmentals (e.g. wind, vibrations, suction) cannot be avoided. One can create large displays on tent walls in remote, austere military or emergency operations in minutes to support large scale command and control, mission rehearsal or training operations. It can be used to create displays on mobile and inflatable objects for tradeshows/events and touring edutainment applications.
Author Gopi, M.
Majumder, Aditi
Ibrahim, Muhammad Twaha
Author_xml – sequence: 1
  givenname: Muhammad Twaha
  orcidid: 0000-0001-9286-6124
  surname: Ibrahim
  fullname: Ibrahim, Muhammad Twaha
  email: muhammti@uci.edu
  organization: University of California, Irvine, USA
– sequence: 2
  givenname: M.
  surname: Gopi
  fullname: Gopi, M.
  email: gopi@ics.uci.edu
  organization: University of California, Irvine, USA
– sequence: 3
  givenname: Aditi
  surname: Majumder
  fullname: Majumder, Aditi
  email: majumder@ics.uci.edu
  organization: University of California, Irvine, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38437087$$D View this record in MEDLINE/PubMed
BookMark eNp9kU2LFDEQhoOsuB_6AwSRBi976bHSqXSSo866q7Ci6Og1pDPVkCHdGZPuw_57e5hRZA-eUpDnqSrqvWRnYxqJsZccVpyDebv5ub5bNdDgSgjVgFFP2AU3yGuQ0J4tNShVN23TnrPLUnYAHFGbZ-xcaBQKtLpg77-Ri_UmDFR9JzdEKqX6PMcp1F9z2pGfUq5uQtlH91CqNFY31Kc8uC4u_Jx756k8Z097Fwu9OL1X7Mfth836Y33_5e7T-t197YWEqe6kbrpWgSTJARClMlvue5D98s-RWt2DEFyqznTcc2WQUKLzQptma1otrtj1se8-p18zlckOoXiK0Y2U5mIbI5QC3qJZ0DeP0F2a87hsZwUgR2PQtAv1-kTN3UBbu89hcPnB_rnOAvAj4HMqJVP_F-FgDwnYQwL2kIA9JbA46pHjw-SmkMYpuxD_a746moGI_pmEUgvU4jdBJI_E
CODEN ITVGEA
CitedBy_id crossref_primary_10_1371_journal_pone_0318812
crossref_primary_10_1016_j_smhl_2024_100476
crossref_primary_10_1016_j_optlaseng_2025_108888
Cites_doi 10.1109/TIP.2003.819861
10.1109/ISMAR59233.2023.00044
10.1007/978-3-7091-6242-2_9
10.1109/TVCG.2019.2950942
10.1145/1186822.1073257
10.1109/3DIMPVT.2012.77
10.1145/3275476.3275481
10.1007/978-3-7091-6453-2_13
10.1109/VR.2011.5759447
10.1109/CVPRW.2011.5981781
10.1109/TVCG.2014.25
10.1109/VISUAL.2001.964508
10.1109/TVCG.2007.70586
10.1109/ISMAR-Adjunct.2018.00023
10.1109/ISMAR.2016.22
10.1109/TVCG.2018.2868530
10.1109/ICCV.2013.455
10.1109/TVCG.2017.2734428
10.1145/280814.280861
10.1109/TIM.2019.2929281
10.1145/2874358
10.1109/IWAIT.2018.8369679
10.1145/3385956.3418970
10.1145/1889863.1889897
10.1109/TVCG.2006.121
10.1109/VR.2010.5444797
10.1109/VR.2015.7223330
10.1109/34.888718
10.1016/j.optlaseng.2019.02.016
10.1109/VISUAL.1999.809883
10.1145/1394669.1394689
10.1145/3005358.3005364
10.1145/3290607.3313246
10.1109/CVPRW.2009.5204319
10.1145/2508363.2508416
10.1007/978-3-319-40651-0_10
10.1145/2542284.2542292
10.1016/j.cag.2022.01.004
10.1109/tvcg.2010.128
10.1109/TVCG.2019.2932248
10.1007/s10055-014-0256-y
10.1109/ISMAR.2014.6948421
10.1109/TVCG.2017.2657634
10.1109/TVCG.2022.3203085
10.1145/2821592.2821618
10.1145/3272127.3275045
10.1145/2816795.2818111
10.1109/tvcg.2009.166
10.1109/tvcg.2023.3277436
10.1155/2017/4936285
10.1109/CVPR.2017.383
10.1145/1037957.1037964
10.1109/TVCG.2022.3150488
10.1109/TVCG.2018.2871044
10.1109/ismar.2011.6092393
10.1109/TASE.2020.2994223
10.1109/ISMAR.2017.21
10.1109/TVCG.2016.2592910
10.1117/1.JEI.28.6.063008
10.1145/2931002.2931016
10.1109/vrw58643.2023.00295
10.1145/2858036.2858329
10.1109/TVCG.2011.33
10.1109/TVCG.2015.2459898
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2024.3372097
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 2537
ExternalDocumentID 38437087
10_1109_TVCG_2024_3372097
10458348
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Summit Technology Laboratory
– fundername: U.S. Air Force; US Air Force
  funderid: 10.13039/100006831
– fundername: SBIR
  funderid: 10.13039/100006370
– fundername: AFWERX
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c350t-b582b6705e510044579d1cf05fc3514e68f033157b9b1c1794e454ac3892d9683
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001205832400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sun Nov 09 12:17:45 EST 2025
Sun Nov 09 07:25:26 EST 2025
Mon Jul 21 05:56:34 EDT 2025
Tue Nov 18 22:45:19 EST 2025
Sat Nov 29 03:31:47 EST 2025
Wed Aug 27 02:22:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-b582b6705e510044579d1cf05fc3514e68f033157b9b1c1794e454ac3892d9683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9286-6124
PMID 38437087
PQID 3041499496
PQPubID 75741
PageCount 11
ParticipantIDs crossref_primary_10_1109_TVCG_2024_3372097
pubmed_primary_38437087
crossref_citationtrail_10_1109_TVCG_2024_3372097
ieee_primary_10458348
proquest_journals_3041499496
proquest_miscellaneous_2937701649
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Lange (ref26) 2017
ref41
ref44
ref43
(ref19) 2022
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Chen (ref9) 2001
ref24
ref23
ref67
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref61
  doi: 10.1109/TIP.2003.819861
– ident: ref15
  doi: 10.1109/ISMAR59233.2023.00044
– ident: ref42
  doi: 10.1007/978-3-7091-6242-2_9
– ident: ref57
  doi: 10.1109/TVCG.2019.2950942
– ident: ref50
  doi: 10.1145/1186822.1073257
– ident: ref32
  doi: 10.1109/3DIMPVT.2012.77
– ident: ref29
  doi: 10.1145/3275476.3275481
– ident: ref40
  doi: 10.1007/978-3-7091-6453-2_13
– ident: ref27
  doi: 10.1109/VR.2011.5759447
– ident: ref63
  doi: 10.1109/CVPRW.2011.5981781
– ident: ref11
  doi: 10.1109/TVCG.2014.25
– ident: ref65
  doi: 10.1109/VISUAL.2001.964508
– ident: ref5
  doi: 10.1109/TVCG.2007.70586
– ident: ref13
  doi: 10.1109/ISMAR-Adjunct.2018.00023
– ident: ref64
  doi: 10.1109/ISMAR.2016.22
– ident: ref23
  doi: 10.1109/TVCG.2018.2868530
– ident: ref8
  doi: 10.1109/ICCV.2013.455
– ident: ref55
  doi: 10.1109/TVCG.2017.2734428
– ident: ref41
  doi: 10.1145/280814.280861
– start-page: 1
  volume-title: Proc. of European Association for Computer Graphics: Short Papers
  year: 2017
  ident: ref26
  article-title: Robust blending and occlusion compensation in dynamic multi-projection mapping
– ident: ref10
  doi: 10.1109/TIM.2019.2929281
– ident: ref22
  doi: 10.1145/2874358
– ident: ref31
  doi: 10.1109/IWAIT.2018.8369679
– ident: ref18
  doi: 10.1145/3385956.3418970
– ident: ref48
  doi: 10.1145/1889863.1889897
– ident: ref6
  doi: 10.1109/TVCG.2006.121
– ident: ref47
  doi: 10.1109/VR.2010.5444797
– ident: ref56
  doi: 10.1109/VR.2015.7223330
– ident: ref66
  doi: 10.1109/34.888718
– ident: ref20
  doi: 10.1016/j.optlaseng.2019.02.016
– ident: ref39
  doi: 10.1109/VISUAL.1999.809883
– ident: ref59
  doi: 10.1145/1394669.1394689
– ident: ref53
  doi: 10.1145/3005358.3005364
– ident: ref60
  doi: 10.1145/3290607.3313246
– ident: ref3
  doi: 10.1109/CVPRW.2009.5204319
– ident: ref4
  doi: 10.1145/2508363.2508416
– ident: ref25
  doi: 10.1007/978-3-319-40651-0_10
– ident: ref36
  doi: 10.1145/2542284.2542292
– ident: ref17
  doi: 10.1016/j.cag.2022.01.004
– volume-title: Intel depth camera d435
  year: 2022
  ident: ref19
– ident: ref45
  doi: 10.1109/tvcg.2010.128
– ident: ref21
  doi: 10.1109/TVCG.2019.2932248
– ident: ref37
  doi: 10.1007/s10055-014-0256-y
– ident: ref43
  doi: 10.1109/ISMAR.2014.6948421
– ident: ref2
  doi: 10.1109/TVCG.2017.2657634
– ident: ref24
  doi: 10.1109/TVCG.2022.3203085
– ident: ref33
  doi: 10.1145/2821592.2821618
– ident: ref30
  doi: 10.1145/3272127.3275045
– ident: ref54
  doi: 10.1145/2816795.2818111
– ident: ref46
  doi: 10.1109/tvcg.2009.166
– ident: ref58
  doi: 10.1109/tvcg.2023.3277436
– ident: ref12
  doi: 10.1155/2017/4936285
– ident: ref51
  doi: 10.1109/CVPR.2017.383
– ident: ref28
  doi: 10.1145/1037957.1037964
– ident: ref35
  doi: 10.1109/TVCG.2022.3150488
– ident: ref38
  doi: 10.1109/TVCG.2018.2871044
– ident: ref52
  doi: 10.1109/ismar.2011.6092393
– ident: ref14
  doi: 10.1109/TASE.2020.2994223
– ident: ref62
  doi: 10.1109/ISMAR.2017.21
– volume-title: CVPR Technical Sketch
  year: 2001
  ident: ref9
  article-title: Calibrating scalable multi-projector displays using camera homography trees
– ident: ref34
  doi: 10.1109/TVCG.2016.2592910
– ident: ref1
  doi: 10.1117/1.JEI.28.6.063008
– ident: ref7
  doi: 10.1145/2931002.2931016
– ident: ref16
  doi: 10.1109/vrw58643.2023.00295
– ident: ref67
  doi: 10.1145/2858036.2858329
– ident: ref49
  doi: 10.1109/TVCG.2011.33
– ident: ref44
  doi: 10.1109/TVCG.2015.2459898
SSID ssj0014489
Score 2.430332
Snippet Prior works on multi-projector displays have focused primarily on static rigid objects, some focusing on dynamic rigid objects. However, works on projection...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2527
SubjectTerms Artificial Intelligence
Calibration
Cameras
Command and control
Computer Vision
Computing Methodologies
Constraint modelling
Deformation
Displays
Emergency procedures
Formability
Image and Video Acquisition
Pinhole cameras
Projectors
Real time
Real-time systems
Shape
Suction
Surface fitting
Surface reconstruction
Synchronism
Three-dimensional displays
Tracking
Title Real-Time Seamless Multi-Projector Displays on Deformable Surfaces
URI https://ieeexplore.ieee.org/document/10458348
https://www.ncbi.nlm.nih.gov/pubmed/38437087
https://www.proquest.com/docview/3041499496
https://www.proquest.com/docview/2937701649
Volume 30
WOSCitedRecordID wos001205832400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1AMcCuXRhtJVkDghGZzYju1jC932hFB5aG9R4kwkpCVBm91K_Hs8Tna1FypxixQ7seZhf-N5AZwWRaYLZS1LETWTTtbMGoEM_W6okjqprHGh2YS-vjaTib0ZktVDLgwihuAzPKfH4MuvWregqzKv4eTlk2YDNrTO-mStlcvA2xm2DzDULPUwfXBhJtxe3D1c_vamYCrPBTVlsdR5TxgpNKdIurXzKDRYeRtrhjNnvPPO1e7CpwFcxj96afgMH7DZg-21koP78POvR4aMEj_iWyyepn6ji0MSLrvp72TaWXz12D1Pi5cubpv4CgOqLad-_GJWUwDXAdyPf91d_mFDHwXmhOJzViqTlpnmClWoD6e0rRJXc1U7iuPHzNRciETp0paJIw1FqWThPJZJK5sZcQibTdvgV4grqg8ms8ToqpYezJTG75ilMbUtstIbOxHwJTVzNxQZp14X0zwYG9zmxIuceJEPvIjgbDXlua-w8b_BB0TotYE9jSM4XvIsH5SwywWX3v6z0mYRnKxee_Uhn0jRYLvoco92tKYyYzaCLz2vVx9fisjRGz_9Blu0tj788Rg257MFfoeP7t_8sZuNvIxOzCjI6CvC39yJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQaIceJY2UCBInJBcnNiO7WMflCLKqoIF9WYlzkSqtE2qzS4S_x6Pk13tpUjcImWcWB7P-BvPC-B9WRa6VNayHFEz6WXDrBHIMGhDlTVZbY2PzSb0ZGIuL-3FmKwec2EQMQaf4QE9Rl9-3fklXZUFCScvnzR34Z6SMudDutbaaRAsDTuEGGqWB6A-OjEzbj9Ofx1_DsZgLg8EtWWx1HtPGCk0p1i6jRMptli5HW3GU-f08X_O9wk8GuFlejjsh6dwB9tn8HCj6OBzOPoesCGj1I_0B5bXs6Dq0piGyy6GW5lunp5c9Tez8k-fdm16ghHXVrNAv5w3FMK1Az9PP02Pz9jYSYF5ofiCVcrkVaG5QhUrxClt68w3XDWeIvmxMA0XIlO6slXmSUZRKln6gGby2hZGvICttmtxD9KaKoTJIjO6bmSAM5UJOrMyprFlUQVzJwG-Wk3nxzLj1O1i5qK5wa0jXjjihRt5kcCH9ZCbocbGv4h3aKE3CIc1TmB_xTM3imHvBJfBArTSFgm8W78OAkRekbLFbtm7gHe0pkJjNoHdgdfrj6-2yMtbfvoWHpxNv5278y-Tr69gm-Y5BEPuw9ZivsTXcN__Xlz18zdxp_4FNYHe6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Seamless+Multi-Projector+Displays+on+Deformable+Surfaces&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Ibrahim%2C+Muhammad+Twaha&rft.au=Gopi%2C+M&rft.au=Majumder%2C+Aditi&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=30&rft.issue=5&rft.spage=2527&rft_id=info:doi/10.1109%2FTVCG.2024.3372097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon