A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems
For a multivariable system with moving average noise (i.e., a multivariable controlled autoregressive moving average system), this paper proposes a filtering based extended stochastic gradient (ESG) algorithm and a filtering based multi-innovation ESG algorithm for improving the parameter estimation...
Gespeichert in:
| Veröffentlicht in: | International journal of control, automation, and systems Jg. 15; H. 3; S. 1189 - 1197 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bucheon / Seoul
Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
01.06.2017
Springer Nature B.V 제어·로봇·시스템학회 |
| Schlagworte: | |
| ISSN: | 1598-6446, 2005-4092 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | For a multivariable system with moving average noise (i.e., a multivariable controlled autoregressive moving average system), this paper proposes a filtering based extended stochastic gradient (ESG) algorithm and a filtering based multi-innovation ESG algorithm for improving the parameter estimation accuracy. The key is using the filtering technique and the multi-innovation identification theory. The proposed algorithms can identify the parameters of the system model and the noise model. The filtering based multi-innovation ESG algorithm can give more accurate parameter estimates. The numerical simulation results demonstrate that the proposed algorithms work well. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 http://link.springer.com/article/10.1007/s12555-016-0081-z |
| ISSN: | 1598-6446 2005-4092 |
| DOI: | 10.1007/s12555-016-0081-z |