Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection

Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcom...

Full description

Saved in:
Bibliographic Details
Published in:Chemical Society reviews Vol. 51; no. 23; p. 9759
Main Authors: Pan, Yuanbo, Tang, Wei, Fan, Wenpei, Zhang, Jianmin, Chen, Xiaoyuan
Format: Journal Article
Language:English
Published: 28.11.2022
ISSN:1460-4744, 1460-4744
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation.Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation.
AbstractList Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation.Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation.
Author Tang, Wei
Fan, Wenpei
Pan, Yuanbo
Chen, Xiaoyuan
Zhang, Jianmin
Author_xml – sequence: 1
  givenname: Yuanbo
  surname: Pan
  fullname: Pan, Yuanbo
– sequence: 2
  givenname: Wei
  surname: Tang
  fullname: Tang, Wei
– sequence: 3
  givenname: Wenpei
  surname: Fan
  fullname: Fan, Wenpei
– sequence: 4
  givenname: Jianmin
  surname: Zhang
  fullname: Zhang, Jianmin
– sequence: 5
  givenname: Xiaoyuan
  surname: Chen
  fullname: Chen, Xiaoyuan
BookMark eNpNjU1LAzEQhoNUsK1e_AV79LKaZPNhjlI_oeBFz2WaTGxkN1k3qdB_b6QehIF3XnjmmQWZxRSRkEtGrxntzI1jNlPGhPQnZM6Eoq3QQsz-7WdkkfMnrZBWfE7wHr-xT-OAsTTJNxFiKmh3MfXp49AO6AIUdM04oQ05pNhM4EIqO5xgPDQ-TQ3EEipYINcJuXZ3hMbpV1Xq0Tk59dBnvPjLJXl_fHhbPbfr16eX1d26tZ2kpQVw3ZYzuQUltLZgbzka1mnqjNGCc8O90YxT5RQYD9pU1GtrqFUoOWV8Sa6O3vr6a4-5bIaQLfY9REz7vOG6k0xpKSn_ASXtXUk
CitedBy_id crossref_primary_10_1016_j_biopha_2025_118224
crossref_primary_10_1016_j_fmre_2024_10_017
crossref_primary_10_1002_adma_202304963
crossref_primary_10_1021_jacs_4c17573
crossref_primary_10_5802_crchim_309
crossref_primary_10_1097_SPC_0000000000000738
crossref_primary_10_1007_s42864_024_00279_9
crossref_primary_10_1002_adma_202417001
crossref_primary_10_1039_D5SC02482J
crossref_primary_10_1016_j_jcis_2025_02_113
crossref_primary_10_1007_s40843_024_3177_5
crossref_primary_10_1016_j_biomaterials_2024_122924
crossref_primary_10_1021_acs_chemmater_5c01462
crossref_primary_10_1016_j_cej_2023_145415
crossref_primary_10_1002_adma_202409117
crossref_primary_10_1002_smll_202503117
crossref_primary_10_1002_adma_202206370
crossref_primary_10_1002_adma_202311291
crossref_primary_10_1016_j_pmatsci_2024_101375
crossref_primary_10_1002_advs_202417828
crossref_primary_10_1016_j_nantod_2023_101836
crossref_primary_10_1002_adfm_202517681
crossref_primary_10_3389_fimmu_2023_1241791
crossref_primary_10_1002_mog2_87
crossref_primary_10_1038_s41598_024_74546_7
crossref_primary_10_3390_photonics11121201
crossref_primary_10_1080_17435889_2025_2550233
crossref_primary_10_1016_j_mtbio_2025_101725
crossref_primary_10_1016_j_colsurfb_2023_113614
crossref_primary_10_1002_smll_202502660
crossref_primary_10_1016_j_ceramint_2024_05_163
crossref_primary_10_1039_D3NR05971E
crossref_primary_10_1016_j_actbio_2025_03_011
crossref_primary_10_1002_ange_202406392
crossref_primary_10_1002_wnan_2019
crossref_primary_10_1016_j_biopha_2025_117915
crossref_primary_10_1016_j_matt_2024_10_017
crossref_primary_10_1016_j_jconrel_2024_10_049
crossref_primary_10_1016_j_cclet_2024_109632
crossref_primary_10_3390_pharmaceutics15102480
crossref_primary_10_1021_jacs_3c13224
crossref_primary_10_1021_acs_orglett_5c00959
crossref_primary_10_1016_j_mattod_2025_06_011
crossref_primary_10_34133_bmr_0015
crossref_primary_10_1016_j_biomaterials_2025_123117
crossref_primary_10_1021_jacs_5c12631
crossref_primary_10_1007_s11426_024_2086_8
crossref_primary_10_1016_j_biomaterials_2024_122901
crossref_primary_10_1002_adhm_202500752
crossref_primary_10_1021_acsbiomaterials_5c00619
crossref_primary_10_1002_adhm_202502530
crossref_primary_10_1002_advs_202417370
crossref_primary_10_1002_anie_202406392
crossref_primary_10_1002_advs_202304092
crossref_primary_10_1016_j_ccr_2025_216664
crossref_primary_10_2174_0113816128343266241230045019
crossref_primary_10_1002_advs_202406577
crossref_primary_10_1016_j_ijpharm_2024_124658
crossref_primary_10_1002_mog2_67
crossref_primary_10_1002_bmm2_12079
crossref_primary_10_2147_IJN_S484976
crossref_primary_10_3390_pharmaceutics17070883
crossref_primary_10_1016_j_mattod_2025_03_018
crossref_primary_10_1002_biot_202400325
crossref_primary_10_1002_agt2_652
crossref_primary_10_1039_D5RA00108K
crossref_primary_10_1016_j_cej_2024_157908
ContentType Journal Article
DBID 7X8
DOI 10.1039/d1cs01145f
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
GroupedDBID ---
-DZ
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7X8
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
P2P
R56
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
ID FETCH-LOGICAL-c350t-aad3b215ba6477cac82e91370d99742292f971206d6a9fa7915bf7c90c6e52012
IEDL.DBID 7X8
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000883061600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-4744
IngestDate Thu Oct 02 09:56:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-aad3b215ba6477cac82e91370d99742292f971206d6a9fa7915bf7c90c6e52012
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2022/cs/d1cs01145f
PQID 2735167550
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2735167550
PublicationCentury 2000
PublicationDate 2022-11-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-28
  day: 28
PublicationDecade 2020
PublicationTitle Chemical Society reviews
PublicationYear 2022
SSID ssj0011762
Score 2.6430602
SecondaryResourceType review_article
Snippet Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing...
SourceID proquest
SourceType Aggregation Database
StartPage 9759
Title Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection
URI https://www.proquest.com/docview/2735167550
Volume 51
WOSCitedRecordID wos000883061600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrxLb5ZwevSfSTZ7EmkWDxI8aDSW9kn5JLUJgr-e2fTxApeBI-BCexz5puZnfkQutEmN4AENAEsHkjihSbGO0m8kCwNhlvaNnt-fZSTST6dqqcu4FZ3zyp7ndgqalfZGCMfgplNGaDblN7O30hkjYrZ1Y5CYx0NBECZeDHldJVFYLIlFAVlQEkik6RvTyrU0DFbR18gDb-UcGtZxrv_HdMe2ukwJb5bHoJ9tObLA7Q16qncDpH_8TQIVwGXuqya75g6aatHAHni-aJj3MEL7YquNusTA67FsAEFCDYa0GRd1PDtlkJdowf46Qi9jO-fRw-k41cgVqS0IVo7YcDkGx2rUa22OfeKCUmdAi-Dc8WDkozTzGVaBS0ViAZpFbWZTwE48GO0UValP0FYJE5kmTQsNr6mJuiQRWpdbsCfyzzzp-i6X8EZzD0mJXTpq_d6tlrDsz_InKNtHusPGCM8v0CDAHfUX6JN-9EU9eKq3f4vjU28nA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+nanotechnology-mediated+precision+radiotherapy+for+anti-metastasis+and+radioprotection&rft.jtitle=Chemical+Society+reviews&rft.au=Pan%2C+Yuanbo&rft.au=Tang%2C+Wei&rft.au=Fan%2C+Wenpei&rft.au=Zhang%2C+Jianmin&rft.date=2022-11-28&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=51&rft.issue=23&rft.spage=9759&rft_id=info:doi/10.1039%2Fd1cs01145f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-4744&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-4744&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-4744&client=summon