Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcom...
Saved in:
| Published in: | Chemical Society reviews Vol. 51; no. 23; p. 9759 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
28.11.2022
|
| ISSN: | 1460-4744, 1460-4744 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation.Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation. |
|---|---|
| AbstractList | Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation.Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects. Recent breakthroughs in nanotechnology have provided a variety of strategies by which RT can precisely and efficiently eradicate local tumors. In this review, we would like to summarize a series of nanotechnology-mediated strategies to achieve precision RT, including tumor-targeted delivery, image-guided precision radiotherapy, and exo/endogenous stimuli-responsive nanomedicines for enhanced tumor accumulation/penetration. In addition, this review will also discuss two representative featured applications of precision RT: RT-induced immunotherapy against cancer metastasis and radioprotection of the surrounding healthy tissues. Since RT is usually thought to be only effective for treating local tumors, this review will interpret the unusual mechanisms of RT-mediated systemic antitumor immunity for eliminating distant cancer metastasis as well as the abscopal effects of RT in combination with other treatments (e.g., photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.). Furthermore, this review will discuss nanotechnology-mediated radioprotection strategies for shielding healthy tissues from radiation damage. Finally, the current challenges and future prospects of precision RT are also elucidated with the intention to accelerate its clinical translation. |
| Author | Tang, Wei Fan, Wenpei Pan, Yuanbo Chen, Xiaoyuan Zhang, Jianmin |
| Author_xml | – sequence: 1 givenname: Yuanbo surname: Pan fullname: Pan, Yuanbo – sequence: 2 givenname: Wei surname: Tang fullname: Tang, Wei – sequence: 3 givenname: Wenpei surname: Fan fullname: Fan, Wenpei – sequence: 4 givenname: Jianmin surname: Zhang fullname: Zhang, Jianmin – sequence: 5 givenname: Xiaoyuan surname: Chen fullname: Chen, Xiaoyuan |
| BookMark | eNpNjU1LAzEQhoNUsK1e_AV79LKaZPNhjlI_oeBFz2WaTGxkN1k3qdB_b6QehIF3XnjmmQWZxRSRkEtGrxntzI1jNlPGhPQnZM6Eoq3QQsz-7WdkkfMnrZBWfE7wHr-xT-OAsTTJNxFiKmh3MfXp49AO6AIUdM04oQ05pNhM4EIqO5xgPDQ-TQ3EEipYINcJuXZ3hMbpV1Xq0Tk59dBnvPjLJXl_fHhbPbfr16eX1d26tZ2kpQVw3ZYzuQUltLZgbzka1mnqjNGCc8O90YxT5RQYD9pU1GtrqFUoOWV8Sa6O3vr6a4-5bIaQLfY9REz7vOG6k0xpKSn_ASXtXUk |
| CitedBy_id | crossref_primary_10_1016_j_biopha_2025_118224 crossref_primary_10_1016_j_fmre_2024_10_017 crossref_primary_10_1002_adma_202304963 crossref_primary_10_1021_jacs_4c17573 crossref_primary_10_5802_crchim_309 crossref_primary_10_1097_SPC_0000000000000738 crossref_primary_10_1007_s42864_024_00279_9 crossref_primary_10_1002_adma_202417001 crossref_primary_10_1039_D5SC02482J crossref_primary_10_1016_j_jcis_2025_02_113 crossref_primary_10_1007_s40843_024_3177_5 crossref_primary_10_1016_j_biomaterials_2024_122924 crossref_primary_10_1021_acs_chemmater_5c01462 crossref_primary_10_1016_j_cej_2023_145415 crossref_primary_10_1002_adma_202409117 crossref_primary_10_1002_smll_202503117 crossref_primary_10_1002_adma_202206370 crossref_primary_10_1002_adma_202311291 crossref_primary_10_1016_j_pmatsci_2024_101375 crossref_primary_10_1002_advs_202417828 crossref_primary_10_1016_j_nantod_2023_101836 crossref_primary_10_1002_adfm_202517681 crossref_primary_10_3389_fimmu_2023_1241791 crossref_primary_10_1002_mog2_87 crossref_primary_10_1038_s41598_024_74546_7 crossref_primary_10_3390_photonics11121201 crossref_primary_10_1080_17435889_2025_2550233 crossref_primary_10_1016_j_mtbio_2025_101725 crossref_primary_10_1016_j_colsurfb_2023_113614 crossref_primary_10_1002_smll_202502660 crossref_primary_10_1016_j_ceramint_2024_05_163 crossref_primary_10_1039_D3NR05971E crossref_primary_10_1016_j_actbio_2025_03_011 crossref_primary_10_1002_ange_202406392 crossref_primary_10_1002_wnan_2019 crossref_primary_10_1016_j_biopha_2025_117915 crossref_primary_10_1016_j_matt_2024_10_017 crossref_primary_10_1016_j_jconrel_2024_10_049 crossref_primary_10_1016_j_cclet_2024_109632 crossref_primary_10_3390_pharmaceutics15102480 crossref_primary_10_1021_jacs_3c13224 crossref_primary_10_1021_acs_orglett_5c00959 crossref_primary_10_1016_j_mattod_2025_06_011 crossref_primary_10_34133_bmr_0015 crossref_primary_10_1016_j_biomaterials_2025_123117 crossref_primary_10_1021_jacs_5c12631 crossref_primary_10_1007_s11426_024_2086_8 crossref_primary_10_1016_j_biomaterials_2024_122901 crossref_primary_10_1002_adhm_202500752 crossref_primary_10_1021_acsbiomaterials_5c00619 crossref_primary_10_1002_adhm_202502530 crossref_primary_10_1002_advs_202417370 crossref_primary_10_1002_anie_202406392 crossref_primary_10_1002_advs_202304092 crossref_primary_10_1016_j_ccr_2025_216664 crossref_primary_10_2174_0113816128343266241230045019 crossref_primary_10_1002_advs_202406577 crossref_primary_10_1016_j_ijpharm_2024_124658 crossref_primary_10_1002_mog2_67 crossref_primary_10_1002_bmm2_12079 crossref_primary_10_2147_IJN_S484976 crossref_primary_10_3390_pharmaceutics17070883 crossref_primary_10_1016_j_mattod_2025_03_018 crossref_primary_10_1002_biot_202400325 crossref_primary_10_1002_agt2_652 crossref_primary_10_1039_D5RA00108K crossref_primary_10_1016_j_cej_2024_157908 |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1039/d1cs01145f |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1460-4744 |
| GroupedDBID | --- -DZ -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7X8 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- P2P R56 R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 |
| ID | FETCH-LOGICAL-c350t-aad3b215ba6477cac82e91370d99742292f971206d6a9fa7915bf7c90c6e52012 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000883061600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-4744 |
| IngestDate | Thu Oct 02 09:56:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-aad3b215ba6477cac82e91370d99742292f971206d6a9fa7915bf7c90c6e52012 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2022/cs/d1cs01145f |
| PQID | 2735167550 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2735167550 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-28 |
| PublicationDateYYYYMMDD | 2022-11-28 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical Society reviews |
| PublicationYear | 2022 |
| SSID | ssj0011762 |
| Score | 2.6430602 |
| SecondaryResourceType | review_article |
| Snippet | Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 9759 |
| Title | Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection |
| URI | https://www.proquest.com/docview/2735167550 |
| Volume | 51 |
| WOSCitedRecordID | wos000883061600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrxLb5ZwevSfSTZ7EmkWDxI8aDSW9kn5JLUJgr-e2fTxApeBI-BCexz5puZnfkQutEmN4AENAEsHkjihSbGO0m8kCwNhlvaNnt-fZSTST6dqqcu4FZ3zyp7ndgqalfZGCMfgplNGaDblN7O30hkjYrZ1Y5CYx0NBECZeDHldJVFYLIlFAVlQEkik6RvTyrU0DFbR18gDb-UcGtZxrv_HdMe2ukwJb5bHoJ9tObLA7Q16qncDpH_8TQIVwGXuqya75g6aatHAHni-aJj3MEL7YquNusTA67FsAEFCDYa0GRd1PDtlkJdowf46Qi9jO-fRw-k41cgVqS0IVo7YcDkGx2rUa22OfeKCUmdAi-Dc8WDkozTzGVaBS0ViAZpFbWZTwE48GO0UValP0FYJE5kmTQsNr6mJuiQRWpdbsCfyzzzp-i6X8EZzD0mJXTpq_d6tlrDsz_InKNtHusPGCM8v0CDAHfUX6JN-9EU9eKq3f4vjU28nA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+nanotechnology-mediated+precision+radiotherapy+for+anti-metastasis+and+radioprotection&rft.jtitle=Chemical+Society+reviews&rft.au=Pan%2C+Yuanbo&rft.au=Tang%2C+Wei&rft.au=Fan%2C+Wenpei&rft.au=Zhang%2C+Jianmin&rft.date=2022-11-28&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=51&rft.issue=23&rft.spage=9759&rft_id=info:doi/10.1039%2Fd1cs01145f&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-4744&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-4744&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-4744&client=summon |