On semiring complexity of Schur polynomials
Semiring complexity is the version of arithmetic circuit complexity that allows only two operations: addition and multiplication. We show that semiring complexity of a Schur polynomial s λ ( x 1 , ⋯ , x k ) labeled by a partition λ = ( λ 1 ≥ λ 2 ≥ ⋯ ) is bounded by O ( log ( λ 1 ) ) provided the num...
Uloženo v:
| Vydáno v: | Computational complexity Ročník 27; číslo 4; s. 595 - 616 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2018
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 1016-3328, 1420-8954 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Semiring complexity is the version of arithmetic circuit complexity that allows only two operations: addition and multiplication. We show that semiring complexity of a Schur polynomial
s
λ
(
x
1
,
⋯
,
x
k
)
labeled by a partition
λ
=
(
λ
1
≥
λ
2
≥
⋯
)
is bounded by
O
(
log
(
λ
1
)
)
provided the number of variables
k
is fixed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1016-3328 1420-8954 |
| DOI: | 10.1007/s00037-018-0169-3 |