A Novel AUC Maximization Imbalanced Learning Approach for Predicting Composite Outcomes in COVID-19 Hospitalized Patients

The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics Jg. 27; H. 8; S. 3794 - 3805
Hauptverfasser: Wang, Guanjin, Kwok, Stephen Wai Hang, Yousufuddin, Mohammed, Sohel, Ferdous
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2194, 2168-2208, 2168-2208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!