A Novel AUC Maximization Imbalanced Learning Approach for Predicting Composite Outcomes in COVID-19 Hospitalized Patients

The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of biomedical and health informatics Ročník 27; číslo 8; s. 3794 - 3805
Hlavní autoři: Wang, Guanjin, Kwok, Stephen Wai Hang, Yousufuddin, Mohammed, Sohel, Ferdous
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2194, 2168-2208, 2168-2208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications.
AbstractList The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications.
The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications.The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications.
Author Kwok, Stephen Wai Hang
Sohel, Ferdous
Wang, Guanjin
Yousufuddin, Mohammed
Author_xml – sequence: 1
  givenname: Guanjin
  orcidid: 0000-0002-5258-0532
  surname: Wang
  fullname: Wang, Guanjin
  email: guanjin.wang@murdoch.edu.au
  organization: School of Information Technology, Murdoch University, Murdoch, WA, Australia
– sequence: 2
  givenname: Stephen Wai Hang
  surname: Kwok
  fullname: Kwok, Stephen Wai Hang
  email: stephen.kwok@murdoch.edu.au
  organization: Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
– sequence: 3
  givenname: Mohammed
  surname: Yousufuddin
  fullname: Yousufuddin, Mohammed
  email: yousufuddin.mohammed@mayo.edu
  organization: Department of Internal Medicine, Mayo Clinic Health System, Austin, MN, USA
– sequence: 4
  givenname: Ferdous
  orcidid: 0000-0003-1557-4907
  surname: Sohel
  fullname: Sohel, Ferdous
  email: f.sohel@murdoch.edu.au
  organization: School of Information Technology, Murdoch University, Murdoch, WA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37227914$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS3UipbSD4CEkKVeesniP4ljH5e0sFstbA-Ua-R1JuAqiYPtINpPj6PdItQDvtga_d7M-L1X6GhwAyD0hpIFpUS9v_mwWi8YYXzBWakky1-gU0aFzBgj8ujpTVV-gs5DuCfpyFRS4iU64SVLGpqfoocl_uJ-QYeXdxX-rH_b3j7qaN2A1_1Od3ow0OANaD_Y4TtejqN32vzArfP41kNjTZzrletHF2wEvJ2icT0EbAdcbb-trzKq8MqF0Ubd2cfU7Da1hyGG1-i41V2A88N9hu4-Xn-tVtlm-2ldLTeZ4QWJmdZMCq0Yh4IXpdrl2hAKjVDSCEM4k5pzIwlQvSNNIzRXraYFJUXeAiEC-Bm63PdNq_-cIMS6t8FAl_4Gbgo1k4wQTngpE3rxDL13kx_SdonKSyUEV0Wi3h2oaddDU4_e9to_1E-mJoDuAeNdCB7avwgl9ZxdPWdXz9nVh-ySpnymMcmxOYjote3-q3y7V1oA-GcS5ckFxv8APUOkbg
CODEN IJBHA9
CitedBy_id crossref_primary_10_1007_s13042_024_02389_9
crossref_primary_10_1016_j_ins_2024_121449
Cites_doi 10.1109/TNNLS.2017.2732482
10.1109/TCYB.2020.3016972
10.1109/ICACCI.2017.8125820
10.1109/TCYB.2017.2786719
10.1109/TPAMI.2021.3101125
10.1016/j.urolonc.2020.05.009
10.1016/j.irfa.2020.101577
10.1109/TNNLS.2017.2751612
10.1007/978-3-642-37456-2_24
10.1109/IEMBS.2009.5333711
10.1001/jamainternmed.2020.0994
10.1016/j.compbiomed.2015.05.015
10.1016/j.snb.2015.02.025
10.1080/02664763.2016.1177499
10.1186/s12911-021-01576-w
10.1109/TSMC.2020.2982226
10.1109/JBHI.2016.2634587
10.1016/j.eswa.2021.116491
10.1613/jair.953
10.1109/IJCNN.2017.7965876
10.1109/72.788640
10.1038/s42256-020-0180-7
10.1109/JBHI.2014.2303481
10.3389/fnbot.2013.00021
10.1007/978-3-642-33412-2_19
10.1016/j.dss.2012.02.007
10.1007/s00500-021-06193-3
10.1109/JBHI.2018.2859581
10.1109/ICNC.2007.68
10.1080/21505594.2021.1877066
10.1111/petr.13360
10.1023/A:1018628609742
10.1109/ACCESS.2019.2893531
10.1007/s10618-012-0295-5
10.1007/s10916-020-01645-z
10.1007/978-3-642-05224-8_19
10.1038/s41598-021-83784-y
10.1038/s41467-020-18684-2
10.1016/j.neunet.2013.02.007
10.1016/j.asoc.2019.106028
10.1007/s13042-020-01101-x
10.1109/JBHI.2017.2723463
10.1093/jamia/ocac093
10.1109/ICICTA.2010.104
10.1148/radiology.143.1.7063747
10.1016/j.ijmedinf.2020.104258
10.1016/j.ins.2013.06.002
10.1109/TPAMI.2005.33
10.1016/S2589-7500(20)30217-X
10.1109/5254.708428
10.1007/s13042-020-01081-y
10.1007/978-3-319-98074-4_4
10.1109/TKDE.2008.239
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2023.3279824
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 3805
ExternalDocumentID 37227914
10_1109_JBHI_2023_3279824
10135102
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c350t-aa286a923e53579b4ac01ed698c6c0328a33c80e1ab0dd6a39fa151054fe006e3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045824200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 01:06:51 EDT 2025
Sun Jun 29 15:23:39 EDT 2025
Thu Apr 03 07:10:09 EDT 2025
Sat Nov 29 04:18:33 EST 2025
Tue Nov 18 22:38:04 EST 2025
Wed Aug 27 02:46:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-aa286a923e53579b4ac01ed698c6c0328a33c80e1ab0dd6a39fa151054fe006e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5258-0532
0000-0003-1557-4907
PMID 37227914
PQID 2847966395
PQPubID 85417
PageCount 12
ParticipantIDs crossref_primary_10_1109_JBHI_2023_3279824
ieee_primary_10135102
pubmed_primary_37227914
crossref_citationtrail_10_1109_JBHI_2023_3279824
proquest_miscellaneous_2820030378
proquest_journals_2847966395
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref10
ref54
ref17
(ref2) 2022
ref16
ref18
lo (ref31) 2023; 45
reddy (ref11) 2015; 36
mangasarian (ref29) 0
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
(ref1) 2022
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref39
ref38
zhao (ref44) 0
boyd (ref55) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref60
ref61
kaur (ref12) 2019; 52
khan (ref19) 2018; 29
References_xml – volume: 29
  start-page: 3573
  year: 2018
  ident: ref19
  article-title: Cost-sensitive learning of deep feature representations from imbalanced data
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2732482
– ident: ref54
  doi: 10.1109/TCYB.2020.3016972
– ident: ref14
  doi: 10.1109/ICACCI.2017.8125820
– ident: ref42
  doi: 10.1109/TCYB.2017.2786719
– start-page: 451
  year: 0
  ident: ref55
  article-title: Area under the precision-recall curve: Point estimates and confidence intervals
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– ident: ref25
  doi: 10.1109/TPAMI.2021.3101125
– ident: ref57
  doi: 10.1016/j.urolonc.2020.05.009
– ident: ref38
  doi: 10.1016/j.irfa.2020.101577
– ident: ref17
  doi: 10.1109/TNNLS.2017.2751612
– ident: ref61
  doi: 10.1007/978-3-642-37456-2_24
– ident: ref52
  doi: 10.1109/IEMBS.2009.5333711
– year: 2022
  ident: ref1
  article-title: Laboratory confirmed COVID-19 associated hospitalizations
– ident: ref3
  doi: 10.1001/jamainternmed.2020.0994
– ident: ref4
  doi: 10.1016/j.compbiomed.2015.05.015
– ident: ref32
  doi: 10.1016/j.snb.2015.02.025
– ident: ref39
  doi: 10.1080/02664763.2016.1177499
– ident: ref48
  doi: 10.1186/s12911-021-01576-w
– ident: ref23
  doi: 10.1109/TSMC.2020.2982226
– ident: ref5
  doi: 10.1109/JBHI.2016.2634587
– ident: ref43
  doi: 10.1016/j.eswa.2021.116491
– ident: ref49
  doi: 10.1613/jair.953
– ident: ref6
  doi: 10.1109/IJCNN.2017.7965876
– ident: ref46
  doi: 10.1109/72.788640
– ident: ref59
  doi: 10.1038/s42256-020-0180-7
– ident: ref13
  doi: 10.1109/JBHI.2014.2303481
– volume: 36
  start-page: 343
  year: 2015
  ident: ref11
  article-title: A review of clinical prediction models
  publication-title: Health Data Analytics
– ident: ref51
  doi: 10.3389/fnbot.2013.00021
– ident: ref36
  doi: 10.1007/978-3-642-33412-2_19
– start-page: 77
  year: 0
  ident: ref29
  article-title: Proximal support vector machine classifiers
  publication-title: Proc Knowl Discov Data Mining Citeseer
– year: 0
  ident: ref44
  article-title: Online AUC maximization
  publication-title: Proc 28th Int Conf Mach Learn Int Mach Learn Soc
– ident: ref27
  doi: 10.1016/j.dss.2012.02.007
– ident: ref40
  doi: 10.1007/s00500-021-06193-3
– ident: ref16
  doi: 10.1109/JBHI.2018.2859581
– ident: ref37
  doi: 10.1109/ICNC.2007.68
– ident: ref26
  doi: 10.1080/21505594.2021.1877066
– ident: ref56
  doi: 10.1111/petr.13360
– ident: ref33
  doi: 10.1023/A:1018628609742
– volume: 45
  start-page: 4167
  year: 2023
  ident: ref31
  article-title: Adversarially robust one-class novelty detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref41
  doi: 10.1109/ACCESS.2019.2893531
– ident: ref50
  doi: 10.1007/s10618-012-0295-5
– ident: ref9
  doi: 10.1007/s10916-020-01645-z
– volume: 52
  start-page: 1
  year: 2019
  ident: ref12
  article-title: A systematic review on imbalanced data challenges in machine learning: Applications and solutions
  publication-title: ACM Comput Surv
– ident: ref53
  doi: 10.1007/978-3-642-05224-8_19
– ident: ref60
  doi: 10.1038/s41598-021-83784-y
– ident: ref7
  doi: 10.1038/s41467-020-18684-2
– ident: ref28
  doi: 10.1016/j.neunet.2013.02.007
– ident: ref35
  doi: 10.1016/j.asoc.2019.106028
– ident: ref21
  doi: 10.1007/s13042-020-01101-x
– ident: ref15
  doi: 10.1109/JBHI.2017.2723463
– ident: ref18
  doi: 10.1093/jamia/ocac093
– ident: ref30
  doi: 10.1109/ICICTA.2010.104
– year: 2022
  ident: ref2
  article-title: Number of COVID-19 patients in intensive care (ICU)
– ident: ref22
  doi: 10.1148/radiology.143.1.7063747
– ident: ref58
  doi: 10.1016/j.ijmedinf.2020.104258
– ident: ref47
  doi: 10.1016/j.ins.2013.06.002
– ident: ref45
  doi: 10.1109/TPAMI.2005.33
– ident: ref8
  doi: 10.1016/S2589-7500(20)30217-X
– ident: ref34
  doi: 10.1109/5254.708428
– ident: ref24
  doi: 10.1007/s13042-020-01081-y
– ident: ref20
  doi: 10.1007/978-3-319-98074-4_4
– ident: ref10
  doi: 10.1109/TKDE.2008.239
SSID ssj0000816896
Score 2.3996687
Snippet The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3794
SubjectTerms Area Under Curve
AUC maximization learning
Codes
COVID-19
COVID-19 prediction
Exact solutions
Hospitalization
Hospitals
Humans
imbalance learning
Intubation
Learning
Machine Learning
Maximization
Objective function
Optimization
Patients
Performance measurement
Prediction models
Predictive models
Prognosis
proximal support vector machines
Support vector machines
Training
Title A Novel AUC Maximization Imbalanced Learning Approach for Predicting Composite Outcomes in COVID-19 Hospitalized Patients
URI https://ieeexplore.ieee.org/document/10135102
https://www.ncbi.nlm.nih.gov/pubmed/37227914
https://www.proquest.com/docview/2847966395
https://www.proquest.com/docview/2820030378
Volume 27
WOSCitedRecordID wos001045824200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7aUEovfaap2ySo0FPBW8myLeu43SZkC9nsoSl7M7I0LguNN-wjJP311cjapT2k0IsReCwLZsYaa2a-D-CDbZvCZValovCX3Nk8NY0QaatKQn9CXToeyCbUZFLNZnoam9VDLwwihuIzHNAw5PLdwm7oqMx7OPHJEXTkQ6XKvllrd6ASGCQCH1fmB6n3xDxmMQXXn75-PhsPiCp8IDOlq4z4eKQi-DyR_7UlBY6V-8PNsO2cPvvPBT-HpzG-ZMPeIF7AA-xewuPzmEF_BXdDNlncoJe4HLFzczu_io2YbHzVUJmjRcci6OoPNoyI48yHtmy6pFmoTJrRV4SqvZBdbNbeZnHF5h0bXXwff0mFZlsykvkvP9m0R25d7cPl6cm30Vka6RdSKwu-To3JqtL4ABALWSjd5MZyga7UlS0twfAZKW3FUZiGO1caqVsjKF7LW_S-jPI17HWLDt8Ac61zrs24j71MLpVXjXKlFappTKNcIRLgWw3UNmKTE0XGzzr8o3Bdk_5q0l8d9ZfAx90j1z0wx7-E90k5fwj2ekngcKvnOvruqqYN2_8ESl0k8H5323sdpVJMh4sNyVBRH5eqSuCgt4_d5FuzenvPS9_BE1pbX0V4CHvr5QaP4JG9Wc9Xy2Nv2rPqOJj2b_Mo8M0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6hgWAv_BxQGGAknpDS2XESx4-lMLWwdn3Y0N4ix76gSiyd-mMC_np8jlvBw5B4iSzFcSx9d_HFd_4-gHe2qXOXWpWI3F8yZ7PE1EIkjSqI_Ql14XgQm1DTaXlxoWfxsHo4C4OIofgM-9QMuXy3sBvaKvMeTnpyRB15m6Sz4nGt3ZZK0JAIilypbyTeF7OYxxRcH33-MBr3SSy8L1Oly5QUeaQiAj2R_bUoBZWVmwPOsPAcP_jPKT-E-zHCZIPOJB7BLWwfw91JzKE_gZ8DNl1co-9xPmQT82N-GY9isvFlTYWOFh2LtKvf2CByjjMf3LLZkkahQmlG3xGq90J2ull7q8UVm7dsePp1_DERmm3lSOa__GCzjrt1dQDnx5_OhqMkCjAkVuZ8nRiTloXxISDmMle6zozlAl2hS1tYIuIzUtqSozA1d64wUjdGUMSWNei9GeVT2GsXLT4H5hrnXJNyD5vJpPLQKFdYoera1Mrlogd8i0BlIzs5iWR8r8JfCtcV4VcRflXErwfvd49cddQc_-p8QOD80bHDpQeHW5yr6L2ripZs_xsodd6Dt7vb3u8omWJaXGyoD5X1canKHjzr7GM3-NasXtzw0jdwb3Q2OalOxtMvL2Gf5tnVFB7C3nq5wVdwx16v56vl62DgvwH5KPMu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+AUC+Maximization+Imbalanced+Learning+Approach+for+Predicting+Composite+Outcomes+in+COVID-19+Hospitalized+Patients&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Guanjin&rft.au=Kwok%2C+Stephen+Wai+Hang&rft.au=Yousufuddin%2C+Mohammed&rft.au=Sohel%2C+Ferdous&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=27&rft.issue=8&rft.spage=3794&rft.epage=3805&rft_id=info:doi/10.1109%2FJBHI.2023.3279824&rft_id=info%3Apmid%2F37227914&rft.externalDocID=10135102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon