A Novel AUC Maximization Imbalanced Learning Approach for Predicting Composite Outcomes in COVID-19 Hospitalized Patients
The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalan...
Uloženo v:
| Vydáno v: | IEEE journal of biomedical and health informatics Ročník 27; číslo 8; s. 3794 - 3805 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications. |
|---|---|
| AbstractList | The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications. The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications.The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe composite events after hospital admission, while the rest do not. An ideal COVID-19 composite outcome prediction model should possess strong imbalanced learning capability. The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning. Towards this goal, this study proposes a novel imbalanced learning approach called Imbalanced maximizing-Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM) by the means of classical PSVM to predict the composite outcomes of hospitalized COVID-19 patients within 30 days of hospitalization. ImAUC-PSVM offers the following merits: (1) it incorporates straightforward AUC maximization into the objective function, resulting in fewer parameters to tune. This makes it suitable for handling imbalanced COVID-19 data with a simplified training process. (2) Theoretical derivations reveal that ImAUC-PSVM has the same analytical solution form as PSVM, thus inheriting the advantages of PSVM for handling incremental COVID-19 cases through fast incremental updating. We built and internally and externally validated our proposed classifier using real COVID-19 patient data obtained from three separate sites of Mayo Clinic in the United States. Additionally, we validated it on public datasets using various performance metrics. Experimental results demonstrate that ImAUC-PSVM outperforms other methods in most cases, showcasing its potential to assist clinicians in triaging COVID-19 patients at an early stage in hospital settings, as well as in other prediction applications. |
| Author | Kwok, Stephen Wai Hang Sohel, Ferdous Wang, Guanjin Yousufuddin, Mohammed |
| Author_xml | – sequence: 1 givenname: Guanjin orcidid: 0000-0002-5258-0532 surname: Wang fullname: Wang, Guanjin email: guanjin.wang@murdoch.edu.au organization: School of Information Technology, Murdoch University, Murdoch, WA, Australia – sequence: 2 givenname: Stephen Wai Hang surname: Kwok fullname: Kwok, Stephen Wai Hang email: stephen.kwok@murdoch.edu.au organization: Harry Butler Institute, Murdoch University, Murdoch, WA, Australia – sequence: 3 givenname: Mohammed surname: Yousufuddin fullname: Yousufuddin, Mohammed email: yousufuddin.mohammed@mayo.edu organization: Department of Internal Medicine, Mayo Clinic Health System, Austin, MN, USA – sequence: 4 givenname: Ferdous orcidid: 0000-0003-1557-4907 surname: Sohel fullname: Sohel, Ferdous email: f.sohel@murdoch.edu.au organization: School of Information Technology, Murdoch University, Murdoch, WA, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37227914$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS3UipbSD4CEkKVeesniP4ljH5e0sFstbA-Ua-R1JuAqiYPtINpPj6PdItQDvtga_d7M-L1X6GhwAyD0hpIFpUS9v_mwWi8YYXzBWakky1-gU0aFzBgj8ujpTVV-gs5DuCfpyFRS4iU64SVLGpqfoocl_uJ-QYeXdxX-rH_b3j7qaN2A1_1Od3ow0OANaD_Y4TtejqN32vzArfP41kNjTZzrletHF2wEvJ2icT0EbAdcbb-trzKq8MqF0Ubd2cfU7Da1hyGG1-i41V2A88N9hu4-Xn-tVtlm-2ldLTeZ4QWJmdZMCq0Yh4IXpdrl2hAKjVDSCEM4k5pzIwlQvSNNIzRXraYFJUXeAiEC-Bm63PdNq_-cIMS6t8FAl_4Gbgo1k4wQTngpE3rxDL13kx_SdonKSyUEV0Wi3h2oaddDU4_e9to_1E-mJoDuAeNdCB7avwgl9ZxdPWdXz9nVh-ySpnymMcmxOYjote3-q3y7V1oA-GcS5ckFxv8APUOkbg |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1007_s13042_024_02389_9 crossref_primary_10_1016_j_ins_2024_121449 |
| Cites_doi | 10.1109/TNNLS.2017.2732482 10.1109/TCYB.2020.3016972 10.1109/ICACCI.2017.8125820 10.1109/TCYB.2017.2786719 10.1109/TPAMI.2021.3101125 10.1016/j.urolonc.2020.05.009 10.1016/j.irfa.2020.101577 10.1109/TNNLS.2017.2751612 10.1007/978-3-642-37456-2_24 10.1109/IEMBS.2009.5333711 10.1001/jamainternmed.2020.0994 10.1016/j.compbiomed.2015.05.015 10.1016/j.snb.2015.02.025 10.1080/02664763.2016.1177499 10.1186/s12911-021-01576-w 10.1109/TSMC.2020.2982226 10.1109/JBHI.2016.2634587 10.1016/j.eswa.2021.116491 10.1613/jair.953 10.1109/IJCNN.2017.7965876 10.1109/72.788640 10.1038/s42256-020-0180-7 10.1109/JBHI.2014.2303481 10.3389/fnbot.2013.00021 10.1007/978-3-642-33412-2_19 10.1016/j.dss.2012.02.007 10.1007/s00500-021-06193-3 10.1109/JBHI.2018.2859581 10.1109/ICNC.2007.68 10.1080/21505594.2021.1877066 10.1111/petr.13360 10.1023/A:1018628609742 10.1109/ACCESS.2019.2893531 10.1007/s10618-012-0295-5 10.1007/s10916-020-01645-z 10.1007/978-3-642-05224-8_19 10.1038/s41598-021-83784-y 10.1038/s41467-020-18684-2 10.1016/j.neunet.2013.02.007 10.1016/j.asoc.2019.106028 10.1007/s13042-020-01101-x 10.1109/JBHI.2017.2723463 10.1093/jamia/ocac093 10.1109/ICICTA.2010.104 10.1148/radiology.143.1.7063747 10.1016/j.ijmedinf.2020.104258 10.1016/j.ins.2013.06.002 10.1109/TPAMI.2005.33 10.1016/S2589-7500(20)30217-X 10.1109/5254.708428 10.1007/s13042-020-01081-y 10.1007/978-3-319-98074-4_4 10.1109/TKDE.2008.239 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2023.3279824 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 3805 |
| ExternalDocumentID | 37227914 10_1109_JBHI_2023_3279824 10135102 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c350t-aa286a923e53579b4ac01ed698c6c0328a33c80e1ab0dd6a39fa151054fe006e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045824200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 01:06:51 EDT 2025 Sun Jun 29 15:23:39 EDT 2025 Thu Apr 03 07:10:09 EDT 2025 Sat Nov 29 04:18:33 EST 2025 Tue Nov 18 22:38:04 EST 2025 Wed Aug 27 02:46:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-aa286a923e53579b4ac01ed698c6c0328a33c80e1ab0dd6a39fa151054fe006e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5258-0532 0000-0003-1557-4907 |
| PMID | 37227914 |
| PQID | 2847966395 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_JBHI_2023_3279824 ieee_primary_10135102 pubmed_primary_37227914 crossref_citationtrail_10_1109_JBHI_2023_3279824 proquest_miscellaneous_2820030378 proquest_journals_2847966395 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref10 ref54 ref17 (ref2) 2022 ref16 ref18 lo (ref31) 2023; 45 reddy (ref11) 2015; 36 mangasarian (ref29) 0 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 (ref1) 2022 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref39 ref38 zhao (ref44) 0 boyd (ref55) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref60 ref61 kaur (ref12) 2019; 52 khan (ref19) 2018; 29 |
| References_xml | – volume: 29 start-page: 3573 year: 2018 ident: ref19 article-title: Cost-sensitive learning of deep feature representations from imbalanced data publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2732482 – ident: ref54 doi: 10.1109/TCYB.2020.3016972 – ident: ref14 doi: 10.1109/ICACCI.2017.8125820 – ident: ref42 doi: 10.1109/TCYB.2017.2786719 – start-page: 451 year: 0 ident: ref55 article-title: Area under the precision-recall curve: Point estimates and confidence intervals publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – ident: ref25 doi: 10.1109/TPAMI.2021.3101125 – ident: ref57 doi: 10.1016/j.urolonc.2020.05.009 – ident: ref38 doi: 10.1016/j.irfa.2020.101577 – ident: ref17 doi: 10.1109/TNNLS.2017.2751612 – ident: ref61 doi: 10.1007/978-3-642-37456-2_24 – ident: ref52 doi: 10.1109/IEMBS.2009.5333711 – year: 2022 ident: ref1 article-title: Laboratory confirmed COVID-19 associated hospitalizations – ident: ref3 doi: 10.1001/jamainternmed.2020.0994 – ident: ref4 doi: 10.1016/j.compbiomed.2015.05.015 – ident: ref32 doi: 10.1016/j.snb.2015.02.025 – ident: ref39 doi: 10.1080/02664763.2016.1177499 – ident: ref48 doi: 10.1186/s12911-021-01576-w – ident: ref23 doi: 10.1109/TSMC.2020.2982226 – ident: ref5 doi: 10.1109/JBHI.2016.2634587 – ident: ref43 doi: 10.1016/j.eswa.2021.116491 – ident: ref49 doi: 10.1613/jair.953 – ident: ref6 doi: 10.1109/IJCNN.2017.7965876 – ident: ref46 doi: 10.1109/72.788640 – ident: ref59 doi: 10.1038/s42256-020-0180-7 – ident: ref13 doi: 10.1109/JBHI.2014.2303481 – volume: 36 start-page: 343 year: 2015 ident: ref11 article-title: A review of clinical prediction models publication-title: Health Data Analytics – ident: ref51 doi: 10.3389/fnbot.2013.00021 – ident: ref36 doi: 10.1007/978-3-642-33412-2_19 – start-page: 77 year: 0 ident: ref29 article-title: Proximal support vector machine classifiers publication-title: Proc Knowl Discov Data Mining Citeseer – year: 0 ident: ref44 article-title: Online AUC maximization publication-title: Proc 28th Int Conf Mach Learn Int Mach Learn Soc – ident: ref27 doi: 10.1016/j.dss.2012.02.007 – ident: ref40 doi: 10.1007/s00500-021-06193-3 – ident: ref16 doi: 10.1109/JBHI.2018.2859581 – ident: ref37 doi: 10.1109/ICNC.2007.68 – ident: ref26 doi: 10.1080/21505594.2021.1877066 – ident: ref56 doi: 10.1111/petr.13360 – ident: ref33 doi: 10.1023/A:1018628609742 – volume: 45 start-page: 4167 year: 2023 ident: ref31 article-title: Adversarially robust one-class novelty detection publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref41 doi: 10.1109/ACCESS.2019.2893531 – ident: ref50 doi: 10.1007/s10618-012-0295-5 – ident: ref9 doi: 10.1007/s10916-020-01645-z – volume: 52 start-page: 1 year: 2019 ident: ref12 article-title: A systematic review on imbalanced data challenges in machine learning: Applications and solutions publication-title: ACM Comput Surv – ident: ref53 doi: 10.1007/978-3-642-05224-8_19 – ident: ref60 doi: 10.1038/s41598-021-83784-y – ident: ref7 doi: 10.1038/s41467-020-18684-2 – ident: ref28 doi: 10.1016/j.neunet.2013.02.007 – ident: ref35 doi: 10.1016/j.asoc.2019.106028 – ident: ref21 doi: 10.1007/s13042-020-01101-x – ident: ref15 doi: 10.1109/JBHI.2017.2723463 – ident: ref18 doi: 10.1093/jamia/ocac093 – ident: ref30 doi: 10.1109/ICICTA.2010.104 – year: 2022 ident: ref2 article-title: Number of COVID-19 patients in intensive care (ICU) – ident: ref22 doi: 10.1148/radiology.143.1.7063747 – ident: ref58 doi: 10.1016/j.ijmedinf.2020.104258 – ident: ref47 doi: 10.1016/j.ins.2013.06.002 – ident: ref45 doi: 10.1109/TPAMI.2005.33 – ident: ref8 doi: 10.1016/S2589-7500(20)30217-X – ident: ref34 doi: 10.1109/5254.708428 – ident: ref24 doi: 10.1007/s13042-020-01081-y – ident: ref20 doi: 10.1007/978-3-319-98074-4_4 – ident: ref10 doi: 10.1109/TKDE.2008.239 |
| SSID | ssj0000816896 |
| Score | 2.3996687 |
| Snippet | The COVID-19 patient data for composite outcome prediction often comes with class imbalance issues, i.e., only a small group of patients develop severe... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3794 |
| SubjectTerms | Area Under Curve AUC maximization learning Codes COVID-19 COVID-19 prediction Exact solutions Hospitalization Hospitals Humans imbalance learning Intubation Learning Machine Learning Maximization Objective function Optimization Patients Performance measurement Prediction models Predictive models Prognosis proximal support vector machines Support vector machines Training |
| Title | A Novel AUC Maximization Imbalanced Learning Approach for Predicting Composite Outcomes in COVID-19 Hospitalized Patients |
| URI | https://ieeexplore.ieee.org/document/10135102 https://www.ncbi.nlm.nih.gov/pubmed/37227914 https://www.proquest.com/docview/2847966395 https://www.proquest.com/docview/2820030378 |
| Volume | 27 |
| WOSCitedRecordID | wos001045824200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7aUEovfaap2ySo0FPBW8myLeu43SZkC9nsoSl7M7I0LguNN-wjJP311cjapT2k0IsReCwLZsYaa2a-D-CDbZvCZValovCX3Nk8NY0QaatKQn9CXToeyCbUZFLNZnoam9VDLwwihuIzHNAw5PLdwm7oqMx7OPHJEXTkQ6XKvllrd6ASGCQCH1fmB6n3xDxmMQXXn75-PhsPiCp8IDOlq4z4eKQi-DyR_7UlBY6V-8PNsO2cPvvPBT-HpzG-ZMPeIF7AA-xewuPzmEF_BXdDNlncoJe4HLFzczu_io2YbHzVUJmjRcci6OoPNoyI48yHtmy6pFmoTJrRV4SqvZBdbNbeZnHF5h0bXXwff0mFZlsykvkvP9m0R25d7cPl6cm30Vka6RdSKwu-To3JqtL4ABALWSjd5MZyga7UlS0twfAZKW3FUZiGO1caqVsjKF7LW_S-jPI17HWLDt8Ac61zrs24j71MLpVXjXKlFappTKNcIRLgWw3UNmKTE0XGzzr8o3Bdk_5q0l8d9ZfAx90j1z0wx7-E90k5fwj2ekngcKvnOvruqqYN2_8ESl0k8H5323sdpVJMh4sNyVBRH5eqSuCgt4_d5FuzenvPS9_BE1pbX0V4CHvr5QaP4JG9Wc9Xy2Nv2rPqOJj2b_Mo8M0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6hgWAv_BxQGGAknpDS2XESx4-lMLWwdn3Y0N4ix76gSiyd-mMC_np8jlvBw5B4iSzFcSx9d_HFd_4-gHe2qXOXWpWI3F8yZ7PE1EIkjSqI_Ql14XgQm1DTaXlxoWfxsHo4C4OIofgM-9QMuXy3sBvaKvMeTnpyRB15m6Sz4nGt3ZZK0JAIilypbyTeF7OYxxRcH33-MBr3SSy8L1Oly5QUeaQiAj2R_bUoBZWVmwPOsPAcP_jPKT-E-zHCZIPOJB7BLWwfw91JzKE_gZ8DNl1co-9xPmQT82N-GY9isvFlTYWOFh2LtKvf2CByjjMf3LLZkkahQmlG3xGq90J2ull7q8UVm7dsePp1_DERmm3lSOa__GCzjrt1dQDnx5_OhqMkCjAkVuZ8nRiTloXxISDmMle6zozlAl2hS1tYIuIzUtqSozA1d64wUjdGUMSWNei9GeVT2GsXLT4H5hrnXJNyD5vJpPLQKFdYoera1Mrlogd8i0BlIzs5iWR8r8JfCtcV4VcRflXErwfvd49cddQc_-p8QOD80bHDpQeHW5yr6L2ripZs_xsodd6Dt7vb3u8omWJaXGyoD5X1canKHjzr7GM3-NasXtzw0jdwb3Q2OalOxtMvL2Gf5tnVFB7C3nq5wVdwx16v56vl62DgvwH5KPMu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+AUC+Maximization+Imbalanced+Learning+Approach+for+Predicting+Composite+Outcomes+in+COVID-19+Hospitalized+Patients&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Guanjin&rft.au=Kwok%2C+Stephen+Wai+Hang&rft.au=Yousufuddin%2C+Mohammed&rft.au=Sohel%2C+Ferdous&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=27&rft.issue=8&rft.spage=3794&rft.epage=3805&rft_id=info:doi/10.1109%2FJBHI.2023.3279824&rft_id=info%3Apmid%2F37227914&rft.externalDocID=10135102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |