PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization

Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 54; H. 6; S. 3638 - 3651
Hauptverfasser: Zhao, Bowen, Chen, Wei-Neng, Wei, Feng-Feng, Liu, Ximeng, Pei, Qingqi, Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.
AbstractList Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.
Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.
EA, such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement evolutionary algorithms (EAs) for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.
Author Pei, Qingqi
Chen, Wei-Neng
Zhao, Bowen
Liu, Ximeng
Wei, Feng-Feng
Zhang, Jun
Author_xml – sequence: 1
  givenname: Bowen
  orcidid: 0000-0001-9864-9729
  surname: Zhao
  fullname: Zhao, Bowen
  email: bwinzhao@gmail.com
  organization: Guangzhou Institute of Technology, Xidian University, Guangzhou, China
– sequence: 2
  givenname: Wei-Neng
  orcidid: 0000-0003-0843-5802
  surname: Chen
  fullname: Chen, Wei-Neng
  email: cwnraul634@aliyun.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Feng-Feng
  orcidid: 0009-0003-4708-8791
  surname: Wei
  fullname: Wei, Feng-Feng
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Ximeng
  orcidid: 0000-0002-4238-3295
  surname: Liu
  fullname: Liu, Ximeng
  email: snbnix@gmail.com
  organization: College of Computer and Data Science, Fuzhou University, Fuzhou, Fujian, China
– sequence: 5
  givenname: Qingqi
  orcidid: 0000-0001-7601-5434
  surname: Pei
  fullname: Pei, Qingqi
  email: qqpei@mail.xidian.edu.cn
  organization: School of Telecommunications Engineering, Xidian University, Xi'an, China
– sequence: 6
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38215330$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFuEzEQhi1UREvoAyAhtBIXLpvaHsdec0ujElArNYdy4GTZzmxxtbsOtlOpPD0bklZVD8xlRqPvH83M_5YcDXFAQt4zOmWM6rObxc_zKaccpgBCNhJekRPOZFNzrmZHT7VUx-Q05zs6RjO2dPOGHEPD2QyAnpDL1cVy_qWaV6sU7q1_qFcJM6b7MNxWSxywBF_Nu9uYQvnVV21M1SL2Lgy2jC3bVdebEvrwx5YQh3fkdWu7jKeHPCE_vl7cLL7VV9fL74v5Ve1hRkttqRdMOKaZ4MhBUOk8KKmp4q2ctdyvhdPSrRUTAIhSrxl3SjuBWnl0Gibk837uJsXfW8zF9CF77Do7YNxmwzXXFIAzOqKfXqB3cZuGcTsDVHIFEsY_TMjHA7V1Pa7NJoXepgfz-KYRUHvAp5hzwtb4UP7dXJINnWHU7DwxO0_MzhNz8GRUshfKx-H_03zYawIiPuNBN0I08Bcz3ZRI
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s42979_025_04039_5
crossref_primary_10_1007_s40745_025_00642_8
crossref_primary_10_1109_MCI_2025_3563425
crossref_primary_10_1109_TCYB_2025_3573292
crossref_primary_10_1109_TCYB_2025_3579593
crossref_primary_10_1631_FITEE_2400513
crossref_primary_10_1016_j_knosys_2025_114419
crossref_primary_10_1109_ACCESS_2024_3471081
crossref_primary_10_1016_j_jwpe_2025_107784
crossref_primary_10_1007_s00607_025_01504_0
crossref_primary_10_1016_j_comnet_2025_111664
crossref_primary_10_1109_TETCI_2025_3529903
crossref_primary_10_1016_j_eswa_2025_127320
crossref_primary_10_1109_TIFS_2024_3402173
crossref_primary_10_1016_j_swevo_2025_102018
crossref_primary_10_1038_s41598_025_91140_7
crossref_primary_10_3390_agronomy14122987
Cites_doi 10.1109/TEVC.2022.3144419
10.32604/jcs.2020.09308
10.1145/1276958.1277214
10.1145/3411501.3419418
10.1109/TCYB.2022.3151234
10.1007/3-540-45682-1_20
10.1109/CIMCA.2005.1631619
10.1038/s41467-020-16175-y
10.1109/TCYB.2020.3005047
10.1109/TR.2023.3258983
10.1007/978-981-33-4543-0_57
10.1109/SFCS.1982.38
10.1007/978-3-031-36622-2_30
10.1007/3-540-48910-X_16
10.1109/SP.2017.12
10.1109/ICIST.2019.8836906
10.1023/A:1006529012972
10.1109/TEVC.2021.3080683
10.1109/TCYB.2020.2983860
10.1109/TCYB.2022.3224169
10.1002/9781118600283
10.1007/978-3-540-74553-2_38
10.1145/3158363
10.1007/978-3-642-15871-1_5
10.1504/IJACT.2014.062738
10.1109/tevc.2023.3319566
10.1109/JSTSP.2015.2429117
10.7551/mitpress/1090.001.0001
10.1109/MCI.2023.3327892
10.1109/tifs.2024.3402173
10.1007/978-3-662-03315-9_4
10.1145/3485832.3485842
10.1109/ICACI52617.2021.9435860
10.1145/3372297.3417274
10.1109/TIFS.2022.3211707
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2023.3346863
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 3651
ExternalDocumentID 38215330
10_1109_TCYB_2023_3346863
10398448
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62202358
  funderid: 10.13039/501100001809
– fundername: National Research Foundation of Korea
  grantid: NRF2022H1D3A2A01093478
  funderid: 10.13039/501100003725
– fundername: Guangdong Regional Joint Foundation Key Project
  grantid: 2022B1515120076
– fundername: China Postdoctoral Science Foundation
  grantid: 2023TQ0258
  funderid: 10.13039/501100002858
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174076900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 01:15:23 EDT 2025
Sun Jun 29 16:57:27 EDT 2025
Thu Apr 03 07:00:29 EDT 2025
Sat Nov 29 02:02:40 EST 2025
Tue Nov 18 21:41:07 EST 2025
Wed Aug 27 03:03:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4238-3295
0009-0003-4708-8791
0000-0001-7601-5434
0000-0001-9864-9729
0000-0003-0843-5802
PMID 38215330
PQID 3062736353
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_2929033210
proquest_journals_3062736353
pubmed_primary_38215330
crossref_citationtrail_10_1109_TCYB_2023_3346863
crossref_primary_10_1109_TCYB_2023_3346863
ieee_primary_10398448
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref37
ref14
ref31
ref30
ref11
ref33
Goldberg (ref36)
Gilad-Bachrach (ref5)
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Mohassel (ref6)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Miller (ref34) 1995; 9
ref8
ref7
ref9
ref4
ref3
Whitley (ref35)
ref40
References_xml – ident: ref24
  doi: 10.1109/TEVC.2022.3144419
– ident: ref20
  doi: 10.32604/jcs.2020.09308
– start-page: 154
  volume-title: Proc. 1st Int. Conf. Genet. Algorithms Appl.
  ident: ref36
  article-title: Alleles, loci, and the traveling salesman problem
– ident: ref9
  doi: 10.1145/1276958.1277214
– ident: ref7
  doi: 10.1145/3411501.3419418
– ident: ref26
  doi: 10.1109/TCYB.2022.3151234
– ident: ref18
  doi: 10.1007/3-540-45682-1_20
– ident: ref32
  doi: 10.1109/CIMCA.2005.1631619
– ident: ref1
  doi: 10.1038/s41467-020-16175-y
– ident: ref23
  doi: 10.1109/TCYB.2020.3005047
– ident: ref30
  doi: 10.1109/TR.2023.3258983
– ident: ref4
  doi: 10.1007/978-981-33-4543-0_57
– ident: ref15
  doi: 10.1109/SFCS.1982.38
– ident: ref27
  doi: 10.1007/978-3-031-36622-2_30
– ident: ref29
  doi: 10.1007/3-540-48910-X_16
– start-page: 35
  volume-title: Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
  ident: ref6
  article-title: ABY3: A mixed protocol framework for machine learning
– ident: ref31
  doi: 10.1109/SP.2017.12
– ident: ref38
  doi: 10.1109/ICIST.2019.8836906
– ident: ref19
  doi: 10.1023/A:1006529012972
– ident: ref3
  doi: 10.1109/TEVC.2021.3080683
– ident: ref14
  doi: 10.1109/TCYB.2020.2983860
– volume: 9
  start-page: 193
  issue: 3
  year: 1995
  ident: ref34
  article-title: Genetic algorithms, tournament selection, and the effects of noise
  publication-title: Complex Syst.
– ident: ref22
  doi: 10.1109/TCYB.2022.3224169
– ident: ref2
  doi: 10.1002/9781118600283
– ident: ref10
  doi: 10.1007/978-3-540-74553-2_38
– ident: ref13
  doi: 10.1145/3158363
– ident: ref11
  doi: 10.1007/978-3-642-15871-1_5
– ident: ref16
  doi: 10.1504/IJACT.2014.062738
– ident: ref12
  doi: 10.1109/tevc.2023.3319566
– ident: ref17
  doi: 10.1109/JSTSP.2015.2429117
– ident: ref33
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref25
  doi: 10.1109/MCI.2023.3327892
– start-page: 133
  volume-title: Proc. 3rd Int. Conf. Genet. Algorithms
  ident: ref35
  article-title: Scheduling problems and Traveling salesmen: The genetic edge recombination operator
– ident: ref39
  doi: 10.1109/tifs.2024.3402173
– start-page: 201
  volume-title: Proc. 33rd Int. Conf. Mach. Learn.
  ident: ref5
  article-title: Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy
– ident: ref37
  doi: 10.1007/978-3-662-03315-9_4
– ident: ref40
  doi: 10.1145/3485832.3485842
– ident: ref21
  doi: 10.1109/ICACI52617.2021.9435860
– ident: ref8
  doi: 10.1145/3372297.3417274
– ident: ref28
  doi: 10.1109/TIFS.2022.3211707
SSID ssj0000816898
Score 2.5198498
Snippet Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited...
EA, such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3638
SubjectTerms Approximation
Cloud computing
Combinatorial analysis
Combinatorial optimization
Datasets
Encryption
Evolutionary algorithms
Evolutionary computation
evolutionary computation as a service (ECaaS)
Genetic algorithms
Knapsack problem
Optimization
Privacy
privacy protection
secure computing
Servers
Social factors
Statistics
Traveling salesman problem
Title PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization
URI https://ieeexplore.ieee.org/document/10398448
https://www.ncbi.nlm.nih.gov/pubmed/38215330
https://www.proquest.com/docview/3062736353
https://www.proquest.com/docview/2929033210
Volume 54
WOSCitedRecordID wos001174076900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V1AOXtlDabkuRK_XQVvLixE4cc9siaKVKdA9U2p6ixJkAEmSr_UDi3zPjeFf0ABI3S7ETKzMev_F45gF8tsb4LG8TWSVNK8lKNrIwqCU6ZzKC-zRMBbIJe3paTCZuHJPVQy4MIobLZzjkZojlN1O_5KOyAw5bFuRPbMCGtXmfrLU-UAkMEoH7NqWGJFhhYxQzUe7g7Ojv9yFThQ-1NnmRM3-OLlJGO-q_LSlwrDwMN8O2c_LyiRN-BS8ivhSjXiG24Rl2O7AdV_BcfIllpr_uwBbjzL5M82v4NT7-MToUIzGeXd5U_lby1Qw2I9254CHUS4yuzqezy8XFtSCgK8iQkFPNLjtpsPhNluc6pnTuwp-T47OjnzLyLEivM7WQlfImMTVXeksx1bTF157sDrnNaZtnbeobU7u8bpgqXSPmrknS2rraoLMea6ffwGY37fAdCLS2qbBJdGa4SCmhH9vatvLKc2HA3AxArX516WMRcubCuCqDM6JcyYIqWVBlFNQAvq2H_OsrcDzWeZelcK9jL4AB7K0EWsZFOi81l2jWhLho2Kf1Y1peHDOpOpwu52VK8FFpTnQawNteEdYvX-nP-wc--gG2aG6mv1i2B5uL2RI_wnN_Q8Kd7ZMOT4r9oMN3s8Lndw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQaKX0pYCCy0YiQMgeevEThxz21YtRS3LHhapnKzEcUqlNlvtRyX-PTOOd1UOReJmKXZiZcbjNx7PPID3WimX5U3Cy6RuOFrJmhfKS-6NURnCfRwmAtmEHg6L83MzisnqIRfGex8un_k-NUMsv564BR2V7VPYskB_4iE8IuqsmK61OlIJHBKB_TbFBkdgoWMcMxFmf3z486BPZOF9KVVe5MSgI4uU8I74a1MKLCv3A86w8Rw__c8pb8JGRJhs0KnEFjzw7TZsxTU8Yx9ioemP27BOSLMr1PwMTkdHXwaf2YCNppe3pfvN6XIGGZL2gtEQ7MUGVxeT6eX81zVDqMvQlKBbTU476jD7jrbnOiZ17sCP46Px4QmPTAvcyUzMeSmcSlRFtd5Sn0rc5CuHlgcd57TJsyZ1tapMXtVEli69z02dpJU2lfJGO18Z-RzW2knrXwLzWtelrxOZKSpTivhHN7opnXBUGjBXPRDLX21dLENObBhXNrgjwlgSlCVB2SioHnxaDbnpanD8q_MOSeFOx04APdhdCtTGZTqzkoo0S8RcOOzd6jEuMIqalK2fLGY2RQApJKU69eBFpwirly_159U9H30LT07G387s2dfh6WtYx3mq7prZLqzNpwu_B4_dLQp6-iZo8h94uenY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEGA%3A+A+Privacy-Preserving+Genetic+Algorithm+for+Combinatorial+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Bowen%2C+Zhao&rft.au=Wei-Neng+Chen&rft.au=Feng-Feng%2C+Wei&rft.au=Liu%2C+Ximeng&rft.date=2024-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=54&rft.issue=6&rft.spage=3638&rft_id=info:doi/10.1109%2FTCYB.2023.3346863&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon