A self-assembled multi-enzyme nanomachine and whole-cell biocatalyst for the sustainable valorization of marine biomass into fermentable sugars and consolidated bioprocessing
Marine biomass is a potential resource that contains functional carbohydrates, such as agar, carrageenan, and cellulose, and can be modified for various applications. A novel self-assembled multi-enzyme nanomachine (SAMN) and its whole-cell biocatalyst were developed to target the degradation of mar...
Uloženo v:
| Vydáno v: | International journal of biological macromolecules Ročník 322; číslo Pt 3; s. 146853 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.09.2025
|
| Témata: | |
| ISSN: | 0141-8130, 1879-0003, 1879-0003 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Marine biomass is a potential resource that contains functional carbohydrates, such as agar, carrageenan, and cellulose, and can be modified for various applications. A novel self-assembled multi-enzyme nanomachine (SAMN) and its whole-cell biocatalyst were developed to target the degradation of marine biomass components and enable consolidated bioprocessing. Compared to each representative single enzyme, the marine biomass-degrading SAMN exhibited an average 1.45-fold higher hydrolytic activity for six of the seven substrates. The modification of SAMN with MglB further enhanced the hydrolytic activities toward agar, agarose, lambda-carrageenan, and agar-carrageenans-cellulose mixed substrate. Moreover, SAMN displayed a maximum thermostability increase of 14.10%. The SAMN and the SAMN with MglB produced a maximum of 2.25 ± 0.04 mM and 2.33 ± 0.03 mM galactose, a functional sugar from real red algae, respectively. The Saccharomyces cerevisiae-based whole-cell biocatalyst displaying SAMN with MglB produced 2.00 ± 0.14 g/L ethanol from real red algae as the sole carbon source, achieving the highest production among all samples. This marine biomass-degrading SAMN and its whole-cell biocatalyst have potential applications in the saccharification and consolidated bioprocessing of marine biomass, leading to the production of functional sugars and value-added bio-based products in industrial settings.
[Display omitted]
•Self-assembled multi-enzyme nanomachine (SAMN) was newly developed.•SAMN showed enhanced hydrolysis activity toward marine biomass-related substrates.•SAMN was thermostable in the condition of high temperature.•The modified SAMN produced maximum 2.33 ± 0.03 mM galactose from real red algae.•The SAMN-displaying whole-cell biocatalyst produced 2.00 ± 0.14 g/L ethanol from real red algae. |
|---|---|
| AbstractList | Marine biomass is a potential resource that contains functional carbohydrates, such as agar, carrageenan, and cellulose, and can be modified for various applications. A novel self-assembled multi-enzyme nanomachine (SAMN) and its whole-cell biocatalyst were developed to target the degradation of marine biomass components and enable consolidated bioprocessing. Compared to each representative single enzyme, the marine biomass-degrading SAMN exhibited an average 1.45-fold higher hydrolytic activity for six of the seven substrates. The modification of SAMN with MglB further enhanced the hydrolytic activities toward agar, agarose, lambda-carrageenan, and agar-carrageenans-cellulose mixed substrate. Moreover, SAMN displayed a maximum thermostability increase of 14.10%. The SAMN and the SAMN with MglB produced a maximum of 2.25 ± 0.04 mM and 2.33 ± 0.03 mM galactose, a functional sugar from real red algae, respectively. The Saccharomyces cerevisiae-based whole-cell biocatalyst displaying SAMN with MglB produced 2.00 ± 0.14 g/L ethanol from real red algae as the sole carbon source, achieving the highest production among all samples. This marine biomass-degrading SAMN and its whole-cell biocatalyst have potential applications in the saccharification and consolidated bioprocessing of marine biomass, leading to the production of functional sugars and value-added bio-based products in industrial settings.Marine biomass is a potential resource that contains functional carbohydrates, such as agar, carrageenan, and cellulose, and can be modified for various applications. A novel self-assembled multi-enzyme nanomachine (SAMN) and its whole-cell biocatalyst were developed to target the degradation of marine biomass components and enable consolidated bioprocessing. Compared to each representative single enzyme, the marine biomass-degrading SAMN exhibited an average 1.45-fold higher hydrolytic activity for six of the seven substrates. The modification of SAMN with MglB further enhanced the hydrolytic activities toward agar, agarose, lambda-carrageenan, and agar-carrageenans-cellulose mixed substrate. Moreover, SAMN displayed a maximum thermostability increase of 14.10%. The SAMN and the SAMN with MglB produced a maximum of 2.25 ± 0.04 mM and 2.33 ± 0.03 mM galactose, a functional sugar from real red algae, respectively. The Saccharomyces cerevisiae-based whole-cell biocatalyst displaying SAMN with MglB produced 2.00 ± 0.14 g/L ethanol from real red algae as the sole carbon source, achieving the highest production among all samples. This marine biomass-degrading SAMN and its whole-cell biocatalyst have potential applications in the saccharification and consolidated bioprocessing of marine biomass, leading to the production of functional sugars and value-added bio-based products in industrial settings. Marine biomass is a potential resource that contains functional carbohydrates, such as agar, carrageenan, and cellulose, and can be modified for various applications. A novel self-assembled multi-enzyme nanomachine (SAMN) and its whole-cell biocatalyst were developed to target the degradation of marine biomass components and enable consolidated bioprocessing. Compared to each representative single enzyme, the marine biomass-degrading SAMN exhibited an average 1.45-fold higher hydrolytic activity for six of the seven substrates. The modification of SAMN with MglB further enhanced the hydrolytic activities toward agar, agarose, lambda-carrageenan, and agar-carrageenans-cellulose mixed substrate. Moreover, SAMN displayed a maximum thermostability increase of 14.10%. The SAMN and the SAMN with MglB produced a maximum of 2.25 ± 0.04 mM and 2.33 ± 0.03 mM galactose, a functional sugar from real red algae, respectively. The Saccharomyces cerevisiae-based whole-cell biocatalyst displaying SAMN with MglB produced 2.00 ± 0.14 g/L ethanol from real red algae as the sole carbon source, achieving the highest production among all samples. This marine biomass-degrading SAMN and its whole-cell biocatalyst have potential applications in the saccharification and consolidated bioprocessing of marine biomass, leading to the production of functional sugars and value-added bio-based products in industrial settings. [Display omitted] •Self-assembled multi-enzyme nanomachine (SAMN) was newly developed.•SAMN showed enhanced hydrolysis activity toward marine biomass-related substrates.•SAMN was thermostable in the condition of high temperature.•The modified SAMN produced maximum 2.33 ± 0.03 mM galactose from real red algae.•The SAMN-displaying whole-cell biocatalyst produced 2.00 ± 0.14 g/L ethanol from real red algae. Marine biomass is a potential resource that contains functional carbohydrates, such as agar, carrageenan, and cellulose, and can be modified for various applications. A novel self-assembled multi-enzyme nanomachine (SAMN) and its whole-cell biocatalyst were developed to target the degradation of marine biomass components and enable consolidated bioprocessing. Compared to each representative single enzyme, the marine biomass-degrading SAMN exhibited an average 1.45-fold higher hydrolytic activity for six of the seven substrates. The modification of SAMN with MglB further enhanced the hydrolytic activities toward agar, agarose, lambda-carrageenan, and agar-carrageenans-cellulose mixed substrate. Moreover, SAMN displayed a maximum thermostability increase of 14.10%. The SAMN and the SAMN with MglB produced a maximum of 2.25 ± 0.04 mM and 2.33 ± 0.03 mM galactose, a functional sugar from real red algae, respectively. The Saccharomyces cerevisiae-based whole-cell biocatalyst displaying SAMN with MglB produced 2.00 ± 0.14 g/L ethanol from real red algae as the sole carbon source, achieving the highest production among all samples. This marine biomass-degrading SAMN and its whole-cell biocatalyst have potential applications in the saccharification and consolidated bioprocessing of marine biomass, leading to the production of functional sugars and value-added bio-based products in industrial settings. |
| ArticleNumber | 146853 |
| Author | Bhardwaj, Nisha Lee, Myeong-Eun Hyeon, Jeong Eun Jeong, Wu-Young Han, Sung Ok Cho, Byeong-Hyeon |
| Author_xml | – sequence: 1 givenname: Myeong-Eun surname: Lee fullname: Lee, Myeong-Eun organization: Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea – sequence: 2 givenname: Nisha surname: Bhardwaj fullname: Bhardwaj, Nisha organization: Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea – sequence: 3 givenname: Byeong-Hyeon surname: Cho fullname: Cho, Byeong-Hyeon organization: Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea – sequence: 4 givenname: Jeong Eun surname: Hyeon fullname: Hyeon, Jeong Eun organization: Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea – sequence: 5 givenname: Wu-Young surname: Jeong fullname: Jeong, Wu-Young organization: Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea – sequence: 6 givenname: Sung Ok surname: Han fullname: Han, Sung Ok email: samhan@korea.ac.kr organization: Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40812633$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u3CAUhVGVKJn8vELEshtPwdiMvWsUtU2kSN20a4TxJcMIQ8rFqSYP1Wcsnkm67QqBvnvOPZwLchJiAEJuOFtzxuWn3drtBhcnbdY1q9s1b2TXig9kxbtNXzHGxAlZMd7wquOCnZMLxF15lS3vzsh5wzpeSyFW5M8tRfC20ogwDR5GOs0-uwrC634CGnRYPLYuANVhpL-30UNlwHta3I3O2u8xUxsTzVugOGPWLugiRF-0j8m96uxioNHSSadF5bA0InUhR2ohTRDygcf5SSc8uJgYMHo36lz2KQPPKRpAdOHpipxa7RGu385L8vPrlx9399Xj928Pd7ePlREty1XfiN50mg0lY9PbTpqGGSb1ODaDBTlqaQVwLbtaGNNsBjE00ppyEzAMrWzFJfl41C3Wv2bArCaHS2wdIM6oRC36TdfyXhT05g2dhwlG9ZxcibpX739cAHkETIqICew_hDO1lKl26r1MtZSpjmWWwc_HQShJXxwkhcZBMDC6BCarMbr_SfwFRuKwBg |
| Cites_doi | 10.1016/j.matlet.2010.08.008 10.1021/ac60147a030 10.1016/j.biortech.2017.11.098 10.1002/bit.25174 10.1111/pre.12178 10.1007/s00449-020-02484-5 10.1021/acssynbio.4c00613 10.1016/j.ijbiomac.2021.08.149 10.1016/j.biortech.2020.124242 10.1039/C4AN00856A 10.1007/s00253-016-8011-9 10.1016/j.ijbiomac.2017.08.067 10.1128/AEM.71.11.6465-6472.2005 10.1016/j.biotechadv.2020.107641 10.3389/fmicb.2022.972272 10.1016/j.cocis.2019.08.003 10.1021/ja02249a033 10.1186/s13068-016-0535-9 10.1007/s12010-009-8795-5 10.1016/j.ijbiomac.2017.03.191 10.1007/s13205-016-0461-3 10.1073/pnas.1916529117 10.1016/j.ymben.2019.11.004 10.1021/acs.jafc.9b07536 10.1016/j.renene.2020.02.032 10.1111/j.1365-2958.1993.tb01950.x 10.1021/acs.jchemed.1c01268 10.1016/j.abb.2017.03.011 10.1007/s00253-012-4385-5 10.1007/s11101-018-9548-2 10.1021/acsnano.9b03631 10.3390/s7102484 10.1186/s12934-017-0724-7 10.1016/j.enzmictec.2014.08.010 10.1021/acsnano.9b04554 10.1007/s00253-018-9156-5 10.1021/acssynbio.3c00669 10.1016/j.biortech.2015.08.016 10.1016/j.biortech.2022.127758 10.1016/j.algal.2017.01.008 10.1016/j.foodchem.2020.128685 10.1016/j.foodchem.2009.02.011 10.3390/molecules23102451 10.1007/s10811-013-0041-4 10.1007/s00253-017-8383-5 10.1042/BJ20041044 10.1042//BJ20061359 10.1016/j.procbio.2014.05.004 10.1002/bit.26008 10.1016/j.foodhyd.2019.105547 10.1007/s10126-017-9782-4 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ijbiomac.2025.146853 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1879-0003 |
| ExternalDocumentID | 40812633 10_1016_j_ijbiomac_2025_146853 S0141813025074100 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- ~HD 9DU AAYXX CITATION AGCQF CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c350t-9439c8a0b63349f86c40c06add4bfe6da6f3e1a6823cc47b3b46fc8233ebb5653 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001558993100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-8130 1879-0003 |
| IngestDate | Sat Nov 01 15:09:20 EDT 2025 Tue Sep 09 02:32:54 EDT 2025 Sat Nov 29 07:33:27 EST 2025 Sat Oct 04 17:00:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 3 |
| Keywords | Marine polysaccharide Modular enzyme assembly Biomass-to-biofuel conversion Marine carbohydrate-active enzymes Surface-engineered microbial catalyst |
| Language | English |
| License | Copyright © 2025 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c350t-9439c8a0b63349f86c40c06add4bfe6da6f3e1a6823cc47b3b46fc8233ebb5653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 40812633 |
| PQID | 3239785193 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3239785193 pubmed_primary_40812633 crossref_primary_10_1016_j_ijbiomac_2025_146853 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2025_146853 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 2025-Sep 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | International journal of biological macromolecules |
| PublicationTitleAlternate | Int J Biol Macromol |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jam, Flament, Allouch, Potin, Thion, Kloareg, Czjzek, Helbert, Michel, Barbeyron (bb0035) 2005; 385 Inokuma, Bamba, Ishii, Ito, Hasunuma, Kondo (bb0150) 2016; 113 Diharmi, Fardiaz, Andarwulan, Heruwati (bb0190) 2017; 65 Ghanbarzadeh, Golmoradizadeh, Homaei (bb0040) 2018; 17 Weickert, Adhya (bb0055) 1993; 10 Ma, Coleman, Prabhu, Yang, Wen (bb0140) 2024; 13 Yun, Yu, Kim (bb0025) 2017; 101 Chauhan, Saxena (bb0045) 2016; 6 Park (bb0175) 2022; 99 Hyeon, Kang, Han (bb0070) 2014; 139 Gao, Kumar, Wyman (bb0195) 2014; 111 Xie, Lin, Zhou, Lu, Lun, Xia, Li, Hu (bb0225) 2013; 97 Qu, Cao, Wei, Zhang, Wang, Kang, Ma, Zhang, Liu, Wing-Ngor Au, Sun, Xia (bb0090) 2019; 13 Hu, Liao, Gong, Zhang, Cox, Waigh, Lu (bb0080) 2020; 45 Hamre, Froberg, Eijsink, Sorlie (bb0245) 2017; 620 Grosová, Rosenberg, Gdovin, Sláviková, Rebroš (bb0060) 2009; 116 Meinita, Marhaeni, Winanto, Jeong, Khan, Hong (bb0275) 2013; 25 Sluiter, Hames, Ruiz, Scarlata, Sluiter, Templeton, Crocker (bb0200) 2008; 1617 Ye, Ye, Du, Chen (bb0125) 2021; 44 Guibet, Colin, Barbeyron, Genicot, Kloareg, Michel, Helbert (bb0240) 2007; 404 Osman, Abdo, Mohamed (bb0185) 2017; 8 Nelson, Vosburgh (bb0180) 1917; 39 Hyeon, You, Kang, Ryu, Kim, Lee, Han (bb0075) 2014; 49 Song, Wang, Wu, Zhao, Wang, Chu, Lin (bb0260) 2021; 352 Kim, Kim, Hong, Lyo, Lim, Kim, Shin (bb0205) 2018; 31 Jeong, Hyeon, Lee, Ko, Kim, Han (bb0115) 2021; 189 Anandharaj, Lin, Rani, Nadendla, Ho, Huang, Cheng, Chang, Li (bb0095) 2020; 117 Scognamiglio, Aurilia, Cennamo, Ringhieri, Iozzino, Tartaglia, Staiano, Ruggiero, Orlando, Labella, Zeni, Vitale, D’Auria (bb0220) 2007; 7 Gu, Zhao, Tan, Zhang, Fu, Li (bb0250) 2022; 13 Jeong, Hyeon, Shin, Han (bb0120) 2020; 68 Kang, You, Joo, Shin, Hyeon, Han (bb0030) 2018; 250 Jiang, Liu, Cheng, Mao (bb0020) 2020; 45 Lee, Shin, Oh, Hwang, Ko, Hyeon, Han (bb0160) 2021; 319 Juarez-Hernandez, Casados-Vazquez, Bideshi, Salcedo-Hernandez, Barboza-Corona (bb0165) 2017; 102 Bro, Knudsen, Regenberg, Olsson, Nielsen (bb0145) 2005; 71 Jeong, Park (bb0005) 2010; 161 Kim, Hyeon, Jeon, Choi, Han (bb0050) 2014; 66 Jin, Wang, Peng, Shen, Zhu, Cheng, Li, Huang (bb0215) 2020; 101 Lee, Ko, Hwang, Cho, Jeong, Bhardwaj, Han (bb0135) 2022; 362 Inokuma, Kurono, den Haan, van Zyl, Hasunuma, Kondo (bb0155) 2020; 57 Jahromi, Barzkar (bb0255) 2018; 102 Lin, Tao (bb0130) 2017; 16 Cao, Zhang, Chen, Zilda, Patantis, Li (bb0265) 2024; 283 Liu, Cao, Liu, Kang, Xia (bb0085) 2019; 13 Jeong, Hyeon, Joo, Shin, Han (bb0110) 2018; 20 Masarin, Cedeno, Chavez, de Oliveira, Gelli, Monti (bb0010) 2016; 9 Shen, Pan, Liu, Song, Xu (bb0100) 2024; 13 Kim, Oh, Jeong, Cho, Chang, Shi, Han (bb0105) 2024; 391 Bao, Hayashi, Li, Teramoto, Abe (bb0235) 2010; 64 Sudhakar, Arunkumar, Perumal (bb0270) 2020; 153 El Achaby, Kassab, Aboulkas, Gaillard, Barakat (bb0015) 2018; 106 Kim, Hong, Jeon, Shin (bb0210) 2015; 196 Miller (bb0170) 1959; 31 Alkotaini, Han, Kim (bb0230) 2017; 101 Cheong, Qiu, Du, Liu, Khan (bb0065) 2018; 23 Qu (10.1016/j.ijbiomac.2025.146853_bb0090) 2019; 13 Guibet (10.1016/j.ijbiomac.2025.146853_bb0240) 2007; 404 Cheong (10.1016/j.ijbiomac.2025.146853_bb0065) 2018; 23 Scognamiglio (10.1016/j.ijbiomac.2025.146853_bb0220) 2007; 7 Nelson (10.1016/j.ijbiomac.2025.146853_bb0180) 1917; 39 Bao (10.1016/j.ijbiomac.2025.146853_bb0235) 2010; 64 Liu (10.1016/j.ijbiomac.2025.146853_bb0085) 2019; 13 Jeong (10.1016/j.ijbiomac.2025.146853_bb0115) 2021; 189 Shen (10.1016/j.ijbiomac.2025.146853_bb0100) 2024; 13 Sudhakar (10.1016/j.ijbiomac.2025.146853_bb0270) 2020; 153 Ye (10.1016/j.ijbiomac.2025.146853_bb0125) 2021; 44 Gao (10.1016/j.ijbiomac.2025.146853_bb0195) 2014; 111 Jiang (10.1016/j.ijbiomac.2025.146853_bb0020) 2020; 45 Kim (10.1016/j.ijbiomac.2025.146853_bb0105) 2024; 391 Diharmi (10.1016/j.ijbiomac.2025.146853_bb0190) 2017; 65 Song (10.1016/j.ijbiomac.2025.146853_bb0260) 2021; 352 Juarez-Hernandez (10.1016/j.ijbiomac.2025.146853_bb0165) 2017; 102 Chauhan (10.1016/j.ijbiomac.2025.146853_bb0045) 2016; 6 Inokuma (10.1016/j.ijbiomac.2025.146853_bb0155) 2020; 57 Jahromi (10.1016/j.ijbiomac.2025.146853_bb0255) 2018; 102 Meinita (10.1016/j.ijbiomac.2025.146853_bb0275) 2013; 25 Hu (10.1016/j.ijbiomac.2025.146853_bb0080) 2020; 45 Osman (10.1016/j.ijbiomac.2025.146853_bb0185) 2017; 8 Lee (10.1016/j.ijbiomac.2025.146853_bb0135) 2022; 362 Ghanbarzadeh (10.1016/j.ijbiomac.2025.146853_bb0040) 2018; 17 Grosová (10.1016/j.ijbiomac.2025.146853_bb0060) 2009; 116 Cao (10.1016/j.ijbiomac.2025.146853_bb0265) 2024; 283 Lee (10.1016/j.ijbiomac.2025.146853_bb0160) 2021; 319 Kim (10.1016/j.ijbiomac.2025.146853_bb0205) 2018; 31 Ma (10.1016/j.ijbiomac.2025.146853_bb0140) 2024; 13 Masarin (10.1016/j.ijbiomac.2025.146853_bb0010) 2016; 9 Yun (10.1016/j.ijbiomac.2025.146853_bb0025) 2017; 101 Jam (10.1016/j.ijbiomac.2025.146853_bb0035) 2005; 385 Lin (10.1016/j.ijbiomac.2025.146853_bb0130) 2017; 16 Jeong (10.1016/j.ijbiomac.2025.146853_bb0005) 2010; 161 El Achaby (10.1016/j.ijbiomac.2025.146853_bb0015) 2018; 106 Inokuma (10.1016/j.ijbiomac.2025.146853_bb0150) 2016; 113 Kang (10.1016/j.ijbiomac.2025.146853_bb0030) 2018; 250 Bro (10.1016/j.ijbiomac.2025.146853_bb0145) 2005; 71 Xie (10.1016/j.ijbiomac.2025.146853_bb0225) 2013; 97 Kim (10.1016/j.ijbiomac.2025.146853_bb0210) 2015; 196 Alkotaini (10.1016/j.ijbiomac.2025.146853_bb0230) 2017; 101 Hamre (10.1016/j.ijbiomac.2025.146853_bb0245) 2017; 620 Sluiter (10.1016/j.ijbiomac.2025.146853_bb0200) 2008; 1617 Jin (10.1016/j.ijbiomac.2025.146853_bb0215) 2020; 101 Anandharaj (10.1016/j.ijbiomac.2025.146853_bb0095) 2020; 117 Hyeon (10.1016/j.ijbiomac.2025.146853_bb0070) 2014; 139 Hyeon (10.1016/j.ijbiomac.2025.146853_bb0075) 2014; 49 Weickert (10.1016/j.ijbiomac.2025.146853_bb0055) 1993; 10 Jeong (10.1016/j.ijbiomac.2025.146853_bb0110) 2018; 20 Park (10.1016/j.ijbiomac.2025.146853_bb0175) 2022; 99 Jeong (10.1016/j.ijbiomac.2025.146853_bb0120) 2020; 68 Kim (10.1016/j.ijbiomac.2025.146853_bb0050) 2014; 66 Miller (10.1016/j.ijbiomac.2025.146853_bb0170) 1959; 31 Gu (10.1016/j.ijbiomac.2025.146853_bb0250) 2022; 13 |
| References_xml | – volume: 97 start-page: 4907 year: 2013 end-page: 4915 ident: bb0225 article-title: Characterization of a novel beta-agarase from an agar-degrading bacterium publication-title: Appl. Microbiol. Biotechnol. – volume: 101 start-page: 1573 year: 2017 end-page: 1580 ident: bb0230 article-title: Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar publication-title: Appl. Microbiol. Biotechnol. – volume: 13 year: 2022 ident: bb0250 article-title: Characterization of a novel beta-agarase from Antarctic macroalgae-associated bacteria metagenomic library and anti-inflammatory activity of the enzymatic hydrolysates publication-title: Front. Microbiol. – volume: 99 start-page: 2556 year: 2022 end-page: 2562 ident: bb0175 article-title: Visual Interpretation of the Meaning of kcat/KM in Enzyme Kinetics publication-title: J. Chem. Educ. – volume: 139 start-page: 4790 year: 2014 end-page: 4793 ident: bb0070 article-title: Signal amplification by a self-assembled biosensor system designed on the principle of dockerin-cohesin interactions in a cellulosome complex publication-title: Analyst – volume: 101 year: 2020 ident: bb0215 article-title: Effect of pulsed electric field on assembly structure of α-amylase and pectin electrostatic complexes publication-title: Food Hydrocoll. – volume: 161 start-page: 41 year: 2010 end-page: 52 ident: bb0005 article-title: Production of sugars and levulinic acid from marine biomass publication-title: Appl. Biochem. Biotechnol. – volume: 153 start-page: 456 year: 2020 end-page: 471 ident: bb0270 article-title: Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast ( publication-title: Renew. Energy – volume: 111 start-page: 1088 year: 2014 end-page: 1096 ident: bb0195 article-title: Fast hemicellulose quantification via a simple one-step acid hydrolysis publication-title: Biotechnol. Bioeng. – volume: 102 start-page: 6847 year: 2018 end-page: 6863 ident: bb0255 article-title: Future direction in marine bacterial agarases for industrial applications publication-title: Appl. Microbiol. Biotechnol. – volume: 16 start-page: 106 year: 2017 ident: bb0130 article-title: Whole-cell biocatalysts by design publication-title: Microb. Cell Factories – volume: 319 start-page: 124242 year: 2021 ident: bb0160 article-title: Enzymatic production of sugar from fungi and fungi-infected lignocellulosic biomass by a new cellulosomal enzyme harboring N-acetyl-beta-d-glucosaminidase activity publication-title: Bioresour. Technol. – volume: 117 start-page: 2385 year: 2020 end-page: 2394 ident: bb0095 article-title: Constructing a yeast to express the largest cellulosome complex on the cell surface publication-title: Proc. Natl. Acad. Sci. USA – volume: 391 year: 2024 ident: bb0105 article-title: Biosynthesis of l-histidine from marine biomass-derived galactans in metabolically engineered publication-title: Bioresour. Technol. – volume: 44 start-page: 1003 year: 2021 end-page: 1019 ident: bb0125 article-title: Cell-surface engineering of yeasts for whole-cell biocatalysts publication-title: Bioprocess Biosyst. Eng. – volume: 20 start-page: 1 year: 2018 end-page: 9 ident: bb0110 article-title: Integration of bacterial expansin on agarolytic complexes to enhance the degrading activity of red algae by control of gelling properties publication-title: Mar. Biotechnol. (N.Y.) – volume: 196 start-page: 634 year: 2015 end-page: 641 ident: bb0210 article-title: High-yield production of biosugars from publication-title: Bioresour. Technol. – volume: 352 year: 2021 ident: bb0260 article-title: Agarase cocktail from agar polysaccharide utilization loci converts homogenized publication-title: Food Chem. – volume: 39 start-page: 790 year: 1917 end-page: 811 ident: bb0180 article-title: Kinetics of invertase action publication-title: J. Am. Chem. Soc. – volume: 385 start-page: 703 year: 2005 end-page: 713 ident: bb0035 article-title: The endo-β-agarases AgaA and AgaB from the marine bacterium publication-title: Biochem. J. – volume: 10 start-page: 245 year: 1993 end-page: 251 ident: bb0055 article-title: The galactose regulon of publication-title: Mol. Microbiol. – volume: 17 start-page: 535 year: 2018 end-page: 571 ident: bb0040 article-title: Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes publication-title: Phytochem. Rev. – volume: 102 start-page: 52 year: 2017 end-page: 59 ident: bb0165 article-title: Role of the C-terminal and chitin insertion domains on enzymatic activity of endochitinase ChiA74 of publication-title: Int. J. Biol. Macromol. – volume: 65 start-page: 256 year: 2017 end-page: 261 ident: bb0190 article-title: Chemical and physical characteristics of carrageenan extracted from publication-title: Phycol. Res. – volume: 13 start-page: 1225 year: 2024 end-page: 1236 ident: bb0140 article-title: Engineering Compositionally Uniform Yeast Whole-Cell Biocatalysts with Maximized Surface Enzyme Density for Cellulosic Biofuel Production publication-title: ACS Synth. Biol. – volume: 101 start-page: 5581 year: 2017 end-page: 5589 ident: bb0025 article-title: Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars publication-title: Appl. Microbiol. Biotechnol. – volume: 9 start-page: 122 year: 2016 ident: bb0010 article-title: Chemical analysis and biorefinery of red algae publication-title: Biotechnol. Biofuels – volume: 13 start-page: 9895 year: 2019 end-page: 9906 ident: bb0090 article-title: Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo publication-title: ACS Nano – volume: 362 year: 2022 ident: bb0135 article-title: Surface display of enzyme complex on publication-title: Bioresour. Technol. – volume: 404 start-page: 105 year: 2007 end-page: 114 ident: bb0240 article-title: Degradation of λ-carrageenan by publication-title: Biochem. J. – volume: 23 year: 2018 ident: bb0065 article-title: Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications publication-title: Molecules – volume: 49 start-page: 1266 year: 2014 end-page: 1273 ident: bb0075 article-title: Enzymatic degradation of lignocellulosic biomass by continuous process using laccase and cellulases with the aid of scaffoldin for ethanol production publication-title: Process Biochem. – volume: 68 start-page: 3195 year: 2020 end-page: 3202 ident: bb0120 article-title: Trienzymatic complex system for isomerization of agar-derived D-galactose into D-tagatose as a low-calorie sweetener publication-title: J. Agric. Food Chem. – volume: 57 start-page: 110 year: 2020 end-page: 117 ident: bb0155 article-title: Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains publication-title: Metab. Eng. – volume: 189 start-page: 819 year: 2021 end-page: 825 ident: bb0115 article-title: Efficient utilization of brown algae for the production of Polyhydroxybutyrate (PHB) by using an enzyme complex immobilized on publication-title: Int. J. Biol. Macromol. – volume: 71 start-page: 6465 year: 2005 end-page: 6472 ident: bb0145 article-title: Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering publication-title: Appl. Environ. Microbiol. – volume: 45 year: 2020 ident: bb0020 article-title: Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products publication-title: Biotechnol. Adv. – volume: 620 start-page: 35 year: 2017 end-page: 42 ident: bb0245 article-title: Thermodynamics of tunnel formation upon substrate binding in a processive glycoside hydrolase publication-title: Arch. Biochem. Biophys. – volume: 250 start-page: 666 year: 2018 end-page: 672 ident: bb0030 article-title: Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae publication-title: Bioresour. Technol. – volume: 45 start-page: 1 year: 2020 end-page: 13 ident: bb0080 article-title: Recent advances in short peptide self-assembly: from rational design to novel applications publication-title: Curr. Opin. Colloid Interface Sci. – volume: 64 start-page: 2435 year: 2010 end-page: 2437 ident: bb0235 article-title: Novel agarose and agar fibers: Fabrication and characterization publication-title: Mater. Lett. – volume: 31 start-page: 517 year: 2018 end-page: 524 ident: bb0205 article-title: Recombinant agarase increases the production of reducing sugars from HCl-treated publication-title: Algal Res. – volume: 6 start-page: 146 year: 2016 ident: bb0045 article-title: Bacterial carrageenases: an overview of production and biotechnological applications publication-title: 3 Biotech – volume: 25 start-page: 1957 year: 2013 end-page: 1961 ident: bb0275 article-title: Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production publication-title: J. Appl. Phycol. – volume: 31 start-page: 426 year: 1959 end-page: 428 ident: bb0170 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal. Chem. – volume: 13 start-page: 4143 year: 2024 end-page: 4153 ident: bb0100 article-title: Construction of chitinase complexes using self-assembly systems for efficient hydrolysis of chitin publication-title: ACS Synth. Biol. – volume: 13 start-page: 11343 year: 2019 end-page: 11352 ident: bb0085 article-title: Self-assembled multienzyme nanostructures on synthetic protein scaffolds publication-title: ACS Nano – volume: 116 start-page: 96 year: 2009 end-page: 100 ident: bb0060 article-title: Production of d-galactose using β-galactosidase and publication-title: Food Chem. – volume: 283 year: 2024 ident: bb0265 article-title: Agarase cocktail from agarolytic publication-title: Int. J. Biol. Macromol. – volume: 66 start-page: 67 year: 2014 end-page: 73 ident: bb0050 article-title: Bi-functional cellulases complexes displayed on the cell surface of publication-title: Enzym. Microb. Technol. – volume: 113 start-page: 2358 year: 2016 end-page: 2366 ident: bb0150 article-title: Enhanced cell-surface display and secretory production of cellulolytic enzymes with publication-title: Biotechnol. Bioeng. – volume: 8 start-page: 48 year: 2017 end-page: 63 ident: bb0185 article-title: Assessment of the nutritional value and native agar content of the red alga publication-title: J. Algal Biomass Utln. – volume: 1617 start-page: 1 year: 2008 end-page: 16 ident: bb0200 article-title: Determination of structural carbohydrates and lignin in biomass publication-title: Lab. Anal. Proc. – volume: 106 start-page: 681 year: 2018 end-page: 691 ident: bb0015 article-title: Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites publication-title: Int. J. Biol. Macromol. – volume: 7 start-page: 2484 year: 2007 end-page: 2491 ident: bb0220 article-title: D-galactose/D-glucose-binding Protein from publication-title: Sensors – volume: 64 start-page: 2435 issue: 22 year: 2010 ident: 10.1016/j.ijbiomac.2025.146853_bb0235 article-title: Novel agarose and agar fibers: Fabrication and characterization publication-title: Mater. Lett. doi: 10.1016/j.matlet.2010.08.008 – volume: 31 start-page: 426 issue: 3 year: 1959 ident: 10.1016/j.ijbiomac.2025.146853_bb0170 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal. Chem. doi: 10.1021/ac60147a030 – volume: 283 issue: Pt 4 year: 2024 ident: 10.1016/j.ijbiomac.2025.146853_bb0265 article-title: Agarase cocktail from agarolytic Alteromonas sp. Aga1552 converts homogenized Gelidium amansii into monosaccharide publication-title: Int. J. Biol. Macromol. – volume: 250 start-page: 666 year: 2018 ident: 10.1016/j.ijbiomac.2025.146853_bb0030 article-title: Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.11.098 – volume: 111 start-page: 1088 issue: 6 year: 2014 ident: 10.1016/j.ijbiomac.2025.146853_bb0195 article-title: Fast hemicellulose quantification via a simple one-step acid hydrolysis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25174 – volume: 65 start-page: 256 issue: 3 year: 2017 ident: 10.1016/j.ijbiomac.2025.146853_bb0190 article-title: Chemical and physical characteristics of carrageenan extracted from Eucheuma spinosum harvested from three different I ndonesian coastal sea regions publication-title: Phycol. Res. doi: 10.1111/pre.12178 – volume: 1617 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.ijbiomac.2025.146853_bb0200 article-title: Determination of structural carbohydrates and lignin in biomass publication-title: Lab. Anal. Proc. – volume: 44 start-page: 1003 issue: 6 year: 2021 ident: 10.1016/j.ijbiomac.2025.146853_bb0125 article-title: Cell-surface engineering of yeasts for whole-cell biocatalysts publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-020-02484-5 – volume: 13 start-page: 4143 issue: 12 year: 2024 ident: 10.1016/j.ijbiomac.2025.146853_bb0100 article-title: Construction of chitinase complexes using self-assembly systems for efficient hydrolysis of chitin publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.4c00613 – volume: 189 start-page: 819 year: 2021 ident: 10.1016/j.ijbiomac.2025.146853_bb0115 article-title: Efficient utilization of brown algae for the production of Polyhydroxybutyrate (PHB) by using an enzyme complex immobilized on Ralstonia eutropha publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.08.149 – volume: 319 start-page: 124242 year: 2021 ident: 10.1016/j.ijbiomac.2025.146853_bb0160 article-title: Enzymatic production of sugar from fungi and fungi-infected lignocellulosic biomass by a new cellulosomal enzyme harboring N-acetyl-beta-d-glucosaminidase activity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124242 – volume: 139 start-page: 4790 issue: 19 year: 2014 ident: 10.1016/j.ijbiomac.2025.146853_bb0070 article-title: Signal amplification by a self-assembled biosensor system designed on the principle of dockerin-cohesin interactions in a cellulosome complex publication-title: Analyst doi: 10.1039/C4AN00856A – volume: 101 start-page: 1573 issue: 4 year: 2017 ident: 10.1016/j.ijbiomac.2025.146853_bb0230 article-title: Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-8011-9 – volume: 8 start-page: 48 year: 2017 ident: 10.1016/j.ijbiomac.2025.146853_bb0185 article-title: Assessment of the nutritional value and native agar content of the red alga Gracilaria foliifera (Forsskal) Borgesen from the Red Sea coast of Sudan publication-title: J. Algal Biomass Utln. – volume: 106 start-page: 681 year: 2018 ident: 10.1016/j.ijbiomac.2025.146853_bb0015 article-title: Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.08.067 – volume: 71 start-page: 6465 issue: 11 year: 2005 ident: 10.1016/j.ijbiomac.2025.146853_bb0145 article-title: Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.11.6465-6472.2005 – volume: 45 year: 2020 ident: 10.1016/j.ijbiomac.2025.146853_bb0020 article-title: Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2020.107641 – volume: 13 year: 2022 ident: 10.1016/j.ijbiomac.2025.146853_bb0250 article-title: Characterization of a novel beta-agarase from Antarctic macroalgae-associated bacteria metagenomic library and anti-inflammatory activity of the enzymatic hydrolysates publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.972272 – volume: 45 start-page: 1 year: 2020 ident: 10.1016/j.ijbiomac.2025.146853_bb0080 article-title: Recent advances in short peptide self-assembly: from rational design to novel applications publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2019.08.003 – volume: 39 start-page: 790 issue: 4 year: 1917 ident: 10.1016/j.ijbiomac.2025.146853_bb0180 article-title: Kinetics of invertase action publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02249a033 – volume: 9 start-page: 122 year: 2016 ident: 10.1016/j.ijbiomac.2025.146853_bb0010 article-title: Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0535-9 – volume: 161 start-page: 41 issue: 1–8 year: 2010 ident: 10.1016/j.ijbiomac.2025.146853_bb0005 article-title: Production of sugars and levulinic acid from marine biomass Gelidium amansii publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8795-5 – volume: 102 start-page: 52 year: 2017 ident: 10.1016/j.ijbiomac.2025.146853_bb0165 article-title: Role of the C-terminal and chitin insertion domains on enzymatic activity of endochitinase ChiA74 of Bacillus thuringiensis publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.03.191 – volume: 391 issue: Pt A year: 2024 ident: 10.1016/j.ijbiomac.2025.146853_bb0105 article-title: Biosynthesis of l-histidine from marine biomass-derived galactans in metabolically engineered Corynebacterium glutamicum publication-title: Bioresour. Technol. – volume: 6 start-page: 146 issue: 2 year: 2016 ident: 10.1016/j.ijbiomac.2025.146853_bb0045 article-title: Bacterial carrageenases: an overview of production and biotechnological applications publication-title: 3 Biotech doi: 10.1007/s13205-016-0461-3 – volume: 117 start-page: 2385 issue: 5 year: 2020 ident: 10.1016/j.ijbiomac.2025.146853_bb0095 article-title: Constructing a yeast to express the largest cellulosome complex on the cell surface publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1916529117 – volume: 57 start-page: 110 year: 2020 ident: 10.1016/j.ijbiomac.2025.146853_bb0155 article-title: Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.11.004 – volume: 68 start-page: 3195 issue: 10 year: 2020 ident: 10.1016/j.ijbiomac.2025.146853_bb0120 article-title: Trienzymatic complex system for isomerization of agar-derived D-galactose into D-tagatose as a low-calorie sweetener publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b07536 – volume: 153 start-page: 456 year: 2020 ident: 10.1016/j.ijbiomac.2025.146853_bb0270 article-title: Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae) publication-title: Renew. Energy doi: 10.1016/j.renene.2020.02.032 – volume: 10 start-page: 245 issue: 2 year: 1993 ident: 10.1016/j.ijbiomac.2025.146853_bb0055 article-title: The galactose regulon of Escherichia coli publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01950.x – volume: 99 start-page: 2556 issue: 7 year: 2022 ident: 10.1016/j.ijbiomac.2025.146853_bb0175 article-title: Visual Interpretation of the Meaning of kcat/KM in Enzyme Kinetics publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.1c01268 – volume: 620 start-page: 35 year: 2017 ident: 10.1016/j.ijbiomac.2025.146853_bb0245 article-title: Thermodynamics of tunnel formation upon substrate binding in a processive glycoside hydrolase publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2017.03.011 – volume: 97 start-page: 4907 issue: 11 year: 2013 ident: 10.1016/j.ijbiomac.2025.146853_bb0225 article-title: Characterization of a novel beta-agarase from an agar-degrading bacterium Catenovulum sp. X3 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4385-5 – volume: 17 start-page: 535 issue: 3 year: 2018 ident: 10.1016/j.ijbiomac.2025.146853_bb0040 article-title: Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes publication-title: Phytochem. Rev. doi: 10.1007/s11101-018-9548-2 – volume: 13 start-page: 9895 issue: 9 year: 2019 ident: 10.1016/j.ijbiomac.2025.146853_bb0090 article-title: Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo publication-title: ACS Nano doi: 10.1021/acsnano.9b03631 – volume: 7 start-page: 2484 year: 2007 ident: 10.1016/j.ijbiomac.2025.146853_bb0220 article-title: D-galactose/D-glucose-binding Protein from Escherichia coli as Probe for a Non-consuming Glucose Implantable Fluorescence Biosensor publication-title: Sensors doi: 10.3390/s7102484 – volume: 16 start-page: 106 issue: 1 year: 2017 ident: 10.1016/j.ijbiomac.2025.146853_bb0130 article-title: Whole-cell biocatalysts by design publication-title: Microb. Cell Factories doi: 10.1186/s12934-017-0724-7 – volume: 66 start-page: 67 year: 2014 ident: 10.1016/j.ijbiomac.2025.146853_bb0050 article-title: Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2014.08.010 – volume: 13 start-page: 11343 issue: 10 year: 2019 ident: 10.1016/j.ijbiomac.2025.146853_bb0085 article-title: Self-assembled multienzyme nanostructures on synthetic protein scaffolds publication-title: ACS Nano doi: 10.1021/acsnano.9b04554 – volume: 102 start-page: 6847 issue: 16 year: 2018 ident: 10.1016/j.ijbiomac.2025.146853_bb0255 article-title: Future direction in marine bacterial agarases for industrial applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9156-5 – volume: 13 start-page: 1225 issue: 4 year: 2024 ident: 10.1016/j.ijbiomac.2025.146853_bb0140 article-title: Engineering Compositionally Uniform Yeast Whole-Cell Biocatalysts with Maximized Surface Enzyme Density for Cellulosic Biofuel Production publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.3c00669 – volume: 196 start-page: 634 year: 2015 ident: 10.1016/j.ijbiomac.2025.146853_bb0210 article-title: High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.016 – volume: 362 year: 2022 ident: 10.1016/j.ijbiomac.2025.146853_bb0135 article-title: Surface display of enzyme complex on Corynebacterium glutamicum as a whole cell biocatalyst and its consolidated bioprocessing using fungal-pretreated lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127758 – volume: 31 start-page: 517 year: 2018 ident: 10.1016/j.ijbiomac.2025.146853_bb0205 article-title: Recombinant agarase increases the production of reducing sugars from HCl-treated Gracilaria verrucosa, a red algae publication-title: Algal Res. doi: 10.1016/j.algal.2017.01.008 – volume: 352 year: 2021 ident: 10.1016/j.ijbiomac.2025.146853_bb0260 article-title: Agarase cocktail from agar polysaccharide utilization loci converts homogenized Gelidium amansii into neoagarooligosaccharides publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128685 – volume: 116 start-page: 96 issue: 1 year: 2009 ident: 10.1016/j.ijbiomac.2025.146853_bb0060 article-title: Production of d-galactose using β-galactosidase and Saccharomyces cerevisiae entrapped in poly(vinylalcohol) hydrogel publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.02.011 – volume: 23 issue: 10 year: 2018 ident: 10.1016/j.ijbiomac.2025.146853_bb0065 article-title: Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications publication-title: Molecules doi: 10.3390/molecules23102451 – volume: 25 start-page: 1957 issue: 6 year: 2013 ident: 10.1016/j.ijbiomac.2025.146853_bb0275 article-title: Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production publication-title: J. Appl. Phycol. doi: 10.1007/s10811-013-0041-4 – volume: 101 start-page: 5581 issue: 14 year: 2017 ident: 10.1016/j.ijbiomac.2025.146853_bb0025 article-title: Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8383-5 – volume: 385 start-page: 703 year: 2005 ident: 10.1016/j.ijbiomac.2025.146853_bb0035 article-title: The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours publication-title: Biochem. J. doi: 10.1042/BJ20041044 – volume: 404 start-page: 105 issue: 1 year: 2007 ident: 10.1016/j.ijbiomac.2025.146853_bb0240 article-title: Degradation of λ-carrageenan by Pseudoalteromonas carrageenovora λ-carrageenase: a new family of glycoside hydrolases unrelated to κ-and ι-carrageenases publication-title: Biochem. J. doi: 10.1042//BJ20061359 – volume: 49 start-page: 1266 issue: 8 year: 2014 ident: 10.1016/j.ijbiomac.2025.146853_bb0075 article-title: Enzymatic degradation of lignocellulosic biomass by continuous process using laccase and cellulases with the aid of scaffoldin for ethanol production publication-title: Process Biochem. doi: 10.1016/j.procbio.2014.05.004 – volume: 113 start-page: 2358 issue: 11 year: 2016 ident: 10.1016/j.ijbiomac.2025.146853_bb0150 article-title: Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26008 – volume: 101 year: 2020 ident: 10.1016/j.ijbiomac.2025.146853_bb0215 article-title: Effect of pulsed electric field on assembly structure of α-amylase and pectin electrostatic complexes publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2019.105547 – volume: 20 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ijbiomac.2025.146853_bb0110 article-title: Integration of bacterial expansin on agarolytic complexes to enhance the degrading activity of red algae by control of gelling properties publication-title: Mar. Biotechnol. (N.Y.) doi: 10.1007/s10126-017-9782-4 |
| SSID | ssj0006518 |
| Score | 2.4435184 |
| Snippet | Marine biomass is a potential resource that contains functional carbohydrates, such as agar, carrageenan, and cellulose, and can be modified for various... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 146853 |
| SubjectTerms | Agar - chemistry Aquatic Organisms Biocatalysis Biomass Biomass-to-biofuel conversion Carbohydrate Metabolism Carrageenan - chemistry Cellulose - chemistry Fermentation Hydrolysis Marine carbohydrate-active enzymes Marine polysaccharide Modular enzyme assembly Rhodophyta - chemistry Saccharomyces cerevisiae - metabolism Sugars - metabolism Surface-engineered microbial catalyst |
| Title | A self-assembled multi-enzyme nanomachine and whole-cell biocatalyst for the sustainable valorization of marine biomass into fermentable sugars and consolidated bioprocessing |
| URI | https://dx.doi.org/10.1016/j.ijbiomac.2025.146853 https://www.ncbi.nlm.nih.gov/pubmed/40812633 https://www.proquest.com/docview/3239785193 |
| Volume | 322 |
| WOSCitedRecordID | wos001558993100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2DgleENdRLpOReKsCuTVxHrupaCCYeBiob5EdO1OrNqmadlv5Ufwd_g7n2M5ljAkQ4iVtojp2832tzzn-zjEhr7gUmfIS6QghlRMyXN-VnufIWAZeLhPp6mDOlw_xyQmbTJJPOzvf61yY83lcFOzyMln-V6jhGoCNqbN_AXdzU7gA7wF0OALscPwj4EeDSs1zB4xitRBzsCe1ZtBRxdftQg0KXpQLLaA06wYXuD-ug-H7gZiWOpizrdaN-LDq5FfBIMuVTdvUy_IcMwex2QI6w8IT5SCHP3pUo-Pnq80ZeM02ca6ALz3F6ILEBkuTnlBPm7NWTt9GJzs1LUylKE0nGDsKCPWevq380cqJPm5VWZw5403D-ENMKrvgZokKN5pu5Qw6RnxoWhzjS8NwPDHKH9yIqb6bDY34w0b7ZeN113J2bAjVc5hnV4PsHBCY5Ohr84kJbcxeT2f6YWLNS3-IswszJY5_qtWNUjkP7w2GJZhqrrtL9vx4mLAe2Ru9G0_eN0ZCNNSh52YwneT1X_d2k910k1-k7aPTe-SudWzoyBDyPtlRxQNy-6jeT_Ah-TaiV4lJu8SkHWJSoAxtiUk7xKRATArEpB1i0i4xaZlTQ0xqiUmRmLRDTGqIqXvpEpNeIeYj8vnt-PTo2LG7hThZMHTXTgKmdca4K6IgCJOcRVnoZm4E83cochVJHuWB8njE_CDLwlgEIozyDM4CJQS4NcFj0ivKQj0hlIHRHmXcDT3BQ_CHEo_LMBHg6sicC-X3yZsai3RpisKktVpyltbopYheatDrk6SGLLWmrTFZU2Dab9u-rDFOATJ88LxQ5aZKAx-8CYY-WJ_sG_Cb8YRg6_vwKJ7-Q8_PyJ32Z_Wc9NarjXpBbmXn62m1OiC78YQdWGL_AInX7-8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-assembled+multi-enzyme+nanomachine+and+whole-cell+biocatalyst+for+the+sustainable+valorization+of+marine+biomass+into+fermentable+sugars+and+consolidated+bioprocessing&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Lee%2C+Myeong-Eun&rft.au=Bhardwaj%2C+Nisha&rft.au=Cho%2C+Byeong-Hyeon&rft.au=Hyeon%2C+Jeong+Eun&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0141-8130&rft.volume=322&rft_id=info:doi/10.1016%2Fj.ijbiomac.2025.146853&rft.externalDocID=S0141813025074100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |