GPU Framework for Change Detection in Multitemporal Hyperspectral Images

Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral–spatial techniques helps t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of parallel programming Ročník 47; číslo 2; s. 272 - 292
Hlavní autoři: López-Fandiño, Javier, B. Heras, Dora, Argüello, Francisco, Dalla Mura, Mauro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2019
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0885-7458, 1573-7640
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral–spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu’s thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5 × with respect to an OpenMP implementation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7458
1573-7640
DOI:10.1007/s10766-017-0547-5