Inference in Regression Discontinuity Designs with a Discrete Running Variable
We consider inference in regression discontinuity designs when the running variable only takes a moderate number of distinct values. In particular, we study the common practice of using confidence intervals (CIs) based on standard errors that are clustered by the running variable as a means to make...
Uloženo v:
| Vydáno v: | The American economic review Ročník 108; číslo 8; s. 2277 - 2304 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Nashville
American Economic Association
01.08.2018
|
| Témata: | |
| ISSN: | 0002-8282, 1944-7981 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider inference in regression discontinuity designs when the running variable only takes a moderate number of distinct values. In particular, we study the common practice of using confidence intervals (CIs) based on standard errors that are clustered by the running variable as a means to make inference robust to model misspecification (Lee and Card 2008). We derive theoretical results and present simulation and empirical evidence showing that these CIs do not guard against model misspecification, and that they have poor coverage properties. We therefore recommend against using these CIs in practice. We instead propose two alternative CIs with guaranteed coverage properties under easily interpretable restrictions on the conditional expectation function. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0002-8282 1944-7981 |
| DOI: | 10.1257/aer.20160945 |