Linear Index Coding via Semidefinite Programming

In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to broadcast an n-bit word to n receivers (one bit per receiver), where the receivers have side information represented by a graph G. The objective is to minimize the length of a codeword sent to all receivers which...

Full description

Saved in:
Bibliographic Details
Published in:Combinatorics, probability & computing Vol. 23; no. 2; pp. 223 - 247
Main Authors: CHLAMTÁČ, EDEN, HAVIV, ISHAY
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01.03.2014
Subjects:
ISSN:0963-5483, 1469-2163
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to broadcast an n-bit word to n receivers (one bit per receiver), where the receivers have side information represented by a graph G. The objective is to minimize the length of a codeword sent to all receivers which allows each receiver to learn its bit. For linear index coding, the minimum possible length is known to be equal to a graph parameter called minrank (Bar-Yossef, Birk, Jayram and Kol, IEEE Trans. Inform. Theory, 2011). We show a polynomial-time algorithm that, given an n-vertex graph G with minrank k, finds a linear index code for G of length Õ(nf(k)), where f(k) depends only on k. For example, for k = 3 we obtain f(3) ≈ 0.2574. Our algorithm employs a semidefinite program (SDP) introduced by Karger, Motwani and Sudan for graph colouring (J. Assoc. Comput. Mach., 1998) and its refined analysis due to Arora, Chlamtac and Charikar (STOC, 2006). Since the SDP we use is not a relaxation of the minimization problem we consider, a crucial component of our analysis is an upper bound on the objective value of the SDP in terms of the minrank. At the heart of our analysis lies a combinatorial result which may be of independent interest. Namely, we show an exact expression for the maximum possible value of the Lovász ϑ-function of a graph with minrank k. This yields a tight gap between two classical upper bounds on the Shannon capacity of a graph.
AbstractList In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to broadcast an n-bit word to n receivers (one bit per receiver), where the receivers have side information represented by a graph G. The objective is to minimize the length of a codeword sent to all receivers which allows each receiver to learn its bit. For linear index coding, the minimum possible length is known to be equal to a graph parameter called minrank (Bar-Yossef, Birk, Jayram and Kol, IEEE Trans. Inform. Theory, 2011). We show a polynomial-time algorithm that, given an n-vertex graph G with minrank k, finds a linear index code for G of length Õ(n f(k)), where f(k) depends only on k. For example, for k = 3 we obtain f(3) [approximate] 0.2574. Our algorithm employs a semidefinite program (SDP) introduced by Karger, Motwani and Sudan for graph colouring (J. Assoc. Comput. Mach., 1998) and its refined analysis due to Arora, Chlamtac and Charikar (STOC, 2006). Since the SDP we use is not a relaxation of the minimization problem we consider, a crucial component of our analysis is an upper bound on the objective value of the SDP in terms of the minrank. At the heart of our analysis lies a combinatorial result which may be of independent interest. Namely, we show an exact expression for the maximum possible value of the Lovász [vartheta]-function of a graph with minrank k. This yields a tight gap between two classical upper bounds on the Shannon capacity of a graph. [PUBLICATION ABSTRACT]
In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to broadcast an n-bit word to n receivers (one bit per receiver), where the receivers have side information represented by a graph G. The objective is to minimize the length of a codeword sent to all receivers which allows each receiver to learn its bit. For linear index coding, the minimum possible length is known to be equal to a graph parameter called minrank (Bar-Yossef, Birk, Jayram and Kol, IEEE Trans. Inform. Theory, 2011). We show a polynomial-time algorithm that, given an n-vertex graph G with minrank k, finds a linear index code for G of length Õ(nf(k)), where f(k) depends only on k. For example, for k = 3 we obtain f(3) ≈ 0.2574. Our algorithm employs a semidefinite program (SDP) introduced by Karger, Motwani and Sudan for graph colouring (J. Assoc. Comput. Mach., 1998) and its refined analysis due to Arora, Chlamtac and Charikar (STOC, 2006). Since the SDP we use is not a relaxation of the minimization problem we consider, a crucial component of our analysis is an upper bound on the objective value of the SDP in terms of the minrank. At the heart of our analysis lies a combinatorial result which may be of independent interest. Namely, we show an exact expression for the maximum possible value of the Lovász ϑ-function of a graph with minrank k. This yields a tight gap between two classical upper bounds on the Shannon capacity of a graph.
In the index coding problem, introduced by Birk and Kol ( INFOCOM, 1998 ), the goal is to broadcast an n -bit word to n receivers (one bit per receiver), where the receivers have side information represented by a graph G . The objective is to minimize the length of a codeword sent to all receivers which allows each receiver to learn its bit. For linear index coding, the minimum possible length is known to be equal to a graph parameter called minrank (Bar-Yossef, Birk, Jayram and Kol, IEEE Trans. Inform. Theory , 2011). We show a polynomial-time algorithm that, given an n -vertex graph G with minrank k , finds a linear index code for G of length Õ ( n f ( k ) ), where f ( k ) depends only on k . For example, for k = 3 we obtain f (3) ≈ 0.2574. Our algorithm employs a semidefinite program (SDP) introduced by Karger, Motwani and Sudan for graph colouring ( J. Assoc. Comput. Mach. , 1998) and its refined analysis due to Arora, Chlamtac and Charikar ( STOC , 2006). Since the SDP we use is not a relaxation of the minimization problem we consider, a crucial component of our analysis is an upper bound on the objective value of the SDP in terms of the minrank. At the heart of our analysis lies a combinatorial result which may be of independent interest. Namely, we show an exact expression for the maximum possible value of the Lovász ϑ-function of a graph with minrank k . This yields a tight gap between two classical upper bounds on the Shannon capacity of a graph.
In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to broadcast an n-bit word to n receivers (one bit per receiver), where the receivers have side information represented by a graph G. The objective is to minimize the length of a codeword sent to all receivers which allows each receiver to learn its bit. For linear index coding, the minimum possible length is known to be equal to a graph parameter called minrank (Bar-Yossef, Birk, Jayram and Kol, IEEE Trans. Inform. Theory, 2011). We show a polynomial-time algorithm that, given an n-vertex graph G with minrank k, finds a linear index code for G of length O(n super( )fk), where f(k) depends only on k. For example, for k = 3 we obtain f(3) approximately 0.2574. Our algorithm employs a semidefinite program (SDP) introduced by Karger, Motwani and Sudan for graph colouring (J. Assoc. Comput. Mach., 1998) and its refined analysis due to Arora, Chlamtac and Charikar (STOC, 2006). Since the SDP we use is not a relaxation of the minimization problem we consider, a crucial component of our analysis is an upper bound on the objective value of the SDP in terms of the minrank. At the heart of our analysis lies a combinatorial result which may be of independent interest. Namely, we show an exact expression for the maximum possible value of the Lovasz [thetav]-function of a graph with minrank k. This yields a tight gap between two classical upper bounds on the Shannon capacity of a graph.
Author CHLAMTÁČ, EDEN
HAVIV, ISHAY
Author_xml – sequence: 1
  givenname: EDEN
  surname: CHLAMTÁČ
  fullname: CHLAMTÁČ, EDEN
  email: chlamtac@cs.bgu.ac.il
  organization: 1Department of Computer Science, Ben Gurion University of the Negev, PO box 653, Beer Sheva 84105, Israel (e-mail: chlamtac@cs.bgu.ac.il)
– sequence: 2
  givenname: ISHAY
  surname: HAVIV
  fullname: HAVIV, ISHAY
  organization: 2School of Computer Science, The Academic College of Tel Aviv–Yaffo, Tel Aviv 61083, Israel
BookMark eNp9kE1LAzEQhoNUsK3-AG8LXrysJpuPbY5S_CgUFKrnJZtMSspuUpOt6L93l_YgFT3NwPs8w_BO0MgHDwhdEnxDMClvV1gKytmMEoox5oKdoDFhQuYFEXSExkOcD_kZmqS0GRgu8BjhpfOgYrbwBj6zeTDOr7MPp7IVtM6Add51kL3EsI6qbfvwHJ1a1SS4OMwpenu4f50_5cvnx8X8bplrynGXC7CmhsJqU1JmMKlVSY3UwGQtNOh-IzUwUzPBeGlxQWRhCdXSAuUwM5RO0fX-7jaG9x2krmpd0tA0ykPYpYpwiqUUnJQ9enWEbsIu-v67ijApeSkFIz1F9pSOIaUIttpG16r4VRFcDR1WvzrsnfLI0a5TnQu-i8o1_5r0YKq2js6s4cdTf1rf0SCFBg
CitedBy_id crossref_primary_10_1109_TIT_2019_2912184
crossref_primary_10_1016_j_ejc_2019_04_006
crossref_primary_10_1109_TIT_2020_2990822
crossref_primary_10_1137_23M155760X
crossref_primary_10_1109_TIT_2018_2810384
crossref_primary_10_1145_3322817
Cites_doi 10.1145/176584.176586
10.1109/TIT.1956.1056798
10.1007/978-3-642-15369-3_11
10.1109/TIT.2010.2094910
10.1109/FOCS.2008.41
10.1007/s004930070013
10.1109/FOCS.2007.72
10.1109/TIT.1979.1055985
10.1145/274787.274791
10.1137/07068062X
10.1016/S0020-0190(96)00190-1
10.1109/TIT.2006.874540
10.1109/SFCS.2001.959936
10.1109/18.850663
10.1109/TIT.2010.2103753
10.1109/TIT.2009.2023702
10.1007/BF01261326
10.1145/1132516.1132547
10.37236/1193
10.1109/TIT.1979.1056027
10.1109/18.761254
10.1016/S0196-6774(02)00217-1
10.1145/2157.2158
10.4086/toc.2007.v003a006
10.1137/S0895480100376794
10.1145/1132516.1132548
10.1145/509907.510017
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2013
Copyright_xml – notice: Copyright © Cambridge University Press 2013
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0963548313000564
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate E. Chlamtáč and I. Haviv
Linear Index Coding via Semidefinite Programming
EISSN 1469-2163
EndPage 247
ExternalDocumentID 3222284421
10_1017_S0963548313000564
Genre Feature
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29F
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
DC4
DOHLZ
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACRPL
ADNMO
AEMFK
AFFHD
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c350t-6efdbe2fcd734d01ba73d9ce49b6cec9ce1be4db46457f02192f13c9fe35e8d33
IEDL.DBID M7S
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338289200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0963-5483
IngestDate Fri Sep 05 12:06:19 EDT 2025
Fri Jul 25 19:34:10 EDT 2025
Sat Nov 29 06:01:52 EST 2025
Tue Nov 18 22:32:15 EST 2025
Wed Mar 13 05:51:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Primary 05C85
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-6efdbe2fcd734d01ba73d9ce49b6cec9ce1be4db46457f02192f13c9fe35e8d33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1499579641
PQPubID 33829
PageCount 25
ParticipantIDs proquest_miscellaneous_1530996517
proquest_journals_1499579641
crossref_primary_10_1017_S0963548313000564
crossref_citationtrail_10_1017_S0963548313000564
cambridge_journals_10_1017_S0963548313000564
PublicationCentury 2000
PublicationDate 20140300
2014-03-00
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 20140300
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationSubtitle CPC
PublicationTitle Combinatorics, probability & computing
PublicationTitleAlternate Combinator. Probab. Comp
PublicationYear 2014
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Haemers (S0963548313000564_ref19) 1981
Feller (S0963548313000564_ref15) 1968
S0963548313000564_ref21
S0963548313000564_ref20
El Rouayheb (S0963548313000564_ref14) 2008
S0963548313000564_ref24
S0963548313000564_ref23
S0963548313000564_ref22
S0963548313000564_ref7
S0963548313000564_ref29
S0963548313000564_ref28
Knuth (S0963548313000564_ref25) 1994; 1
S0963548313000564_ref6
S0963548313000564_ref5
S0963548313000564_ref27
S0963548313000564_ref26
S0963548313000564_ref4
S0963548313000564_ref9
S0963548313000564_ref8
S0963548313000564_ref3
S0963548313000564_ref2
S0963548313000564_ref1
S0963548313000564_ref32
S0963548313000564_ref10
S0963548313000564_ref31
S0963548313000564_ref30
S0963548313000564_ref13
S0963548313000564_ref12
S0963548313000564_ref33
S0963548313000564_ref11
S0963548313000564_ref18
S0963548313000564_ref17
S0963548313000564_ref16
References_xml – ident: S0963548313000564_ref7
  doi: 10.1145/176584.176586
– ident: S0963548313000564_ref30
  doi: 10.1109/TIT.1956.1056798
– ident: S0963548313000564_ref12
  doi: 10.1007/978-3-642-15369-3_11
– ident: S0963548313000564_ref26
  doi: 10.1109/TIT.2010.2094910
– ident: S0963548313000564_ref3
  doi: 10.1109/FOCS.2008.41
– ident: S0963548313000564_ref22
  doi: 10.1007/s004930070013
– ident: S0963548313000564_ref16
– ident: S0963548313000564_ref10
  doi: 10.1109/FOCS.2007.72
– ident: S0963548313000564_ref27
  doi: 10.1109/TIT.1979.1055985
– ident: S0963548313000564_ref21
  doi: 10.1145/274787.274791
– ident: S0963548313000564_ref13
  doi: 10.1137/07068062X
– ident: S0963548313000564_ref2
– ident: S0963548313000564_ref8
  doi: 10.1016/S0020-0190(96)00190-1
– ident: S0963548313000564_ref6
  doi: 10.1109/TIT.2006.874540
– ident: S0963548313000564_ref23
  doi: 10.1109/SFCS.2001.959936
– ident: S0963548313000564_ref1
  doi: 10.1109/18.850663
– ident: S0963548313000564_ref5
  doi: 10.1109/TIT.2010.2103753
– ident: S0963548313000564_ref11
– ident: S0963548313000564_ref28
  doi: 10.1109/TIT.2009.2023702
– ident: S0963548313000564_ref29
  doi: 10.1007/BF01261326
– ident: S0963548313000564_ref9
  doi: 10.1145/1132516.1132547
– volume: 1
  year: 1994
  ident: S0963548313000564_ref25
  article-title: The sandwich theorem
  publication-title: Electron. J. Combin.
  doi: 10.37236/1193
– ident: S0963548313000564_ref18
  doi: 10.1109/TIT.1979.1056027
– volume-title: An Introduction to Probability Theory and its Applications
  year: 1968
  ident: S0963548313000564_ref15
– start-page: 1823
  volume-title: ISIT
  year: 2008
  ident: S0963548313000564_ref14
– ident: S0963548313000564_ref32
  doi: 10.1109/18.761254
– ident: S0963548313000564_ref20
  doi: 10.1016/S0196-6774(02)00217-1
– start-page: 267
  volume-title: Algebraic Methods in Graph Theory
  year: 1981
  ident: S0963548313000564_ref19
– ident: S0963548313000564_ref31
  doi: 10.1145/2157.2158
– ident: S0963548313000564_ref33
  doi: 10.4086/toc.2007.v003a006
– ident: S0963548313000564_ref17
  doi: 10.1137/S0895480100376794
– ident: S0963548313000564_ref4
  doi: 10.1145/1132516.1132548
– ident: S0963548313000564_ref24
  doi: 10.1145/509907.510017
SSID ssj0005560
Score 2.089211
Snippet In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to broadcast an n-bit word to n receivers (one bit per receiver), where...
In the index coding problem, introduced by Birk and Kol ( INFOCOM, 1998 ), the goal is to broadcast an n -bit word to n receivers (one bit per receiver), where...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 223
SubjectTerms Algorithms
Coding
Combinatorial analysis
Graph coloring
Graphs
Optimization
Receivers
Upper bounds
Title Linear Index Coding via Semidefinite Programming
URI https://www.cambridge.org/core/product/identifier/S0963548313000564/type/journal_article
https://www.proquest.com/docview/1499579641
https://www.proquest.com/docview/1530996517
Volume 23
WOSCitedRecordID wos000338289200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1469-2163
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0005560
  issn: 0963-5483
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1469-2163
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0005560
  issn: 0963-5483
  databaseCode: K7-
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1469-2163
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0005560
  issn: 0963-5483
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-2163
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0005560
  issn: 0963-5483
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_c5oM--C1O56jgkxhsmzZdn0THhiKO4hSGL6PNBxTcOtdtf7-Xtqsbwl58KSEfJVySu9_lLncA106EqokUEbFd2yOO4Iy0uAqJaSuF4tCPfBlmySa8Xq81GPhBceGWFm6VS56YMWqRcH1HfodI3s_eTVr3k2-is0Zp62qRQqMCNR0lwcpc9_q_Lh75K2FE6doBoEWXVs0sZDRW6jptzkEQ4KzGVliXUessOpM73f3_zvgA9grEaTzkW-QQtuT4CHZfy3Ct6TGYqJHijjeedehEo51oeWYs4tDoy1EspIo1MDWC3JVrhI0n8NHtvLefSJFKgXDqmjPCpBKRtBUXHnWEaUWhR4XPpeNHjEuOJSuSjoi0ndNTKPd9W1mU-0pSV7YEpadQHSdjeQYGE1ir7NA2GapuqN0ppB5DpsoY8kpq1uG2JOSwOBDpMHcm84Z_6F4Hc0nrIS_CkuvsGF-bhtyUQyZ5TI5NnRvL1VmZTbk0dbgqm_FgaWtJOJbJHPu4FNEzcy3vfPMvLmAHUZSTO6Y1oDqbzuUlbPPFLE6nTag9dnrBWxMqLx5pZvsTv4H7-QMlqeax
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBfXgW1yfFfQiBtukTdqDiPjAZd1lQQVvtc0DFtyHu6vin_I3Omm3VRH25sFbSZMSOo9vJjOZAdj3U3RNtEoJDaggvpKchNIkxKXGIBxGaaSTrNmEaDTCh4eoOQEfxV0Ym1ZZ6MRMUauutGfkx2jJR9m9Se-090xs1ygbXS1aaORsUdPvb-iyDU6qF0jfA0qvLu_Or8moqwCRLHCHhGujUk2NVIL5yvXSRDAVSe1HKZda4pOXal-lNuQnDEJgRI3HZGQ0C3So7AEoqvwpn4XCylVNkK-UkvxWMnoFNuEgZEUUNStRjYN2zIaP0Ojwv9dy-ImJPyEhw7mrhf_2hxZhfmRRO2e5CCzBhO4sw1y9LEc7WAEXPW7cmFO1pSGd867Fa-e1lTi3ut1S2rSs4e0081S1Nr5chfs_2fIaTHa6Hb0ODlc4amhCXY6uKXqvBqnFETQ4RyxgbgWOSsLFI4EfxHmynIh_0bkCbkHbWI7KrtvuH0_jlhyWS3p5zZFxk7cKbvi2m5IVKrBXvkbFYaNBSUd3X3BOwNA74IEnNsZ_Yhdmru_qN_FNtVHbhFm0GP08CW8LJof9F70N0_J12Br0dzJpcODxr5nrE7vqQ60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Index+Coding+via+Semidefinite+Programming&rft.jtitle=Combinatorics%2C+probability+%26+computing&rft.au=CHLAMT%C3%81%C4%8C%2C+EDEN&rft.au=HAVIV%2C+ISHAY&rft.date=2014-03-01&rft.pub=Cambridge+University+Press&rft.issn=0963-5483&rft.eissn=1469-2163&rft.volume=23&rft.issue=2&rft.spage=223&rft.epage=247&rft_id=info:doi/10.1017%2FS0963548313000564&rft.externalDocID=10_1017_S0963548313000564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-5483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-5483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-5483&client=summon