On 3-Dimensional Lattice Walks Confined to the Positive Octant
Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in { 0 , ± 1 } 2 : the generating function is D-finite if and only if a certain group associated with the step set is f...
Uložené v:
| Vydané v: | Annals of combinatorics Ročník 20; číslo 4; s. 661 - 704 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.12.2016
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 0218-0006, 0219-3094 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in
{
0
,
±
1
}
2
: the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3- dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in
{
0
,
±
1
}
3
(instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 — the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special
Hadamard structure
which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear. |
|---|---|
| AbstractList | Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in $\{0, \pm 1\}^2$: the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3-dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in $\{0, \pm 1\}^3$ (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 -- the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure, which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear. Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in { 0 , ± 1 } 2 : the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3- dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in { 0 , ± 1 } 3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 — the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear. Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in { 0 , ± 1 } 2 : the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3- dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in { 0 , ± 1 } 3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 — the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear. |
| Author | Melczer, Stephen Bostan, Alin Kauers, Manuel Bousquet-Mélou, Mireille |
| Author_xml | – sequence: 1 givenname: Alin surname: Bostan fullname: Bostan, Alin organization: INRIA Saclay Île-de-France – sequence: 2 givenname: Mireille surname: Bousquet-Mélou fullname: Bousquet-Mélou, Mireille email: bousquet@labri.fr organization: CNRS, LaBRI, Université de Bordeaux – sequence: 3 givenname: Manuel surname: Kauers fullname: Kauers, Manuel organization: Institute for Algebra, Johannes Kepler University – sequence: 4 givenname: Stephen surname: Melczer fullname: Melczer, Stephen organization: Cheriton School of Computer Science, University of Waterloo, U. Lyon, CNRS, ENS de Lyon, Inria, UCBL, Laboratoire LIP |
| BackLink | https://hal.science/hal-01063886$$DView record in HAL |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnjysTpLt7uxFKPWjQqEeFI8hpIlN3SZ1kxb896auggh6GDKE5xlm3gHpOe80IacULihAdRkAgJU50FScYV4dkD4wWucc6qL32WOemPKIDEJYpa5KXJ9czV3G82u71i5Y72STzWSMVunsWTavIZt4Z6zTiyz6LC519uCDjXans7mK0sVjcmhkE_TJ1zskT7c3j5NpPpvf3U_Gs1zxEcS8lLyujATGigKVAcMNHZULLJRUtao0LFAhaASDTDEKWGiQFCvGjTKloXxIzru5S9mITWvXsn0XXloxHc_E_g8olByx3O3Zs47dtP5tq0MUK79t02lBUERAjiUWiao6SrU-hFYboWyUMWUQW2kbQUHsgxVdsGl-qhSsqJJJf5nfC_3nsM4JiXUvuv2x05_SB0HOiYQ |
| CitedBy_id | crossref_primary_10_1016_j_jcta_2020_105251 crossref_primary_10_1137_18M1220856 crossref_primary_10_1007_s00029_021_00703_9 crossref_primary_10_1093_imrn_rnac125 crossref_primary_10_1016_j_jcta_2017_06_008 crossref_primary_10_1016_j_aam_2017_08_001 crossref_primary_10_1007_s11464_022_1031_0 crossref_primary_10_1090_mcom_3912 crossref_primary_10_1007_s00026_019_00413_2 crossref_primary_10_1016_j_jsc_2021_11_001 crossref_primary_10_1016_j_jsc_2019_09_001 crossref_primary_10_1016_j_ejc_2024_104015 crossref_primary_10_1016_j_jcta_2019_105189 crossref_primary_10_1016_j_aim_2016_08_038 crossref_primary_10_1112_blms_12396 crossref_primary_10_1007_s00026_020_00520_5 crossref_primary_10_1016_j_endm_2017_07_026 crossref_primary_10_3150_19_BEJ1107 crossref_primary_10_1016_j_endm_2017_05_008 crossref_primary_10_1088_1751_8121_ab73aa |
| Cites_doi | 10.1016/0304-3975(87)90011-9 10.1145/178365.178368 10.1006/jsco.1997.0151 10.1080/10236190802332084 10.1214/105051605000000052 10.1016/0021-8693(89)90222-6 10.1016/S0012-365X(00)00150-3 10.1016/S0012-365X(00)00147-3 10.1006/jsco.2002.0564 10.1016/j.ejc.2016.10.010 10.1145/309831.309953 10.1090/conm/520/10252 10.1090/S0002-9939-2010-10398-2 10.1007/978-3-0348-8211-8_3 10.1016/0378-3758(86)90009-1 10.1017/S0963548314000145 10.3836/tjm/1270215031 10.1090/tran/6804 10.1016/j.jcta.2013.09.005 10.1016/S0304-3975(03)00219-6 10.1073/pnas.0901678106 10.1016/j.tcs.2009.04.008 10.24033/asens.1488 10.1145/96877.96929 10.1016/S0304-3975(02)00007-5 10.1007/3-540-09996-4_36 10.1007/978-3-642-55750-7 10.46298/dmtcs.2724 10.1016/0021-8693(88)90166-4 10.1007/978-3-642-60001-2 10.1016/j.aam.2010.11.004 10.1016/0097-3165(80)90074-6 |
| ContentType | Journal Article |
| Copyright | Springer International Publishing 2016 Copyright Springer Science & Business Media 2016 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: Springer International Publishing 2016 – notice: Copyright Springer Science & Business Media 2016 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1007/s00026-016-0328-7 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 0219-3094 |
| EndPage | 704 |
| ExternalDocumentID | oai:HAL:hal-01063886v1 10_1007_s00026_016_0328_7 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 23M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS 1XC |
| ID | FETCH-LOGICAL-c350t-6a397fa022448cf0f3f156d84cac9c7e0d8c80e80f82c21084e0a18723fcf6f13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388575600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0218-0006 |
| IngestDate | Mon Nov 24 06:20:26 EST 2025 Wed Sep 17 23:57:03 EDT 2025 Tue Nov 18 21:47:28 EST 2025 Sat Nov 29 02:56:42 EST 2025 Fri Feb 21 02:37:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | D-finite series exact enumeration 05A15 lattice walks Exact enumeration Lattice walks |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-6a397fa022448cf0f3f156d84cac9c7e0d8c80e80f82c21084e0a18723fcf6f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2863-8300 0000-0002-0995-3444 |
| PQID | 1880838684 |
| PQPubID | 2043693 |
| PageCount | 44 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01063886v1 proquest_journals_1880838684 crossref_citationtrail_10_1007_s00026_016_0328_7 crossref_primary_10_1007_s00026_016_0328_7 springer_journals_10_1007_s00026_016_0328_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-01 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Annals of combinatorics |
| PublicationTitleAbbrev | Ann. Comb |
| PublicationYear | 2016 |
| Publisher | Springer International Publishing Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer Verlag |
| References | van HoeijM.Factorization of differential operators with rational functions coefficientsJ. Symbolic Comput.1997245537561148406810.1006/jsco.1997.01510886.68082 DuchonP.On the enumeration and generation of generalized Dyck wordsDiscrete Math.20002251-3121135179832710.1016/S0012-365X(00)00150-30971.68090 Bostan, A., Kurkova, I., Raschel, K.: A human proof of Gessel’s lattice path conjecture. Trans. Amer. Math. Soc. (to appear) Chudnovsky, G.V.: Rational and Padé approximations to solutions of linear differential equations and the monodromy theory. In: Iagolnitzer, D. (ed.) Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., Vol. 126, pp. 136–169. Springer, Berlin-New York (1980) Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Applications of Mathematics (New York), Vol. 40. Springer-Verlag, Berlin (1999) Bousquet-Mélou, M.: Counting walks in the quarter plane. In: Chauvin, B., Flajolet, P., Gardy, D.,Mokkadem, A. (eds.) Mathematics and Computer Science, II (Versailles, 2002), Trends Math., pp. 49–67. Birkhäuser, Basel (2002) Bostan, A., Chyzak, F., van Hoeij, M. Kauers, M., Pech, L.: Explicit differentiably finite generating functions of walks with small steps in the quarter plane. Priprint. Available at https://arxiv.org/abs/1606.02982 (2016) BanderierC.FlajoletP.Basic analytic combinatorics of directed lattice pathsTheoret. Comput. Sci.20022811-23780190956810.1016/S0304-3975(02)00007-50996.68126 LipshitzL.D-finite power seriesJ. Algebra1989122235337399907910.1016/0021-8693(89)90222-60695.12018 Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. PhD thesis, J. Kepler University, Linz (1996) Abramov, S.A., van Hoeij, M.: Desingularization of linear difference operators with polynomial coefficients. In: Dooley, S. (ed.) Proceedings of ISSAC’99, pp. 269–275. ACM New York, NY (1999) Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report no. 10-01 in the RISC Report Series. Johannes Kepler University, Linz (2010) Available at http://www.risc.jku.at/publications/download/risc_3934/hf.pdf Bostan, A., Kauers, M.: Automatic classification of restricted lattice walks. In: Krattenthaler, C., Strehl, V., Kauers, M. (eds.) 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, pp. 201–215. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2009) Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics. Vol. 62. Cambridge University Press, Cambridge (1999) SalvyB.ZimmermannP.Gfun: a Maple package for the manipulation of generating and holonomic functions in one variableACM Trans. Math. Software199420216317710.1145/178365.1783680888.65010 BostanA.KauersM.The complete generating function for Gessel walks is algebraicProc. Amer. Math. Soc.2010138930633078265393110.1090/S0002-9939-2010-10398-21206.05013 BostanA.RaschelK.SalvyB.Non-D-finite excursions in the quarter planeJ. Combin. Theory Ser. A20141214563311533110.1016/j.jcta.2013.09.0051279.05003 MishnaM.RechnitzerA.Two non-holonomic lattice walks in the quarter planeTheoret. Comput. Sci.200941038-4036163630255331610.1016/j.tcs.2009.04.0081228.05038 Stein, W.A., et al.: Sage Mathematics Software. http://www.sagemath.org (2013) KauersM.KoutschanC.ZeilbergerD.Proof of Ira Gessel’s lattice path conjectureProc. Natl. Acad. Sci. USA2009106281150211505253882110.1073/pnas.09016781061203.05010 Bousquet-MélouM.PetkovšekM.Walks confined in a quadrant are not always D-finiteTheoret. Comput. Sci.20033072257276202257810.1016/S0304-3975(03)00219-61070.68112 KauersM.ZeilbergerD.The quasi-holonomic ansatz and restricted lattice walksJ. Difference Equ. Appl.20081410-1111191126244718810.1080/102361908023320841193.05014 LipshitzL.The diagonal of a D-finite power series is D-finiteJ. Algebra1988113237337892976710.1016/0021-8693(88)90166-40657.13024 Singer, M.F.: Algebraic solutions of nth order linear differential equations. In: Ribenboim, P. (ed.) Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979), Queen’s Papers in Pure and Appl. Math., Vol. 54, pp. 379–420. Queen’s Univ., Kingston, Ont. (1980) GesselI.M.A factorization for formal Laurent series and lattice path enumerationJ. Combin. Theory Ser. A198028332133757021310.1016/0097-3165(80)90074-6 Bousquet-MélouM.Walks in the quarter plane: Kreweras’ algebraic modelAnn. Appl. Probab.200515214511491213411110.1214/1050516050000000521064.05010 Bousquet-MélouM.PetkovšekM.Linear recurrences with constant coefficients: the multivariate caseDiscrete Math.20002251-35175179832410.1016/S0012-365X(00)00147-30963.05005 FlajoletP.Analytic models and ambiguity of context-free languagesTheoret. Comput. Sci.1987492-328330990933510.1016/0304-3975(87)90011-90612.68069 BertrandD.BeukersF.Équations différentielles linéaires et majorations de multiplicitésAnn. Sci. École Norm. Sup., 419851811811928031990578.12016 CormierO.SingerM.F.TragerB.M.UlmerF.Linear differential operators for polynomial equationsJ. Symbolic Comput.2002345355398193746610.1006/jsco.2002.05641030.12002 PooleE.G.C.Introduction to the Theory of Linear Differential Equations1936LondonOxford Univ. Press0014.05801 Takayama, N.: An algorithm of constructing the integral of a module–an infinite dimensional analog of Gröbner basis. In: Watanabe, S., Nagata, M. (eds.) ISSAC ’90 Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 206–211. ACM New York, NY (1990) KurkovaI.RaschelK.Explicit expression for the generating function counting Gessel’s walksAdv. Appl. Math.2008473414433282219610.1016/j.aam.2010.11.0041234.05027 Kauers, M.: Guessing handbook. Technical Report RISC 09-07. Johannes Kepler Universität Linz, Linz (2009) Available at http://www.risc.jku.at/publications/download/risc_3814/demo.nb.pdf Singer, M. F.: Private communication. (2014) GesselI.M.A probabilistic method for lattice path enumerationJ. Statist. Plann. Inference1986141495884591410.1016/0378-3758(86)90009-10602.05006 OhtsukiM.On the number of apparent singularities of a linear differential equationTokyo J. Math.198251232967090110.3836/tjm/12702150310525.30033 MelczerS.MishnaM.Singularity analysis via the iterated kernel methodCombin. Probab. Comput.2014235861888324922810.1017/S09635483140001451298.05026 van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Vol. 328. Springer-Verlag, Berlin (2003) FayolleG.RaschelK.On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-planeMarkov Process. Related Fields201016348549627597701284.05018 Schrijver, A.: Theory of Linear and Integer Programming. JohnWiley & Sons Ltd., Chichester (1986) Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. In: Lladser, M.E., Maier, R.S., Mishna, M., Rechnitzer, A. (eds.) Algorithmic Probability and Combinatorics. Contemp. Math., Vol. 520, pp. 1–39. Amer. Math. Soc., Providence, RI (2010) C. Banderier (328_CR2) 2002; 281 M. Kauers (328_CR25) 2008; 14 328_CR26 L. Lipshitz (328_CR29) 1988; 113 M. Kauers (328_CR24) 2009; 106 328_CR23 O. Cormier (328_CR15) 2002; 34 E.G.C. Poole (328_CR34) 1936 328_CR40 328_CR42 328_CR41 328_CR5 328_CR7 A. Bostan (328_CR8) 2014; 121 328_CR9 M. Bousquet-Mélou (328_CR13) 2003; 307 P. Flajolet (328_CR19) 1987; 49 M. Mishna (328_CR32) 2009; 410 D. Bertrand (328_CR3) 1985; 18 G. Fayolle (328_CR18) 2010; 16 P. Duchon (328_CR16) 2000; 225 L. Lipshitz (328_CR28) 1989; 122 M. Bousquet-Mélou (328_CR10) 2005; 15 328_CR37 328_CR14 328_CR17 328_CR39 I.M. Gessel (328_CR20) 1980; 28 I. Kurkova (328_CR27) 2008; 47 328_CR38 328_CR11 M. Bousquet-Mélou (328_CR12) 2000; 225 A. Bostan (328_CR6) 2010; 138 328_CR35 328_CR1 328_CR4 328_CR30 S. Melczer (328_CR31) 2014; 23 B. Salvy (328_CR36) 1994; 20 M. Ohtsuki (328_CR33) 1982; 5 I.M. Gessel (328_CR21) 1986; 14 M. Hoeij van (328_CR22) 1997; 24 |
| References_xml | – reference: Singer, M.F.: Algebraic solutions of nth order linear differential equations. In: Ribenboim, P. (ed.) Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979), Queen’s Papers in Pure and Appl. Math., Vol. 54, pp. 379–420. Queen’s Univ., Kingston, Ont. (1980) – reference: BanderierC.FlajoletP.Basic analytic combinatorics of directed lattice pathsTheoret. Comput. Sci.20022811-23780190956810.1016/S0304-3975(02)00007-50996.68126 – reference: GesselI.M.A factorization for formal Laurent series and lattice path enumerationJ. Combin. Theory Ser. A198028332133757021310.1016/0097-3165(80)90074-6 – reference: GesselI.M.A probabilistic method for lattice path enumerationJ. Statist. Plann. Inference1986141495884591410.1016/0378-3758(86)90009-10602.05006 – reference: LipshitzL.D-finite power seriesJ. Algebra1989122235337399907910.1016/0021-8693(89)90222-60695.12018 – reference: van HoeijM.Factorization of differential operators with rational functions coefficientsJ. Symbolic Comput.1997245537561148406810.1006/jsco.1997.01510886.68082 – reference: Bostan, A., Kurkova, I., Raschel, K.: A human proof of Gessel’s lattice path conjecture. Trans. Amer. Math. Soc. (to appear) – reference: KurkovaI.RaschelK.Explicit expression for the generating function counting Gessel’s walksAdv. Appl. Math.2008473414433282219610.1016/j.aam.2010.11.0041234.05027 – reference: BostanA.RaschelK.SalvyB.Non-D-finite excursions in the quarter planeJ. Combin. Theory Ser. A20141214563311533110.1016/j.jcta.2013.09.0051279.05003 – reference: Bousquet-Mélou, M.: Counting walks in the quarter plane. In: Chauvin, B., Flajolet, P., Gardy, D.,Mokkadem, A. (eds.) Mathematics and Computer Science, II (Versailles, 2002), Trends Math., pp. 49–67. Birkhäuser, Basel (2002) – reference: CormierO.SingerM.F.TragerB.M.UlmerF.Linear differential operators for polynomial equationsJ. Symbolic Comput.2002345355398193746610.1006/jsco.2002.05641030.12002 – reference: LipshitzL.The diagonal of a D-finite power series is D-finiteJ. Algebra1988113237337892976710.1016/0021-8693(88)90166-40657.13024 – reference: MishnaM.RechnitzerA.Two non-holonomic lattice walks in the quarter planeTheoret. Comput. Sci.200941038-4036163630255331610.1016/j.tcs.2009.04.0081228.05038 – reference: Bousquet-MélouM.PetkovšekM.Walks confined in a quadrant are not always D-finiteTheoret. Comput. Sci.20033072257276202257810.1016/S0304-3975(03)00219-61070.68112 – reference: Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics. Vol. 62. Cambridge University Press, Cambridge (1999) – reference: Kauers, M.: Guessing handbook. Technical Report RISC 09-07. Johannes Kepler Universität Linz, Linz (2009) Available at http://www.risc.jku.at/publications/download/risc_3814/demo.nb.pdf – reference: FayolleG.RaschelK.On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-planeMarkov Process. Related Fields201016348549627597701284.05018 – reference: Schrijver, A.: Theory of Linear and Integer Programming. JohnWiley & Sons Ltd., Chichester (1986) – reference: DuchonP.On the enumeration and generation of generalized Dyck wordsDiscrete Math.20002251-3121135179832710.1016/S0012-365X(00)00150-30971.68090 – reference: KauersM.ZeilbergerD.The quasi-holonomic ansatz and restricted lattice walksJ. Difference Equ. Appl.20081410-1111191126244718810.1080/102361908023320841193.05014 – reference: van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Vol. 328. Springer-Verlag, Berlin (2003) – reference: Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. In: Lladser, M.E., Maier, R.S., Mishna, M., Rechnitzer, A. (eds.) Algorithmic Probability and Combinatorics. Contemp. Math., Vol. 520, pp. 1–39. Amer. Math. Soc., Providence, RI (2010) – reference: KauersM.KoutschanC.ZeilbergerD.Proof of Ira Gessel’s lattice path conjectureProc. Natl. Acad. Sci. USA2009106281150211505253882110.1073/pnas.09016781061203.05010 – reference: BertrandD.BeukersF.Équations différentielles linéaires et majorations de multiplicitésAnn. Sci. École Norm. Sup., 419851811811928031990578.12016 – reference: BostanA.KauersM.The complete generating function for Gessel walks is algebraicProc. Amer. Math. Soc.2010138930633078265393110.1090/S0002-9939-2010-10398-21206.05013 – reference: Stein, W.A., et al.: Sage Mathematics Software. http://www.sagemath.org (2013) – reference: Chudnovsky, G.V.: Rational and Padé approximations to solutions of linear differential equations and the monodromy theory. In: Iagolnitzer, D. (ed.) Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., Vol. 126, pp. 136–169. Springer, Berlin-New York (1980) – reference: Abramov, S.A., van Hoeij, M.: Desingularization of linear difference operators with polynomial coefficients. In: Dooley, S. (ed.) Proceedings of ISSAC’99, pp. 269–275. ACM New York, NY (1999) – reference: MelczerS.MishnaM.Singularity analysis via the iterated kernel methodCombin. Probab. Comput.2014235861888324922810.1017/S09635483140001451298.05026 – reference: PooleE.G.C.Introduction to the Theory of Linear Differential Equations1936LondonOxford Univ. Press0014.05801 – reference: Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report no. 10-01 in the RISC Report Series. Johannes Kepler University, Linz (2010) Available at http://www.risc.jku.at/publications/download/risc_3934/hf.pdf – reference: SalvyB.ZimmermannP.Gfun: a Maple package for the manipulation of generating and holonomic functions in one variableACM Trans. Math. Software199420216317710.1145/178365.1783680888.65010 – reference: Bostan, A., Chyzak, F., van Hoeij, M. Kauers, M., Pech, L.: Explicit differentiably finite generating functions of walks with small steps in the quarter plane. Priprint. Available at https://arxiv.org/abs/1606.02982 (2016) – reference: OhtsukiM.On the number of apparent singularities of a linear differential equationTokyo J. Math.198251232967090110.3836/tjm/12702150310525.30033 – reference: Bostan, A., Kauers, M.: Automatic classification of restricted lattice walks. In: Krattenthaler, C., Strehl, V., Kauers, M. (eds.) 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, pp. 201–215. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2009) – reference: FlajoletP.Analytic models and ambiguity of context-free languagesTheoret. Comput. Sci.1987492-328330990933510.1016/0304-3975(87)90011-90612.68069 – reference: Bousquet-MélouM.Walks in the quarter plane: Kreweras’ algebraic modelAnn. Appl. Probab.200515214511491213411110.1214/1050516050000000521064.05010 – reference: Singer, M. F.: Private communication. (2014) – reference: Bousquet-MélouM.PetkovšekM.Linear recurrences with constant coefficients: the multivariate caseDiscrete Math.20002251-35175179832410.1016/S0012-365X(00)00147-30963.05005 – reference: Takayama, N.: An algorithm of constructing the integral of a module–an infinite dimensional analog of Gröbner basis. In: Watanabe, S., Nagata, M. (eds.) ISSAC ’90 Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 206–211. ACM New York, NY (1990) – reference: Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. PhD thesis, J. Kepler University, Linz (1996) – reference: Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Applications of Mathematics (New York), Vol. 40. Springer-Verlag, Berlin (1999) – ident: 328_CR40 – volume: 49 start-page: 283 issue: 2-3 year: 1987 ident: 328_CR19 publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(87)90011-9 – ident: 328_CR38 – volume: 20 start-page: 163 issue: 2 year: 1994 ident: 328_CR36 publication-title: ACM Trans. Math. Software doi: 10.1145/178365.178368 – volume: 24 start-page: 537 issue: 5 year: 1997 ident: 328_CR22 publication-title: J. Symbolic Comput. doi: 10.1006/jsco.1997.0151 – volume: 14 start-page: 1119 issue: 10-11 year: 2008 ident: 328_CR25 publication-title: J. Difference Equ. Appl. doi: 10.1080/10236190802332084 – volume: 15 start-page: 1451 issue: 2 year: 2005 ident: 328_CR10 publication-title: Ann. Appl. Probab. doi: 10.1214/105051605000000052 – volume: 122 start-page: 353 issue: 2 year: 1989 ident: 328_CR28 publication-title: J. Algebra doi: 10.1016/0021-8693(89)90222-6 – volume: 225 start-page: 121 issue: 1-3 year: 2000 ident: 328_CR16 publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00150-3 – volume: 225 start-page: 51 issue: 1-3 year: 2000 ident: 328_CR12 publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00147-3 – volume: 34 start-page: 355 issue: 5 year: 2002 ident: 328_CR15 publication-title: J. Symbolic Comput. doi: 10.1006/jsco.2002.0564 – ident: 328_CR4 doi: 10.1016/j.ejc.2016.10.010 – ident: 328_CR1 doi: 10.1145/309831.309953 – ident: 328_CR11 doi: 10.1090/conm/520/10252 – ident: 328_CR30 – volume: 138 start-page: 3063 issue: 9 year: 2010 ident: 328_CR6 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-2010-10398-2 – ident: 328_CR26 – ident: 328_CR9 doi: 10.1007/978-3-0348-8211-8_3 – volume: 14 start-page: 49 issue: 1 year: 1986 ident: 328_CR21 publication-title: J. Statist. Plann. Inference doi: 10.1016/0378-3758(86)90009-1 – volume: 23 start-page: 861 issue: 5 year: 2014 ident: 328_CR31 publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548314000145 – volume: 5 start-page: 23 issue: 1 year: 1982 ident: 328_CR33 publication-title: Tokyo J. Math. doi: 10.3836/tjm/1270215031 – ident: 328_CR7 doi: 10.1090/tran/6804 – ident: 328_CR39 – volume: 121 start-page: 45 year: 2014 ident: 328_CR8 publication-title: J. Combin. Theory Ser. A doi: 10.1016/j.jcta.2013.09.005 – volume: 307 start-page: 257 issue: 2 year: 2003 ident: 328_CR13 publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(03)00219-6 – volume: 106 start-page: 11502 issue: 28 year: 2009 ident: 328_CR24 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901678106 – volume: 410 start-page: 3616 issue: 38-40 year: 2009 ident: 328_CR32 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2009.04.008 – volume: 18 start-page: 181 issue: 1 year: 1985 ident: 328_CR3 publication-title: Ann. Sci. École Norm. Sup., 4 doi: 10.24033/asens.1488 – ident: 328_CR37 – ident: 328_CR42 doi: 10.1145/96877.96929 – ident: 328_CR41 – volume: 281 start-page: 37 issue: 1-2 year: 2002 ident: 328_CR2 publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(02)00007-5 – ident: 328_CR14 doi: 10.1007/3-540-09996-4_36 – ident: 328_CR35 doi: 10.1007/978-3-642-55750-7 – ident: 328_CR5 doi: 10.46298/dmtcs.2724 – ident: 328_CR23 – volume: 16 start-page: 485 issue: 3 year: 2010 ident: 328_CR18 publication-title: Markov Process. Related Fields – volume: 113 start-page: 373 issue: 2 year: 1988 ident: 328_CR29 publication-title: J. Algebra doi: 10.1016/0021-8693(88)90166-4 – ident: 328_CR17 doi: 10.1007/978-3-642-60001-2 – volume-title: Introduction to the Theory of Linear Differential Equations year: 1936 ident: 328_CR34 – volume: 47 start-page: 414 issue: 3 year: 2008 ident: 328_CR27 publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2010.11.004 – volume: 28 start-page: 321 issue: 3 year: 1980 ident: 328_CR20 publication-title: J. Combin. Theory Ser. A doi: 10.1016/0097-3165(80)90074-6 |
| SSID | ssj0007032 |
| Score | 2.2898195 |
| Snippet | Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 661 |
| SubjectTerms | Combinatorics Computer algebra Differential equations Enumeration Group theory Mathematics Mathematics and Statistics Quadrants |
| Title | On 3-Dimensional Lattice Walks Confined to the Positive Octant |
| URI | https://link.springer.com/article/10.1007/s00026-016-0328-7 https://www.proquest.com/docview/1880838684 https://hal.science/hal-01063886 |
| Volume | 20 |
| WOSCitedRecordID | wos000388575600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink [Stanislaus State] customDbUrl: eissn: 0219-3094 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007032 issn: 0218-0006 databaseCode: RSV dateStart: 19971201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoAhxAkXKmtK6F6SJh3YANvHcrcrSRCCmDdGy30_ctdVAgASHXlInrWIntmX7M8ABYQ5GnjJcmUBwHxPk_dAY7sTD9nVfKSt03mwivL7GXi_qFnXcaZntXoYk85u6Knajw0ver3ukhzychTmn7ZBO483tQ3X9OhHOQwdOd1HJdFCGMr9b4pMymn2iVMgpO_NLaDTXOBfL__rXFVgqDEzWmkjEKsyY4RosXlXorOk6nHSGTPIzwvWfYHKwS5VREhx7VIOXlFEVoDM-E5aNmJvGunli19iwjqaewxtwf3F-d9rmRR8FruWxyHignNFhFWlrH7UVVlrntSXoa6UjHRqRoEZhUFj0tHMB0TdCNTH0pNU2sE25CbXhaGi2gKHxnP8UOYrQ-gkx2a2jIqmkdoPHXh1EuaGxLkDGqdfFIK7gkfOtiSmxjLYmDutwWE15nSBs_Ea877hU0RE2drt1GdMYObcSMRg369AomRgXJzKNCXcOJQbo1-GoZNrU65--uP0n6h1Y8Ijreb5LA2rZ27vZhXk9zp7Tt71cUD8ArRfeeQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PIJ6UQLap7fQiLD5YcXcV37eSTRMUl1Vs3d9vptsWFRX00Es6SUtmkplhZr4B2CHMwchThisTCO5jgrwbGsOdeNiu7iplhc6bTYSdDt7fRxdFHXdaZruXIcn8pq6K3ejwkvfrHukhD0dh3HcKi_L4Lq9uq-vXiXAeOnC6i0qmgzKU-d0Sn5TR6AOlQn6wM7-ERnONczL7r3-dg5nCwGSNoUTMw4jpL8B0u0JnTRfh4LzPJD8iXP8hJgdrqYyS4Nid6j2ljKoAnfGZsOyZuWnsIk_sGhh2rqnn8BLcnBxfHzZ50UeBa7kvMh4oZ3RYRdraR22FldZ5bQn6WulIh0YkqFEYFBY97VxA9I1QdQw9abUNbF0uw1j_uW9WgKHxnP8UOYrQ-gkx2a2jIqmkdoP7Xg1EuaGxLkDGqddFL67gkfOtiSmxjLYmDmuwW015GSJs_Ea87bhU0RE2drPRimmMnFuJGAzqNVgvmRgXJzKNCXcOJQbo12CvZNqH1z99cfVP1Fsw2bxut-LWaedsDaY8koA892UdxrLXN7MBE3qQPaavm7nQvgMjS-Fd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8QwDA9-Ifrgt3h-FvFJKfbWuWUvgqiH4nke-Pk2el2Lokxx8_5-m902VFQQH_bSpV1p0iUhyS8AW4Q5GHnKcGUCwX1MkPdCY7gTD9vTPaWs0EWzibDTwbu7qFv2Oc2qbPcqJDmoaSCUpjTffUnsbl34RheZPGH3SA95OAyjPvUMInf98qb-FTtxLsIITo9R-XRQhTW_W-KTYhq-p7TIDzbnlzBpoX1a0__e9wxMlYYnOxhIyiwMmXQOJs9r1NZsHvYvUib5EeH9D7A6WFvllBzHbtXTY8aoOtAZpQnLn5mbxrpFwlffsAtNvYgX4Lp1fHV4wsv-ClzLPZHzQDljxCrS4j5qK6y0zptL0NdKRzo0IkGNwqCw6GnnGqJvhGpi6EmrbWCbchFG0ufULAFD4zm_KnIUofUTYr5bR0VSSe0G97wGiOpwY12Cj1MPjKe4hk0ujiamhDM6mjhswHY95WWAvPEb8abjWE1HmNknB-2YxsjplYhBv9mA1YqhcXlTs5jw6FBigH4DdioGfnj90xeX_0S9AePdo1bcPu2crcCERwJQpMSswkj--mbWYEz384fsdb2Q33cMX-pB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+3-Dimensional+Lattice+Walks+Confined+to+the+Positive+Octant&rft.jtitle=Annals+of+combinatorics&rft.au=Bostan%2C+Alin&rft.au=Bousquet-M%C3%A9lou%2C+Mireille&rft.au=Kauers%2C+Manuel&rft.au=Melczer%2C+Stephen&rft.date=2016-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0218-0006&rft.eissn=0219-3094&rft.volume=20&rft.issue=4&rft.spage=661&rft.epage=704&rft_id=info:doi/10.1007%2Fs00026-016-0328-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-0006&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-0006&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-0006&client=summon |