On 3-Dimensional Lattice Walks Confined to the Positive Octant

Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in { 0 , ± 1 } 2 : the generating function is D-finite if and only if a certain group associated with the step set is f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of combinatorics Ročník 20; číslo 4; s. 661 - 704
Hlavní autori: Bostan, Alin, Bousquet-Mélou, Mireille, Kauers, Manuel, Melczer, Stephen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2016
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0218-0006, 0219-3094
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in { 0 , ± 1 } 2 : the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3- dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in { 0 , ± 1 } 3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 — the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear.
AbstractList Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in $\{0, \pm 1\}^2$: the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3-dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in $\{0, \pm 1\}^3$ (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 -- the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure, which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear.
Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in { 0 , ± 1 } 2 : the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3- dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in { 0 , ± 1 } 3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 — the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear.
Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in { 0 , ± 1 } 2 : the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3- dimensional walks confined to the positive octant. The first difficulty is their number: we have to examine no less than 11074225 step sets in { 0 , ± 1 } 3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 — the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear.
Author Melczer, Stephen
Bostan, Alin
Kauers, Manuel
Bousquet-Mélou, Mireille
Author_xml – sequence: 1
  givenname: Alin
  surname: Bostan
  fullname: Bostan, Alin
  organization: INRIA Saclay Île-de-France
– sequence: 2
  givenname: Mireille
  surname: Bousquet-Mélou
  fullname: Bousquet-Mélou, Mireille
  email: bousquet@labri.fr
  organization: CNRS, LaBRI, Université de Bordeaux
– sequence: 3
  givenname: Manuel
  surname: Kauers
  fullname: Kauers, Manuel
  organization: Institute for Algebra, Johannes Kepler University
– sequence: 4
  givenname: Stephen
  surname: Melczer
  fullname: Melczer, Stephen
  organization: Cheriton School of Computer Science, University of Waterloo, U. Lyon, CNRS, ENS de Lyon, Inria, UCBL, Laboratoire LIP
BackLink https://hal.science/hal-01063886$$DView record in HAL
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnjysTpLt7uxFKPWjQqEeFI8hpIlN3SZ1kxb896auggh6GDKE5xlm3gHpOe80IacULihAdRkAgJU50FScYV4dkD4wWucc6qL32WOemPKIDEJYpa5KXJ9czV3G82u71i5Y72STzWSMVunsWTavIZt4Z6zTiyz6LC519uCDjXans7mK0sVjcmhkE_TJ1zskT7c3j5NpPpvf3U_Gs1zxEcS8lLyujATGigKVAcMNHZULLJRUtao0LFAhaASDTDEKWGiQFCvGjTKloXxIzru5S9mITWvXsn0XXloxHc_E_g8olByx3O3Zs47dtP5tq0MUK79t02lBUERAjiUWiao6SrU-hFYboWyUMWUQW2kbQUHsgxVdsGl-qhSsqJJJf5nfC_3nsM4JiXUvuv2x05_SB0HOiYQ
CitedBy_id crossref_primary_10_1016_j_jcta_2020_105251
crossref_primary_10_1137_18M1220856
crossref_primary_10_1007_s00029_021_00703_9
crossref_primary_10_1093_imrn_rnac125
crossref_primary_10_1016_j_jcta_2017_06_008
crossref_primary_10_1016_j_aam_2017_08_001
crossref_primary_10_1007_s11464_022_1031_0
crossref_primary_10_1090_mcom_3912
crossref_primary_10_1007_s00026_019_00413_2
crossref_primary_10_1016_j_jsc_2021_11_001
crossref_primary_10_1016_j_jsc_2019_09_001
crossref_primary_10_1016_j_ejc_2024_104015
crossref_primary_10_1016_j_jcta_2019_105189
crossref_primary_10_1016_j_aim_2016_08_038
crossref_primary_10_1112_blms_12396
crossref_primary_10_1007_s00026_020_00520_5
crossref_primary_10_1016_j_endm_2017_07_026
crossref_primary_10_3150_19_BEJ1107
crossref_primary_10_1016_j_endm_2017_05_008
crossref_primary_10_1088_1751_8121_ab73aa
Cites_doi 10.1016/0304-3975(87)90011-9
10.1145/178365.178368
10.1006/jsco.1997.0151
10.1080/10236190802332084
10.1214/105051605000000052
10.1016/0021-8693(89)90222-6
10.1016/S0012-365X(00)00150-3
10.1016/S0012-365X(00)00147-3
10.1006/jsco.2002.0564
10.1016/j.ejc.2016.10.010
10.1145/309831.309953
10.1090/conm/520/10252
10.1090/S0002-9939-2010-10398-2
10.1007/978-3-0348-8211-8_3
10.1016/0378-3758(86)90009-1
10.1017/S0963548314000145
10.3836/tjm/1270215031
10.1090/tran/6804
10.1016/j.jcta.2013.09.005
10.1016/S0304-3975(03)00219-6
10.1073/pnas.0901678106
10.1016/j.tcs.2009.04.008
10.24033/asens.1488
10.1145/96877.96929
10.1016/S0304-3975(02)00007-5
10.1007/3-540-09996-4_36
10.1007/978-3-642-55750-7
10.46298/dmtcs.2724
10.1016/0021-8693(88)90166-4
10.1007/978-3-642-60001-2
10.1016/j.aam.2010.11.004
10.1016/0097-3165(80)90074-6
ContentType Journal Article
Copyright Springer International Publishing 2016
Copyright Springer Science & Business Media 2016
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Springer International Publishing 2016
– notice: Copyright Springer Science & Business Media 2016
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
DOI 10.1007/s00026-016-0328-7
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 0219-3094
EndPage 704
ExternalDocumentID oai:HAL:hal-01063886v1
10_1007_s00026_016_0328_7
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
23M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
1XC
ID FETCH-LOGICAL-c350t-6a397fa022448cf0f3f156d84cac9c7e0d8c80e80f82c21084e0a18723fcf6f13
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388575600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0218-0006
IngestDate Mon Nov 24 06:20:26 EST 2025
Wed Sep 17 23:57:03 EDT 2025
Tue Nov 18 21:47:28 EST 2025
Sat Nov 29 02:56:42 EST 2025
Fri Feb 21 02:37:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords D-finite series
exact enumeration
05A15
lattice walks
Exact enumeration
Lattice walks
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-6a397fa022448cf0f3f156d84cac9c7e0d8c80e80f82c21084e0a18723fcf6f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2863-8300
0000-0002-0995-3444
PQID 1880838684
PQPubID 2043693
PageCount 44
ParticipantIDs hal_primary_oai_HAL_hal_01063886v1
proquest_journals_1880838684
crossref_citationtrail_10_1007_s00026_016_0328_7
crossref_primary_10_1007_s00026_016_0328_7
springer_journals_10_1007_s00026_016_0328_7
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Annals of combinatorics
PublicationTitleAbbrev Ann. Comb
PublicationYear 2016
Publisher Springer International Publishing
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer Verlag
References van HoeijM.Factorization of differential operators with rational functions coefficientsJ. Symbolic Comput.1997245537561148406810.1006/jsco.1997.01510886.68082
DuchonP.On the enumeration and generation of generalized Dyck wordsDiscrete Math.20002251-3121135179832710.1016/S0012-365X(00)00150-30971.68090
Bostan, A., Kurkova, I., Raschel, K.: A human proof of Gessel’s lattice path conjecture. Trans. Amer. Math. Soc. (to appear)
Chudnovsky, G.V.: Rational and Padé approximations to solutions of linear differential equations and the monodromy theory. In: Iagolnitzer, D. (ed.) Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., Vol. 126, pp. 136–169. Springer, Berlin-New York (1980)
Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Applications of Mathematics (New York), Vol. 40. Springer-Verlag, Berlin (1999)
Bousquet-Mélou, M.: Counting walks in the quarter plane. In: Chauvin, B., Flajolet, P., Gardy, D.,Mokkadem, A. (eds.) Mathematics and Computer Science, II (Versailles, 2002), Trends Math., pp. 49–67. Birkhäuser, Basel (2002)
Bostan, A., Chyzak, F., van Hoeij, M. Kauers, M., Pech, L.: Explicit differentiably finite generating functions of walks with small steps in the quarter plane. Priprint. Available at https://arxiv.org/abs/1606.02982 (2016)
BanderierC.FlajoletP.Basic analytic combinatorics of directed lattice pathsTheoret. Comput. Sci.20022811-23780190956810.1016/S0304-3975(02)00007-50996.68126
LipshitzL.D-finite power seriesJ. Algebra1989122235337399907910.1016/0021-8693(89)90222-60695.12018
Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. PhD thesis, J. Kepler University, Linz (1996)
Abramov, S.A., van Hoeij, M.: Desingularization of linear difference operators with polynomial coefficients. In: Dooley, S. (ed.) Proceedings of ISSAC’99, pp. 269–275. ACM New York, NY (1999)
Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report no. 10-01 in the RISC Report Series. Johannes Kepler University, Linz (2010) Available at http://www.risc.jku.at/publications/download/risc_3934/hf.pdf
Bostan, A., Kauers, M.: Automatic classification of restricted lattice walks. In: Krattenthaler, C., Strehl, V., Kauers, M. (eds.) 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, pp. 201–215. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2009)
Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics. Vol. 62. Cambridge University Press, Cambridge (1999)
SalvyB.ZimmermannP.Gfun: a Maple package for the manipulation of generating and holonomic functions in one variableACM Trans. Math. Software199420216317710.1145/178365.1783680888.65010
BostanA.KauersM.The complete generating function for Gessel walks is algebraicProc. Amer. Math. Soc.2010138930633078265393110.1090/S0002-9939-2010-10398-21206.05013
BostanA.RaschelK.SalvyB.Non-D-finite excursions in the quarter planeJ. Combin. Theory Ser. A20141214563311533110.1016/j.jcta.2013.09.0051279.05003
MishnaM.RechnitzerA.Two non-holonomic lattice walks in the quarter planeTheoret. Comput. Sci.200941038-4036163630255331610.1016/j.tcs.2009.04.0081228.05038
Stein, W.A., et al.: Sage Mathematics Software. http://www.sagemath.org (2013)
KauersM.KoutschanC.ZeilbergerD.Proof of Ira Gessel’s lattice path conjectureProc. Natl. Acad. Sci. USA2009106281150211505253882110.1073/pnas.09016781061203.05010
Bousquet-MélouM.PetkovšekM.Walks confined in a quadrant are not always D-finiteTheoret. Comput. Sci.20033072257276202257810.1016/S0304-3975(03)00219-61070.68112
KauersM.ZeilbergerD.The quasi-holonomic ansatz and restricted lattice walksJ. Difference Equ. Appl.20081410-1111191126244718810.1080/102361908023320841193.05014
LipshitzL.The diagonal of a D-finite power series is D-finiteJ. Algebra1988113237337892976710.1016/0021-8693(88)90166-40657.13024
Singer, M.F.: Algebraic solutions of nth order linear differential equations. In: Ribenboim, P. (ed.) Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979), Queen’s Papers in Pure and Appl. Math., Vol. 54, pp. 379–420. Queen’s Univ., Kingston, Ont. (1980)
GesselI.M.A factorization for formal Laurent series and lattice path enumerationJ. Combin. Theory Ser. A198028332133757021310.1016/0097-3165(80)90074-6
Bousquet-MélouM.Walks in the quarter plane: Kreweras’ algebraic modelAnn. Appl. Probab.200515214511491213411110.1214/1050516050000000521064.05010
Bousquet-MélouM.PetkovšekM.Linear recurrences with constant coefficients: the multivariate caseDiscrete Math.20002251-35175179832410.1016/S0012-365X(00)00147-30963.05005
FlajoletP.Analytic models and ambiguity of context-free languagesTheoret. Comput. Sci.1987492-328330990933510.1016/0304-3975(87)90011-90612.68069
BertrandD.BeukersF.Équations différentielles linéaires et majorations de multiplicitésAnn. Sci. École Norm. Sup., 419851811811928031990578.12016
CormierO.SingerM.F.TragerB.M.UlmerF.Linear differential operators for polynomial equationsJ. Symbolic Comput.2002345355398193746610.1006/jsco.2002.05641030.12002
PooleE.G.C.Introduction to the Theory of Linear Differential Equations1936LondonOxford Univ. Press0014.05801
Takayama, N.: An algorithm of constructing the integral of a module–an infinite dimensional analog of Gröbner basis. In: Watanabe, S., Nagata, M. (eds.) ISSAC ’90 Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 206–211. ACM New York, NY (1990)
KurkovaI.RaschelK.Explicit expression for the generating function counting Gessel’s walksAdv. Appl. Math.2008473414433282219610.1016/j.aam.2010.11.0041234.05027
Kauers, M.: Guessing handbook. Technical Report RISC 09-07. Johannes Kepler Universität Linz, Linz (2009) Available at http://www.risc.jku.at/publications/download/risc_3814/demo.nb.pdf
Singer, M. F.: Private communication. (2014)
GesselI.M.A probabilistic method for lattice path enumerationJ. Statist. Plann. Inference1986141495884591410.1016/0378-3758(86)90009-10602.05006
OhtsukiM.On the number of apparent singularities of a linear differential equationTokyo J. Math.198251232967090110.3836/tjm/12702150310525.30033
MelczerS.MishnaM.Singularity analysis via the iterated kernel methodCombin. Probab. Comput.2014235861888324922810.1017/S09635483140001451298.05026
van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Vol. 328. Springer-Verlag, Berlin (2003)
FayolleG.RaschelK.On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-planeMarkov Process. Related Fields201016348549627597701284.05018
Schrijver, A.: Theory of Linear and Integer Programming. JohnWiley & Sons Ltd., Chichester (1986)
Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. In: Lladser, M.E., Maier, R.S., Mishna, M., Rechnitzer, A. (eds.) Algorithmic Probability and Combinatorics. Contemp. Math., Vol. 520, pp. 1–39. Amer. Math. Soc., Providence, RI (2010)
C. Banderier (328_CR2) 2002; 281
M. Kauers (328_CR25) 2008; 14
328_CR26
L. Lipshitz (328_CR29) 1988; 113
M. Kauers (328_CR24) 2009; 106
328_CR23
O. Cormier (328_CR15) 2002; 34
E.G.C. Poole (328_CR34) 1936
328_CR40
328_CR42
328_CR41
328_CR5
328_CR7
A. Bostan (328_CR8) 2014; 121
328_CR9
M. Bousquet-Mélou (328_CR13) 2003; 307
P. Flajolet (328_CR19) 1987; 49
M. Mishna (328_CR32) 2009; 410
D. Bertrand (328_CR3) 1985; 18
G. Fayolle (328_CR18) 2010; 16
P. Duchon (328_CR16) 2000; 225
L. Lipshitz (328_CR28) 1989; 122
M. Bousquet-Mélou (328_CR10) 2005; 15
328_CR37
328_CR14
328_CR17
328_CR39
I.M. Gessel (328_CR20) 1980; 28
I. Kurkova (328_CR27) 2008; 47
328_CR38
328_CR11
M. Bousquet-Mélou (328_CR12) 2000; 225
A. Bostan (328_CR6) 2010; 138
328_CR35
328_CR1
328_CR4
328_CR30
S. Melczer (328_CR31) 2014; 23
B. Salvy (328_CR36) 1994; 20
M. Ohtsuki (328_CR33) 1982; 5
I.M. Gessel (328_CR21) 1986; 14
M. Hoeij van (328_CR22) 1997; 24
References_xml – reference: Singer, M.F.: Algebraic solutions of nth order linear differential equations. In: Ribenboim, P. (ed.) Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979), Queen’s Papers in Pure and Appl. Math., Vol. 54, pp. 379–420. Queen’s Univ., Kingston, Ont. (1980)
– reference: BanderierC.FlajoletP.Basic analytic combinatorics of directed lattice pathsTheoret. Comput. Sci.20022811-23780190956810.1016/S0304-3975(02)00007-50996.68126
– reference: GesselI.M.A factorization for formal Laurent series and lattice path enumerationJ. Combin. Theory Ser. A198028332133757021310.1016/0097-3165(80)90074-6
– reference: GesselI.M.A probabilistic method for lattice path enumerationJ. Statist. Plann. Inference1986141495884591410.1016/0378-3758(86)90009-10602.05006
– reference: LipshitzL.D-finite power seriesJ. Algebra1989122235337399907910.1016/0021-8693(89)90222-60695.12018
– reference: van HoeijM.Factorization of differential operators with rational functions coefficientsJ. Symbolic Comput.1997245537561148406810.1006/jsco.1997.01510886.68082
– reference: Bostan, A., Kurkova, I., Raschel, K.: A human proof of Gessel’s lattice path conjecture. Trans. Amer. Math. Soc. (to appear)
– reference: KurkovaI.RaschelK.Explicit expression for the generating function counting Gessel’s walksAdv. Appl. Math.2008473414433282219610.1016/j.aam.2010.11.0041234.05027
– reference: BostanA.RaschelK.SalvyB.Non-D-finite excursions in the quarter planeJ. Combin. Theory Ser. A20141214563311533110.1016/j.jcta.2013.09.0051279.05003
– reference: Bousquet-Mélou, M.: Counting walks in the quarter plane. In: Chauvin, B., Flajolet, P., Gardy, D.,Mokkadem, A. (eds.) Mathematics and Computer Science, II (Versailles, 2002), Trends Math., pp. 49–67. Birkhäuser, Basel (2002)
– reference: CormierO.SingerM.F.TragerB.M.UlmerF.Linear differential operators for polynomial equationsJ. Symbolic Comput.2002345355398193746610.1006/jsco.2002.05641030.12002
– reference: LipshitzL.The diagonal of a D-finite power series is D-finiteJ. Algebra1988113237337892976710.1016/0021-8693(88)90166-40657.13024
– reference: MishnaM.RechnitzerA.Two non-holonomic lattice walks in the quarter planeTheoret. Comput. Sci.200941038-4036163630255331610.1016/j.tcs.2009.04.0081228.05038
– reference: Bousquet-MélouM.PetkovšekM.Walks confined in a quadrant are not always D-finiteTheoret. Comput. Sci.20033072257276202257810.1016/S0304-3975(03)00219-61070.68112
– reference: Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics. Vol. 62. Cambridge University Press, Cambridge (1999)
– reference: Kauers, M.: Guessing handbook. Technical Report RISC 09-07. Johannes Kepler Universität Linz, Linz (2009) Available at http://www.risc.jku.at/publications/download/risc_3814/demo.nb.pdf
– reference: FayolleG.RaschelK.On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-planeMarkov Process. Related Fields201016348549627597701284.05018
– reference: Schrijver, A.: Theory of Linear and Integer Programming. JohnWiley & Sons Ltd., Chichester (1986)
– reference: DuchonP.On the enumeration and generation of generalized Dyck wordsDiscrete Math.20002251-3121135179832710.1016/S0012-365X(00)00150-30971.68090
– reference: KauersM.ZeilbergerD.The quasi-holonomic ansatz and restricted lattice walksJ. Difference Equ. Appl.20081410-1111191126244718810.1080/102361908023320841193.05014
– reference: van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Vol. 328. Springer-Verlag, Berlin (2003)
– reference: Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. In: Lladser, M.E., Maier, R.S., Mishna, M., Rechnitzer, A. (eds.) Algorithmic Probability and Combinatorics. Contemp. Math., Vol. 520, pp. 1–39. Amer. Math. Soc., Providence, RI (2010)
– reference: KauersM.KoutschanC.ZeilbergerD.Proof of Ira Gessel’s lattice path conjectureProc. Natl. Acad. Sci. USA2009106281150211505253882110.1073/pnas.09016781061203.05010
– reference: BertrandD.BeukersF.Équations différentielles linéaires et majorations de multiplicitésAnn. Sci. École Norm. Sup., 419851811811928031990578.12016
– reference: BostanA.KauersM.The complete generating function for Gessel walks is algebraicProc. Amer. Math. Soc.2010138930633078265393110.1090/S0002-9939-2010-10398-21206.05013
– reference: Stein, W.A., et al.: Sage Mathematics Software. http://www.sagemath.org (2013)
– reference: Chudnovsky, G.V.: Rational and Padé approximations to solutions of linear differential equations and the monodromy theory. In: Iagolnitzer, D. (ed.) Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., Vol. 126, pp. 136–169. Springer, Berlin-New York (1980)
– reference: Abramov, S.A., van Hoeij, M.: Desingularization of linear difference operators with polynomial coefficients. In: Dooley, S. (ed.) Proceedings of ISSAC’99, pp. 269–275. ACM New York, NY (1999)
– reference: MelczerS.MishnaM.Singularity analysis via the iterated kernel methodCombin. Probab. Comput.2014235861888324922810.1017/S09635483140001451298.05026
– reference: PooleE.G.C.Introduction to the Theory of Linear Differential Equations1936LondonOxford Univ. Press0014.05801
– reference: Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report no. 10-01 in the RISC Report Series. Johannes Kepler University, Linz (2010) Available at http://www.risc.jku.at/publications/download/risc_3934/hf.pdf
– reference: SalvyB.ZimmermannP.Gfun: a Maple package for the manipulation of generating and holonomic functions in one variableACM Trans. Math. Software199420216317710.1145/178365.1783680888.65010
– reference: Bostan, A., Chyzak, F., van Hoeij, M. Kauers, M., Pech, L.: Explicit differentiably finite generating functions of walks with small steps in the quarter plane. Priprint. Available at https://arxiv.org/abs/1606.02982 (2016)
– reference: OhtsukiM.On the number of apparent singularities of a linear differential equationTokyo J. Math.198251232967090110.3836/tjm/12702150310525.30033
– reference: Bostan, A., Kauers, M.: Automatic classification of restricted lattice walks. In: Krattenthaler, C., Strehl, V., Kauers, M. (eds.) 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, pp. 201–215. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2009)
– reference: FlajoletP.Analytic models and ambiguity of context-free languagesTheoret. Comput. Sci.1987492-328330990933510.1016/0304-3975(87)90011-90612.68069
– reference: Bousquet-MélouM.Walks in the quarter plane: Kreweras’ algebraic modelAnn. Appl. Probab.200515214511491213411110.1214/1050516050000000521064.05010
– reference: Singer, M. F.: Private communication. (2014)
– reference: Bousquet-MélouM.PetkovšekM.Linear recurrences with constant coefficients: the multivariate caseDiscrete Math.20002251-35175179832410.1016/S0012-365X(00)00147-30963.05005
– reference: Takayama, N.: An algorithm of constructing the integral of a module–an infinite dimensional analog of Gröbner basis. In: Watanabe, S., Nagata, M. (eds.) ISSAC ’90 Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 206–211. ACM New York, NY (1990)
– reference: Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. PhD thesis, J. Kepler University, Linz (1996)
– reference: Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Applications of Mathematics (New York), Vol. 40. Springer-Verlag, Berlin (1999)
– ident: 328_CR40
– volume: 49
  start-page: 283
  issue: 2-3
  year: 1987
  ident: 328_CR19
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(87)90011-9
– ident: 328_CR38
– volume: 20
  start-page: 163
  issue: 2
  year: 1994
  ident: 328_CR36
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/178365.178368
– volume: 24
  start-page: 537
  issue: 5
  year: 1997
  ident: 328_CR22
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1997.0151
– volume: 14
  start-page: 1119
  issue: 10-11
  year: 2008
  ident: 328_CR25
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190802332084
– volume: 15
  start-page: 1451
  issue: 2
  year: 2005
  ident: 328_CR10
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051605000000052
– volume: 122
  start-page: 353
  issue: 2
  year: 1989
  ident: 328_CR28
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(89)90222-6
– volume: 225
  start-page: 121
  issue: 1-3
  year: 2000
  ident: 328_CR16
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00150-3
– volume: 225
  start-page: 51
  issue: 1-3
  year: 2000
  ident: 328_CR12
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00147-3
– volume: 34
  start-page: 355
  issue: 5
  year: 2002
  ident: 328_CR15
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.2002.0564
– ident: 328_CR4
  doi: 10.1016/j.ejc.2016.10.010
– ident: 328_CR1
  doi: 10.1145/309831.309953
– ident: 328_CR11
  doi: 10.1090/conm/520/10252
– ident: 328_CR30
– volume: 138
  start-page: 3063
  issue: 9
  year: 2010
  ident: 328_CR6
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-2010-10398-2
– ident: 328_CR26
– ident: 328_CR9
  doi: 10.1007/978-3-0348-8211-8_3
– volume: 14
  start-page: 49
  issue: 1
  year: 1986
  ident: 328_CR21
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/0378-3758(86)90009-1
– volume: 23
  start-page: 861
  issue: 5
  year: 2014
  ident: 328_CR31
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548314000145
– volume: 5
  start-page: 23
  issue: 1
  year: 1982
  ident: 328_CR33
  publication-title: Tokyo J. Math.
  doi: 10.3836/tjm/1270215031
– ident: 328_CR7
  doi: 10.1090/tran/6804
– ident: 328_CR39
– volume: 121
  start-page: 45
  year: 2014
  ident: 328_CR8
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2013.09.005
– volume: 307
  start-page: 257
  issue: 2
  year: 2003
  ident: 328_CR13
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(03)00219-6
– volume: 106
  start-page: 11502
  issue: 28
  year: 2009
  ident: 328_CR24
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901678106
– volume: 410
  start-page: 3616
  issue: 38-40
  year: 2009
  ident: 328_CR32
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2009.04.008
– volume: 18
  start-page: 181
  issue: 1
  year: 1985
  ident: 328_CR3
  publication-title: Ann. Sci. École Norm. Sup., 4
  doi: 10.24033/asens.1488
– ident: 328_CR37
– ident: 328_CR42
  doi: 10.1145/96877.96929
– ident: 328_CR41
– volume: 281
  start-page: 37
  issue: 1-2
  year: 2002
  ident: 328_CR2
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00007-5
– ident: 328_CR14
  doi: 10.1007/3-540-09996-4_36
– ident: 328_CR35
  doi: 10.1007/978-3-642-55750-7
– ident: 328_CR5
  doi: 10.46298/dmtcs.2724
– ident: 328_CR23
– volume: 16
  start-page: 485
  issue: 3
  year: 2010
  ident: 328_CR18
  publication-title: Markov Process. Related Fields
– volume: 113
  start-page: 373
  issue: 2
  year: 1988
  ident: 328_CR29
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(88)90166-4
– ident: 328_CR17
  doi: 10.1007/978-3-642-60001-2
– volume-title: Introduction to the Theory of Linear Differential Equations
  year: 1936
  ident: 328_CR34
– volume: 47
  start-page: 414
  issue: 3
  year: 2008
  ident: 328_CR27
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2010.11.004
– volume: 28
  start-page: 321
  issue: 3
  year: 1980
  ident: 328_CR20
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(80)90074-6
SSID ssj0007032
Score 2.2898195
Snippet Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 661
SubjectTerms Combinatorics
Computer algebra
Differential equations
Enumeration
Group theory
Mathematics
Mathematics and Statistics
Quadrants
Title On 3-Dimensional Lattice Walks Confined to the Positive Octant
URI https://link.springer.com/article/10.1007/s00026-016-0328-7
https://www.proquest.com/docview/1880838684
https://hal.science/hal-01063886
Volume 20
WOSCitedRecordID wos000388575600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink [Stanislaus State]
  customDbUrl:
  eissn: 0219-3094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007032
  issn: 0218-0006
  databaseCode: RSV
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoAhxAkXKmtK6F6SJh3YANvHcrcrSRCCmDdGy30_ctdVAgASHXlInrWIntmX7M8ABYQ5GnjJcmUBwHxPk_dAY7sTD9nVfKSt03mwivL7GXi_qFnXcaZntXoYk85u6Knajw0ver3ukhzychTmn7ZBO483tQ3X9OhHOQwdOd1HJdFCGMr9b4pMymn2iVMgpO_NLaDTXOBfL__rXFVgqDEzWmkjEKsyY4RosXlXorOk6nHSGTPIzwvWfYHKwS5VREhx7VIOXlFEVoDM-E5aNmJvGunli19iwjqaewxtwf3F-d9rmRR8FruWxyHignNFhFWlrH7UVVlrntSXoa6UjHRqRoEZhUFj0tHMB0TdCNTH0pNU2sE25CbXhaGi2gKHxnP8UOYrQ-gkx2a2jIqmkdoPHXh1EuaGxLkDGqdfFIK7gkfOtiSmxjLYmDutwWE15nSBs_Ea877hU0RE2drt1GdMYObcSMRg369AomRgXJzKNCXcOJQbo1-GoZNrU65--uP0n6h1Y8Ijreb5LA2rZ27vZhXk9zp7Tt71cUD8ArRfeeQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PIJ6UQLap7fQiLD5YcXcV37eSTRMUl1Vs3d9vptsWFRX00Es6SUtmkplhZr4B2CHMwchThisTCO5jgrwbGsOdeNiu7iplhc6bTYSdDt7fRxdFHXdaZruXIcn8pq6K3ejwkvfrHukhD0dh3HcKi_L4Lq9uq-vXiXAeOnC6i0qmgzKU-d0Sn5TR6AOlQn6wM7-ERnONczL7r3-dg5nCwGSNoUTMw4jpL8B0u0JnTRfh4LzPJD8iXP8hJgdrqYyS4Nid6j2ljKoAnfGZsOyZuWnsIk_sGhh2rqnn8BLcnBxfHzZ50UeBa7kvMh4oZ3RYRdraR22FldZ5bQn6WulIh0YkqFEYFBY97VxA9I1QdQw9abUNbF0uw1j_uW9WgKHxnP8UOYrQ-gkx2a2jIqmkdoP7Xg1EuaGxLkDGqddFL67gkfOtiSmxjLYmDmuwW015GSJs_Ea87bhU0RE2drPRimmMnFuJGAzqNVgvmRgXJzKNCXcOJQbo12CvZNqH1z99cfVP1Fsw2bxut-LWaedsDaY8koA892UdxrLXN7MBE3qQPaavm7nQvgMjS-Fd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8QwDA9-Ifrgt3h-FvFJKfbWuWUvgqiH4nke-Pk2el2Lokxx8_5-m902VFQQH_bSpV1p0iUhyS8AW4Q5GHnKcGUCwX1MkPdCY7gTD9vTPaWs0EWzibDTwbu7qFv2Oc2qbPcqJDmoaSCUpjTffUnsbl34RheZPGH3SA95OAyjPvUMInf98qb-FTtxLsIITo9R-XRQhTW_W-KTYhq-p7TIDzbnlzBpoX1a0__e9wxMlYYnOxhIyiwMmXQOJs9r1NZsHvYvUib5EeH9D7A6WFvllBzHbtXTY8aoOtAZpQnLn5mbxrpFwlffsAtNvYgX4Lp1fHV4wsv-ClzLPZHzQDljxCrS4j5qK6y0zptL0NdKRzo0IkGNwqCw6GnnGqJvhGpi6EmrbWCbchFG0ufULAFD4zm_KnIUofUTYr5bR0VSSe0G97wGiOpwY12Cj1MPjKe4hk0ujiamhDM6mjhswHY95WWAvPEb8abjWE1HmNknB-2YxsjplYhBv9mA1YqhcXlTs5jw6FBigH4DdioGfnj90xeX_0S9AePdo1bcPu2crcCERwJQpMSswkj--mbWYEz384fsdb2Q33cMX-pB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+3-Dimensional+Lattice+Walks+Confined+to+the+Positive+Octant&rft.jtitle=Annals+of+combinatorics&rft.au=Bostan%2C+Alin&rft.au=Bousquet-M%C3%A9lou%2C+Mireille&rft.au=Kauers%2C+Manuel&rft.au=Melczer%2C+Stephen&rft.date=2016-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0218-0006&rft.eissn=0219-3094&rft.volume=20&rft.issue=4&rft.spage=661&rft.epage=704&rft_id=info:doi/10.1007%2Fs00026-016-0328-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-0006&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-0006&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-0006&client=summon