Predicting Protein-Protein Interactions Using Sequence and Network Information via Variational Graph Autoencoder

Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics Jg. 20; H. 5; S. 3182 - 3194
Hauptverfasser: Luo, Xin, Wang, Liwei, Hu, Pengwei, Hu, Lun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-5963, 1557-9964, 1557-9964
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm.
AbstractList Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm. The source code of PASNVGA and all datasets are available at https://github.com/weizhi-code/PASNVGA.
Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm.
Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm.Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm.
Author Hu, Pengwei
Luo, Xin
Wang, Liwei
Hu, Lun
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-1348-5305
  surname: Luo
  fullname: Luo, Xin
  email: luoxin21@gmail.com
  organization: School of Computer Science and Technology, Dongguan University of Technology, Dongguan, Guangdong, China
– sequence: 2
  givenname: Liwei
  orcidid: 0009-0005-9990-1750
  surname: Wang
  fullname: Wang, Liwei
  email: 384576852@qq.com
  organization: School of Computer Science and Technology, Dongguan University of Technology, Dongguan, Guangdong, China
– sequence: 3
  givenname: Pengwei
  orcidid: 0000-0001-5974-7932
  surname: Hu
  fullname: Hu, Pengwei
  email: hpw@ms.xjb.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 4
  givenname: Lun
  orcidid: 0000-0002-1591-8549
  surname: Hu
  fullname: Hu, Lun
  email: hulun@ms.xjb.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37155405$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9LHTEQxYMo9U_7AQQpgb70Za_JJtlsHvXSWkFaQe1ryGZn2-je5DbJVvz2zXqvID70aWaY3xmGcw7Rrg8eEDqmZEEpUae3y_PzRU1qtmC1ZKKRO-iACiErpRq-O_dcVEI1bB8dpnRPSM0V4e_QPpMF40QcoPV1hN7Z7PwvfB1DBuerbcWXPkM0ZRd8wndpRm7gzwTeAja-x98hP4b4ULghxJWZOfzXGfzTRPc8mRFfRLP-jc-mHIos9BDfo73BjAk-bOsRuvv65Xb5rbr6cXG5PLuqLBMkVw1lTWNbQduOGml7RiUoK2jXNUyJXhKuDOmGTjZmGEgPYoCemrpreQ0dZ5Qdoc-bu-sYys8p65VLFsbReAhT0nVLqZCEMF7QT2_Q-zDF8v1MSSFaVpwr1MctNXUr6PU6upWJT_rFywLIDWBjSCnCoK3Lzz7kaNyoKdFzanpOTc-p6W1qRUnfKF-O_09zstE4AHjF05oowdk_NY6i8w
CODEN ITCBCY
CitedBy_id crossref_primary_10_1093_bib_bbae067
crossref_primary_10_1016_j_eswa_2024_123973
crossref_primary_10_1016_j_inffus_2025_103227
crossref_primary_10_1016_j_eswa_2024_123216
crossref_primary_10_1038_s41598_025_01667_y
crossref_primary_10_1186_s12864_024_10361_8
crossref_primary_10_1016_j_neucom_2023_126720
crossref_primary_10_1371_journal_pcbi_1013343
crossref_primary_10_1016_j_neucom_2024_128761
crossref_primary_10_1016_j_eswa_2024_125030
crossref_primary_10_1016_j_gene_2025_149228
crossref_primary_10_1038_s41598_025_96510_9
crossref_primary_10_1186_s12859_024_05973_6
crossref_primary_10_1038_s41580_025_00857_w
crossref_primary_10_1109_TNSE_2024_3524077
crossref_primary_10_1038_s41598_025_06544_2
crossref_primary_10_1109_TCBB_2024_3486216
crossref_primary_10_1371_journal_pone_0319084
crossref_primary_10_3390_ijms252312608
crossref_primary_10_1016_j_ijbiomac_2024_137272
crossref_primary_10_1016_j_compbiomed_2024_109449
crossref_primary_10_1109_TNNLS_2025_3563991
crossref_primary_10_1007_s10489_025_06348_x
crossref_primary_10_1016_j_ins_2025_122116
crossref_primary_10_1016_j_ymeth_2024_09_019
Cites_doi 10.1186/1471-2105-11-144
10.21037/atm.2016.03.37
10.1109/TCBB.2022.3196336
10.1093/bib/bbac165
10.3390/biom11060799
10.1109/TNSE.2020.3040407
10.1021/acs.jcim.7b00028
10.1093/bioinformatics/bth402
10.3389/fgene.2020.00018
10.1109/tkde.2020.3033324
10.1109/TNET.2015.2452272
10.1038/78948
10.1186/s12859-017-1700-2
10.1109/JAS.2020.1003396
10.1007/978-3-030-60802-6_54
10.1093/bioinformatics/btz328
10.1093/bib/bbab515
10.1109/JAS.2021.1004198
10.1016/j.neucom.2016.08.063
10.1016/j.physa.2015.10.016
10.1038/nmeth.4601
10.1093/nar/gkn892
10.1109/tcbb.2016.2520923
10.1002/wics.1198
10.1007/978-1-4939-7033-9_17
10.1186/gb-2010-11-5-r53
10.1109/TSMC.2018.2875452
10.1109/tnb.2015.2429672
10.1073/pnas.0607879104
10.1109/TCBB.2018.2844256
10.1371/journal.pone.0238915
10.3390/ijms17101623
10.1109/TII.2019.2930685
10.1006/meth.2001.1183
10.1109/tcbb.2021.3095947
10.1016/j.ygeno.2013.05.006
10.1109/tkde.2020.3014302
10.1038/s41467-019-09177-y
10.1093/bib/bbab036
10.1093/bioinformatics/btq510
10.1093/bib/bbab513
10.1093/nar/gks1094
10.1023/A:1010933404324
10.1038/s41598-020-75467-x
10.1109/tsc.2019.2961895
10.1109/TSMC.2019.2930525
10.1109/TII.2017.2724769
10.3390/genes11020153
10.1016/j.jmb.2020.03.011
10.1186/s12859-022-04624-y
10.1155/2016/4563524
10.1109/tbdata.2021.3090905
10.1016/j.asoc.2021.107831
10.1145/1052934.1052938
10.1039/C7MB00188F
10.1109/tnnls.2020.3041360
10.4161/mabs.26186
10.1109/JAS.2020.1003533
10.3389/fmicb.2021.735329
10.1186/s12859-020-03646-8
10.1109/34.908974
10.1109/tnse.2021.3109880
10.1109/TCBB.2016.2555304
10.1109/tsc.2021.3069108
10.3233/ICA-200645
10.3390/molecules23061460
10.1109/TBDATA.2019.2916868
10.1038/s41598-022-12201-9
10.1093/bioinformatics/btaa775
10.1093/bioinformatics/bti443
10.1006/bbrc.2000.3815
10.3390/molecules23081923
10.1109/TASE.2020.3040400
10.1109/tsmc.2021.3096065
10.1109/tsc.2020.2988760
10.1093/nar/gkn159
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2023.3273567
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 3194
ExternalDocumentID 37155405
10_1109_TCBB_2023_3273567
10120954
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62272078
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2021D01D05
  funderid: 10.13039/100009110
– fundername: Guangdong Province Universities and College Pearl River Scholar Funded Scheme
– fundername: Tianshan Youth Project-Outstanding Youth Science and Technology Talents of Xinjiang
  grantid: 2020Q005
– fundername: CAS Light of the West Multidisciplinary Team project
  grantid: xbzg-zdsys-202114
– fundername: Pioneer Hundred Talents Program of Chinese Academy of Sciences
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021B1515140046
  funderid: 10.13039/501100021171
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
ADPZR
NPM
RIC
W7O
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c350t-61366c8518b1a7cd317e9c51bb6395d7049a0bfb76aff0de5fed1a2b842eb4313
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084646300051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Sat Sep 27 22:13:35 EDT 2025
Sun Nov 09 08:07:31 EST 2025
Thu Jan 02 22:53:02 EST 2025
Tue Nov 18 20:48:54 EST 2025
Sat Nov 29 01:52:06 EST 2025
Wed Aug 27 02:34:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-61366c8518b1a7cd317e9c51bb6395d7049a0bfb76aff0de5fed1a2b842eb4313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-9990-1750
0000-0002-1348-5305
0000-0001-5974-7932
0000-0002-1591-8549
PMID 37155405
PQID 2875583002
PQPubID 85499
PageCount 13
ParticipantIDs ieee_primary_10120954
proquest_miscellaneous_2811570034
crossref_citationtrail_10_1109_TCBB_2023_3273567
proquest_journals_2875583002
pubmed_primary_37155405
crossref_primary_10_1109_TCBB_2023_3273567
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Irina (ref71)
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref70
ref72
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
Kipf (ref24) 2016
ref29
Evgeny (ref73) 2003; 2
ref60
ref62
ref61
References_xml – ident: ref35
  doi: 10.1186/1471-2105-11-144
– ident: ref72
  doi: 10.21037/atm.2016.03.37
– ident: ref65
  doi: 10.1109/TCBB.2022.3196336
– ident: ref20
  doi: 10.1093/bib/bbac165
– year: 2016
  ident: ref24
  article-title: Variational graph auto-encoders
– ident: ref45
  doi: 10.3390/biom11060799
– ident: ref53
  doi: 10.1109/TNSE.2020.3040407
– ident: ref32
  doi: 10.1021/acs.jcim.7b00028
– ident: ref66
  doi: 10.1093/bioinformatics/bth402
– ident: ref70
  doi: 10.3389/fgene.2020.00018
– ident: ref12
  doi: 10.1109/tkde.2020.3033324
– ident: ref15
  doi: 10.1109/TNET.2015.2452272
– ident: ref4
  doi: 10.1038/78948
– ident: ref31
  doi: 10.1186/s12859-017-1700-2
– ident: ref56
  doi: 10.1109/JAS.2020.1003396
– ident: ref39
  doi: 10.1007/978-3-030-60802-6_54
– ident: ref34
  doi: 10.1093/bioinformatics/btz328
– ident: ref77
  doi: 10.1093/bib/bbab515
– ident: ref10
  doi: 10.1109/JAS.2021.1004198
– ident: ref21
  doi: 10.1016/j.neucom.2016.08.063
– ident: ref37
  doi: 10.1016/j.physa.2015.10.016
– ident: ref7
  doi: 10.1038/nmeth.4601
– volume: 2
  start-page: 67
  issue: 2
  year: 2003
  ident: ref73
  article-title: Support vector machine applications in bioinformatics
  publication-title: Appl. Bioinf.
– ident: ref69
  doi: 10.1093/nar/gkn892
– ident: ref30
  doi: 10.1109/tcbb.2016.2520923
– ident: ref74
  doi: 10.1002/wics.1198
– ident: ref8
  doi: 10.1007/978-1-4939-7033-9_17
– ident: ref1
  doi: 10.1186/gb-2010-11-5-r53
– ident: ref51
  doi: 10.1109/TSMC.2018.2875452
– start-page: 41
  volume-title: Proc. IJCAI 2001 Workshop Empirical Methods Artif. Intell.
  ident: ref71
  article-title: An empirical study of the naive Bayes classifier
– ident: ref27
  doi: 10.1109/tnb.2015.2429672
– ident: ref26
  doi: 10.1073/pnas.0607879104
– ident: ref14
  doi: 10.1109/TCBB.2018.2844256
– ident: ref43
  doi: 10.1371/journal.pone.0238915
– ident: ref17
  doi: 10.3390/ijms17101623
– ident: ref50
  doi: 10.1109/TII.2019.2930685
– ident: ref6
  doi: 10.1006/meth.2001.1183
– ident: ref79
  doi: 10.1109/tcbb.2021.3095947
– ident: ref28
  doi: 10.1016/j.ygeno.2013.05.006
– ident: ref11
  doi: 10.1109/tkde.2020.3014302
– ident: ref41
  doi: 10.1038/s41467-019-09177-y
– ident: ref2
  doi: 10.1093/bib/bbab036
– ident: ref38
  doi: 10.1093/bioinformatics/btq510
– ident: ref44
  doi: 10.1093/bib/bbab513
– ident: ref68
  doi: 10.1093/nar/gks1094
– ident: ref75
  doi: 10.1023/A:1010933404324
– ident: ref19
  doi: 10.1038/s41598-020-75467-x
– ident: ref64
  doi: 10.1109/tsc.2019.2961895
– ident: ref48
  doi: 10.1109/TSMC.2019.2930525
– ident: ref47
  doi: 10.1109/TII.2017.2724769
– ident: ref40
  doi: 10.3390/genes11020153
– ident: ref5
  doi: 10.1016/j.jmb.2020.03.011
– ident: ref18
  doi: 10.1186/s12859-022-04624-y
– ident: ref29
  doi: 10.1155/2016/4563524
– ident: ref13
  doi: 10.1109/tbdata.2021.3090905
– ident: ref76
  doi: 10.1016/j.asoc.2021.107831
– ident: ref67
  doi: 10.1145/1052934.1052938
– ident: ref33
  doi: 10.1039/C7MB00188F
– ident: ref49
  doi: 10.1109/tnnls.2020.3041360
– ident: ref9
  doi: 10.4161/mabs.26186
– ident: ref54
  doi: 10.1109/JAS.2020.1003533
– ident: ref3
  doi: 10.3389/fmicb.2021.735329
– ident: ref46
  doi: 10.1186/s12859-020-03646-8
– ident: ref61
  doi: 10.1109/34.908974
– ident: ref78
  doi: 10.1109/tnse.2021.3109880
– ident: ref23
  doi: 10.1109/TCBB.2016.2555304
– ident: ref59
  doi: 10.1109/tsc.2021.3069108
– ident: ref63
  doi: 10.3233/ICA-200645
– ident: ref22
  doi: 10.3390/molecules23061460
– ident: ref52
  doi: 10.1109/TBDATA.2019.2916868
– ident: ref42
  doi: 10.1038/s41598-022-12201-9
– ident: ref62
  doi: 10.1093/bioinformatics/btaa775
– ident: ref36
  doi: 10.1093/bioinformatics/bti443
– ident: ref58
  doi: 10.1006/bbrc.2000.3815
– ident: ref16
  doi: 10.3390/molecules23081923
– ident: ref57
  doi: 10.1109/TASE.2020.3040400
– ident: ref55
  doi: 10.1109/tsmc.2021.3096065
– ident: ref60
  doi: 10.1109/tsc.2020.2988760
– ident: ref25
  doi: 10.1093/nar/gkn159
SSID ssj0024904
Score 2.4865072
Snippet Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3182
SubjectTerms Algorithms
Amino acid sequence
Artificial neural networks
Biological system modeling
Computational modeling
Feature extraction
Graph neural networks
Neural networks
PPI network
PPI prediction
Prediction algorithms
Predictions
Predictive models
Principal components analysis
Protein interaction
Protein sequences
Protein-protein Interaction
Proteins
Proteomics
Task analysis
Variational graph autoencoder
Title Predicting Protein-Protein Interactions Using Sequence and Network Information via Variational Graph Autoencoder
URI https://ieeexplore.ieee.org/document/10120954
https://www.ncbi.nlm.nih.gov/pubmed/37155405
https://www.proquest.com/docview/2875583002
https://www.proquest.com/docview/2811570034
Volume 20
WOSCitedRecordID wos001084646300051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5ULPSlta3VtCpb8EnIublkk82jitqHchzUyr2F3ewEDiQn90Pof9-Z3b1r-6DgUwKZJEtmNvPN7sw3AKeYKXIblUvdEG1a6GFN_0EpU1OXQ8wpfrC-fdv9j2o00pNJPY7F6r4WBhF98hkO-NTv5btZu-KlsvPMV3qqYhu2q6oMxVp_ifVq3yuQIUGqyKziFmYm6_O7q8vLAfcJH-TkrVXJnfdoHIrRyn_-yDdYeR5rep9z8_6Vo92DdxFciotgDR9gC_uP8Ca0m_z9CR7Hc96W4URnMWZ-hmmfxqPwK4OhyGEhfB6B-BmzrIXpnRiFdHERy5dYTjxNjbinWDuuJ4pbJr8WF6vljNkxHc734dfN9d3V9zR2XEjbXMklxZF5WbYEwrTNTNU6AhdYtyqzloCMchWFE0bazlal6TrpUHXoMjO0uiBNExTJP8NOP-vxEIRElRfKoNF1UZAHtDbXXUHwqlOdUbpMQK6_e9NGOnLuivHQ-LBE1g1rrWGtNVFrCZxtbnkMXBwvCe-zSv4RDNpI4Git3SZO10VDYaNSOicrSuDb5jJNNN49MT3OVizDvETM55PAQbCKzcPXxvTlmZd-hbc8tpCbdgQ7y_kKj2G3fVpOF_MTsuaJPvHW_Af1Ae1w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8pL7Uj1pNa-0KfRJybi7ZfDyqVC09jwOv4lvYzU7gQHJyH4L_fWc2e2f7YKFPCWSSLJnZzG92Z-YH8A0jRW4js6HtogmTvFvQf1DKUBdpF2OKH4yjb7vvZf1-_vBQDHyxuquFQUSXfIYdPnV7-XZczXmp7CxylZ4qWYV1ps7y5VqvrfUKxxbIoCBUZFh-EzOSxdnw8uKiw0zhnZj8tUqZe49Gohiv_OWRHMXK22jTeZ2r7f8c7w689_BSnLf2sAsr2OzBZks4-fIBngYT3pjhVGcx4A4Noyb0R-HWBtsyh6lwmQTizudZC91Y0W8TxoUvYGI58TzS4p6ibb-iKK65_bU4n8_G3B_T4mQffl19H17ehJ5zIaxiJWcUScZpWhEMy02ks8oSvMCiUpExBGWUzSig0NLUJkt1XUuLqkYb6a7JE9I1gZH4I6w14wYPQUhUcaI06rxIEvKBxsR5nRDAqlWtVZ4GIBffvax8Q3LmxXgsXWAii5K1VrLWSq-1AE6Xtzy13Tj-JbzPKvlDsNVGAEcL7ZZ-wk5LChyVymOyogBOlpdpqvH-iW5wPGcZ7kzEHX0COGitYvnwhTF9euOlX-HdzfC2V_Z-9H9-hi0eZ5updgRrs8kcv8BG9TwbTSfHzqZ_A-Ak79E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Protein-Protein+Interactions+Using+Sequence+and+Network+Information+via+Variational+Graph+Autoencoder&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Luo%2C+Xin&rft.au=Wang%2C+Liwei&rft.au=Hu%2C+Pengwei&rft.au=Hu%2C+Lun&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=20&rft.issue=5&rft.spage=3182&rft_id=info:doi/10.1109%2FTCBB.2023.3273567&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon