Predicting Protein-Protein Interactions Using Sequence and Network Information via Variational Graph Autoencoder
Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this p...
Gespeichert in:
| Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics Jg. 20; H. 5; S. 3182 - 3194 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm. |
|---|---|
| AbstractList | Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm. The source code of PASNVGA and all datasets are available at https://github.com/weizhi-code/PASNVGA. Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm. Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm.Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict PPIs. Though effective, their performance is constrained by high false-positive and false-negative rates observed in PPI data. To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder. To do so, PASNVGA first applies different strategies to extract the features of proteins from their sequence and network information, and obtains a more compact form of these features using principal component analysis. In addition, PASNVGA designs a scoring function to measure the higher-order connectivity between proteins and so as to obtain a higher-order adjacency matrix. With all these features and adjacency matrices, PASNVGA trains a variational graph autoencoder model to further learn the integrated embeddings of proteins. The prediction task is then completed by using a simple feedforward neural network. Extensive experiments have been conducted on five PPI datasets collected from different species. Compared with several state-of-the-art algorithms, PASNVGA has been demonstrated as a promising PPI prediction algorithm. |
| Author | Hu, Pengwei Luo, Xin Wang, Liwei Hu, Lun |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-1348-5305 surname: Luo fullname: Luo, Xin email: luoxin21@gmail.com organization: School of Computer Science and Technology, Dongguan University of Technology, Dongguan, Guangdong, China – sequence: 2 givenname: Liwei orcidid: 0009-0005-9990-1750 surname: Wang fullname: Wang, Liwei email: 384576852@qq.com organization: School of Computer Science and Technology, Dongguan University of Technology, Dongguan, Guangdong, China – sequence: 3 givenname: Pengwei orcidid: 0000-0001-5974-7932 surname: Hu fullname: Hu, Pengwei email: hpw@ms.xjb.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 4 givenname: Lun orcidid: 0000-0002-1591-8549 surname: Hu fullname: Hu, Lun email: hulun@ms.xjb.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37155405$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9LHTEQxYMo9U_7AQQpgb70Za_JJtlsHvXSWkFaQe1ryGZn2-je5DbJVvz2zXqvID70aWaY3xmGcw7Rrg8eEDqmZEEpUae3y_PzRU1qtmC1ZKKRO-iACiErpRq-O_dcVEI1bB8dpnRPSM0V4e_QPpMF40QcoPV1hN7Z7PwvfB1DBuerbcWXPkM0ZRd8wndpRm7gzwTeAja-x98hP4b4ULghxJWZOfzXGfzTRPc8mRFfRLP-jc-mHIos9BDfo73BjAk-bOsRuvv65Xb5rbr6cXG5PLuqLBMkVw1lTWNbQduOGml7RiUoK2jXNUyJXhKuDOmGTjZmGEgPYoCemrpreQ0dZ5Qdoc-bu-sYys8p65VLFsbReAhT0nVLqZCEMF7QT2_Q-zDF8v1MSSFaVpwr1MctNXUr6PU6upWJT_rFywLIDWBjSCnCoK3Lzz7kaNyoKdFzanpOTc-p6W1qRUnfKF-O_09zstE4AHjF05oowdk_NY6i8w |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1093_bib_bbae067 crossref_primary_10_1016_j_eswa_2024_123973 crossref_primary_10_1016_j_inffus_2025_103227 crossref_primary_10_1016_j_eswa_2024_123216 crossref_primary_10_1038_s41598_025_01667_y crossref_primary_10_1186_s12864_024_10361_8 crossref_primary_10_1016_j_neucom_2023_126720 crossref_primary_10_1371_journal_pcbi_1013343 crossref_primary_10_1016_j_neucom_2024_128761 crossref_primary_10_1016_j_eswa_2024_125030 crossref_primary_10_1016_j_gene_2025_149228 crossref_primary_10_1038_s41598_025_96510_9 crossref_primary_10_1186_s12859_024_05973_6 crossref_primary_10_1038_s41580_025_00857_w crossref_primary_10_1109_TNSE_2024_3524077 crossref_primary_10_1038_s41598_025_06544_2 crossref_primary_10_1109_TCBB_2024_3486216 crossref_primary_10_1371_journal_pone_0319084 crossref_primary_10_3390_ijms252312608 crossref_primary_10_1016_j_ijbiomac_2024_137272 crossref_primary_10_1016_j_compbiomed_2024_109449 crossref_primary_10_1109_TNNLS_2025_3563991 crossref_primary_10_1007_s10489_025_06348_x crossref_primary_10_1016_j_ins_2025_122116 crossref_primary_10_1016_j_ymeth_2024_09_019 |
| Cites_doi | 10.1186/1471-2105-11-144 10.21037/atm.2016.03.37 10.1109/TCBB.2022.3196336 10.1093/bib/bbac165 10.3390/biom11060799 10.1109/TNSE.2020.3040407 10.1021/acs.jcim.7b00028 10.1093/bioinformatics/bth402 10.3389/fgene.2020.00018 10.1109/tkde.2020.3033324 10.1109/TNET.2015.2452272 10.1038/78948 10.1186/s12859-017-1700-2 10.1109/JAS.2020.1003396 10.1007/978-3-030-60802-6_54 10.1093/bioinformatics/btz328 10.1093/bib/bbab515 10.1109/JAS.2021.1004198 10.1016/j.neucom.2016.08.063 10.1016/j.physa.2015.10.016 10.1038/nmeth.4601 10.1093/nar/gkn892 10.1109/tcbb.2016.2520923 10.1002/wics.1198 10.1007/978-1-4939-7033-9_17 10.1186/gb-2010-11-5-r53 10.1109/TSMC.2018.2875452 10.1109/tnb.2015.2429672 10.1073/pnas.0607879104 10.1109/TCBB.2018.2844256 10.1371/journal.pone.0238915 10.3390/ijms17101623 10.1109/TII.2019.2930685 10.1006/meth.2001.1183 10.1109/tcbb.2021.3095947 10.1016/j.ygeno.2013.05.006 10.1109/tkde.2020.3014302 10.1038/s41467-019-09177-y 10.1093/bib/bbab036 10.1093/bioinformatics/btq510 10.1093/bib/bbab513 10.1093/nar/gks1094 10.1023/A:1010933404324 10.1038/s41598-020-75467-x 10.1109/tsc.2019.2961895 10.1109/TSMC.2019.2930525 10.1109/TII.2017.2724769 10.3390/genes11020153 10.1016/j.jmb.2020.03.011 10.1186/s12859-022-04624-y 10.1155/2016/4563524 10.1109/tbdata.2021.3090905 10.1016/j.asoc.2021.107831 10.1145/1052934.1052938 10.1039/C7MB00188F 10.1109/tnnls.2020.3041360 10.4161/mabs.26186 10.1109/JAS.2020.1003533 10.3389/fmicb.2021.735329 10.1186/s12859-020-03646-8 10.1109/34.908974 10.1109/tnse.2021.3109880 10.1109/TCBB.2016.2555304 10.1109/tsc.2021.3069108 10.3233/ICA-200645 10.3390/molecules23061460 10.1109/TBDATA.2019.2916868 10.1038/s41598-022-12201-9 10.1093/bioinformatics/btaa775 10.1093/bioinformatics/bti443 10.1006/bbrc.2000.3815 10.3390/molecules23081923 10.1109/TASE.2020.3040400 10.1109/tsmc.2021.3096065 10.1109/tsc.2020.2988760 10.1093/nar/gkn159 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2023.3273567 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 3194 |
| ExternalDocumentID | 37155405 10_1109_TCBB_2023_3273567 10120954 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62272078 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2021D01D05 funderid: 10.13039/100009110 – fundername: Guangdong Province Universities and College Pearl River Scholar Funded Scheme – fundername: Tianshan Youth Project-Outstanding Youth Science and Technology Talents of Xinjiang grantid: 2020Q005 – fundername: CAS Light of the West Multidisciplinary Team project grantid: xbzg-zdsys-202114 – fundername: Pioneer Hundred Talents Program of Chinese Academy of Sciences – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2021B1515140046 funderid: 10.13039/501100021171 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION ADPZR NPM RIC W7O 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c350t-61366c8518b1a7cd317e9c51bb6395d7049a0bfb76aff0de5fed1a2b842eb4313 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084646300051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sat Sep 27 22:13:35 EDT 2025 Sun Nov 09 08:07:31 EST 2025 Thu Jan 02 22:53:02 EST 2025 Tue Nov 18 20:48:54 EST 2025 Sat Nov 29 01:52:06 EST 2025 Wed Aug 27 02:34:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-61366c8518b1a7cd317e9c51bb6395d7049a0bfb76aff0de5fed1a2b842eb4313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0005-9990-1750 0000-0002-1348-5305 0000-0001-5974-7932 0000-0002-1591-8549 |
| PMID | 37155405 |
| PQID | 2875583002 |
| PQPubID | 85499 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10120954 proquest_miscellaneous_2811570034 crossref_citationtrail_10_1109_TCBB_2023_3273567 proquest_journals_2875583002 pubmed_primary_37155405 crossref_primary_10_1109_TCBB_2023_3273567 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Irina (ref71) ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref70 ref72 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 Kipf (ref24) 2016 ref29 Evgeny (ref73) 2003; 2 ref60 ref62 ref61 |
| References_xml | – ident: ref35 doi: 10.1186/1471-2105-11-144 – ident: ref72 doi: 10.21037/atm.2016.03.37 – ident: ref65 doi: 10.1109/TCBB.2022.3196336 – ident: ref20 doi: 10.1093/bib/bbac165 – year: 2016 ident: ref24 article-title: Variational graph auto-encoders – ident: ref45 doi: 10.3390/biom11060799 – ident: ref53 doi: 10.1109/TNSE.2020.3040407 – ident: ref32 doi: 10.1021/acs.jcim.7b00028 – ident: ref66 doi: 10.1093/bioinformatics/bth402 – ident: ref70 doi: 10.3389/fgene.2020.00018 – ident: ref12 doi: 10.1109/tkde.2020.3033324 – ident: ref15 doi: 10.1109/TNET.2015.2452272 – ident: ref4 doi: 10.1038/78948 – ident: ref31 doi: 10.1186/s12859-017-1700-2 – ident: ref56 doi: 10.1109/JAS.2020.1003396 – ident: ref39 doi: 10.1007/978-3-030-60802-6_54 – ident: ref34 doi: 10.1093/bioinformatics/btz328 – ident: ref77 doi: 10.1093/bib/bbab515 – ident: ref10 doi: 10.1109/JAS.2021.1004198 – ident: ref21 doi: 10.1016/j.neucom.2016.08.063 – ident: ref37 doi: 10.1016/j.physa.2015.10.016 – ident: ref7 doi: 10.1038/nmeth.4601 – volume: 2 start-page: 67 issue: 2 year: 2003 ident: ref73 article-title: Support vector machine applications in bioinformatics publication-title: Appl. Bioinf. – ident: ref69 doi: 10.1093/nar/gkn892 – ident: ref30 doi: 10.1109/tcbb.2016.2520923 – ident: ref74 doi: 10.1002/wics.1198 – ident: ref8 doi: 10.1007/978-1-4939-7033-9_17 – ident: ref1 doi: 10.1186/gb-2010-11-5-r53 – ident: ref51 doi: 10.1109/TSMC.2018.2875452 – start-page: 41 volume-title: Proc. IJCAI 2001 Workshop Empirical Methods Artif. Intell. ident: ref71 article-title: An empirical study of the naive Bayes classifier – ident: ref27 doi: 10.1109/tnb.2015.2429672 – ident: ref26 doi: 10.1073/pnas.0607879104 – ident: ref14 doi: 10.1109/TCBB.2018.2844256 – ident: ref43 doi: 10.1371/journal.pone.0238915 – ident: ref17 doi: 10.3390/ijms17101623 – ident: ref50 doi: 10.1109/TII.2019.2930685 – ident: ref6 doi: 10.1006/meth.2001.1183 – ident: ref79 doi: 10.1109/tcbb.2021.3095947 – ident: ref28 doi: 10.1016/j.ygeno.2013.05.006 – ident: ref11 doi: 10.1109/tkde.2020.3014302 – ident: ref41 doi: 10.1038/s41467-019-09177-y – ident: ref2 doi: 10.1093/bib/bbab036 – ident: ref38 doi: 10.1093/bioinformatics/btq510 – ident: ref44 doi: 10.1093/bib/bbab513 – ident: ref68 doi: 10.1093/nar/gks1094 – ident: ref75 doi: 10.1023/A:1010933404324 – ident: ref19 doi: 10.1038/s41598-020-75467-x – ident: ref64 doi: 10.1109/tsc.2019.2961895 – ident: ref48 doi: 10.1109/TSMC.2019.2930525 – ident: ref47 doi: 10.1109/TII.2017.2724769 – ident: ref40 doi: 10.3390/genes11020153 – ident: ref5 doi: 10.1016/j.jmb.2020.03.011 – ident: ref18 doi: 10.1186/s12859-022-04624-y – ident: ref29 doi: 10.1155/2016/4563524 – ident: ref13 doi: 10.1109/tbdata.2021.3090905 – ident: ref76 doi: 10.1016/j.asoc.2021.107831 – ident: ref67 doi: 10.1145/1052934.1052938 – ident: ref33 doi: 10.1039/C7MB00188F – ident: ref49 doi: 10.1109/tnnls.2020.3041360 – ident: ref9 doi: 10.4161/mabs.26186 – ident: ref54 doi: 10.1109/JAS.2020.1003533 – ident: ref3 doi: 10.3389/fmicb.2021.735329 – ident: ref46 doi: 10.1186/s12859-020-03646-8 – ident: ref61 doi: 10.1109/34.908974 – ident: ref78 doi: 10.1109/tnse.2021.3109880 – ident: ref23 doi: 10.1109/TCBB.2016.2555304 – ident: ref59 doi: 10.1109/tsc.2021.3069108 – ident: ref63 doi: 10.3233/ICA-200645 – ident: ref22 doi: 10.3390/molecules23061460 – ident: ref52 doi: 10.1109/TBDATA.2019.2916868 – ident: ref42 doi: 10.1038/s41598-022-12201-9 – ident: ref62 doi: 10.1093/bioinformatics/btaa775 – ident: ref36 doi: 10.1093/bioinformatics/bti443 – ident: ref58 doi: 10.1006/bbrc.2000.3815 – ident: ref16 doi: 10.3390/molecules23081923 – ident: ref57 doi: 10.1109/TASE.2020.3040400 – ident: ref55 doi: 10.1109/tsmc.2021.3096065 – ident: ref60 doi: 10.1109/tsc.2020.2988760 – ident: ref25 doi: 10.1093/nar/gkn159 |
| SSID | ssj0024904 |
| Score | 2.4865072 |
| Snippet | Protein-protein interactions (PPIs) play a critical role in the proteomics study, and a variety of computational algorithms have been developed to predict... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3182 |
| SubjectTerms | Algorithms Amino acid sequence Artificial neural networks Biological system modeling Computational modeling Feature extraction Graph neural networks Neural networks PPI network PPI prediction Prediction algorithms Predictions Predictive models Principal components analysis Protein interaction Protein sequences Protein-protein Interaction Proteins Proteomics Task analysis Variational graph autoencoder |
| Title | Predicting Protein-Protein Interactions Using Sequence and Network Information via Variational Graph Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10120954 https://www.ncbi.nlm.nih.gov/pubmed/37155405 https://www.proquest.com/docview/2875583002 https://www.proquest.com/docview/2811570034 |
| Volume | 20 |
| WOSCitedRecordID | wos001084646300051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5ULPSlta3VtCpb8EnIublkk82jitqHchzUyr2F3ewEDiQn90Pof9-Z3b1r-6DgUwKZJEtmNvPN7sw3AKeYKXIblUvdEG1a6GFN_0EpU1OXQ8wpfrC-fdv9j2o00pNJPY7F6r4WBhF98hkO-NTv5btZu-KlsvPMV3qqYhu2q6oMxVp_ifVq3yuQIUGqyKziFmYm6_O7q8vLAfcJH-TkrVXJnfdoHIrRyn_-yDdYeR5rep9z8_6Vo92DdxFciotgDR9gC_uP8Ca0m_z9CR7Hc96W4URnMWZ-hmmfxqPwK4OhyGEhfB6B-BmzrIXpnRiFdHERy5dYTjxNjbinWDuuJ4pbJr8WF6vljNkxHc734dfN9d3V9zR2XEjbXMklxZF5WbYEwrTNTNU6AhdYtyqzloCMchWFE0bazlal6TrpUHXoMjO0uiBNExTJP8NOP-vxEIRElRfKoNF1UZAHtDbXXUHwqlOdUbpMQK6_e9NGOnLuivHQ-LBE1g1rrWGtNVFrCZxtbnkMXBwvCe-zSv4RDNpI4Git3SZO10VDYaNSOicrSuDb5jJNNN49MT3OVizDvETM55PAQbCKzcPXxvTlmZd-hbc8tpCbdgQ7y_kKj2G3fVpOF_MTsuaJPvHW_Af1Ae1w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8pL7Uj1pNa-0KfRJybi7ZfDyqVC09jwOv4lvYzU7gQHJyH4L_fWc2e2f7YKFPCWSSLJnZzG92Z-YH8A0jRW4js6HtogmTvFvQf1DKUBdpF2OKH4yjb7vvZf1-_vBQDHyxuquFQUSXfIYdPnV7-XZczXmp7CxylZ4qWYV1ps7y5VqvrfUKxxbIoCBUZFh-EzOSxdnw8uKiw0zhnZj8tUqZe49Gohiv_OWRHMXK22jTeZ2r7f8c7w689_BSnLf2sAsr2OzBZks4-fIBngYT3pjhVGcx4A4Noyb0R-HWBtsyh6lwmQTizudZC91Y0W8TxoUvYGI58TzS4p6ibb-iKK65_bU4n8_G3B_T4mQffl19H17ehJ5zIaxiJWcUScZpWhEMy02ks8oSvMCiUpExBGWUzSig0NLUJkt1XUuLqkYb6a7JE9I1gZH4I6w14wYPQUhUcaI06rxIEvKBxsR5nRDAqlWtVZ4GIBffvax8Q3LmxXgsXWAii5K1VrLWSq-1AE6Xtzy13Tj-JbzPKvlDsNVGAEcL7ZZ-wk5LChyVymOyogBOlpdpqvH-iW5wPGcZ7kzEHX0COGitYvnwhTF9euOlX-HdzfC2V_Z-9H9-hi0eZ5updgRrs8kcv8BG9TwbTSfHzqZ_A-Ak79E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Protein-Protein+Interactions+Using+Sequence+and+Network+Information+via+Variational+Graph+Autoencoder&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Luo%2C+Xin&rft.au=Wang%2C+Liwei&rft.au=Hu%2C+Pengwei&rft.au=Hu%2C+Lun&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=20&rft.issue=5&rft.spage=3182&rft_id=info:doi/10.1109%2FTCBB.2023.3273567&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |