Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24

By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal Vol. 884; no. 2; pp. 102 - 112
Main Authors: Chang, Qing, Xu, Xiaojun, Xu, Qi, Zhong, Jun, Xu, Jiaying, Wang, Jing, Zhang, Tielong
Format: Journal Article
Language:English
Published: Philadelphia The American Astronomical Society 20.10.2019
IOP Publishing
Subjects:
ISSN:0004-637X, 1538-4357
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance (R0). It is inferred that R0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result.
AbstractList By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance (R0). It is inferred that R0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result.
By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r  =  R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance ( R 0 ). It is inferred that R 0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result.
By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance (R 0). It is inferred that R 0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result.
Author Xu, Xiaojun
Xu, Qi
Zhong, Jun
Chang, Qing
Xu, Jiaying
Zhang, Tielong
Wang, Jing
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0000-0003-4883-949X
  surname: Chang
  fullname: Chang, Qing
  organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China
– sequence: 2
  givenname: Xiaojun
  orcidid: 0000-0002-2309-0649
  surname: Xu
  fullname: Xu, Xiaojun
  email: xjxu@must.edu.mo
  organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China
– sequence: 3
  givenname: Qi
  orcidid: 0000-0003-4662-476X
  surname: Xu
  fullname: Xu, Qi
  organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0003-4187-3361
  surname: Zhong
  fullname: Zhong, Jun
  organization: Chinese Academy of Sciences Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Beijing, People's Republic of China
– sequence: 5
  givenname: Jiaying
  orcidid: 0000-0002-9579-6739
  surname: Xu
  fullname: Xu, Jiaying
  organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China
– sequence: 6
  givenname: Jing
  orcidid: 0000-0003-0471-5532
  surname: Wang
  fullname: Wang, Jing
  organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China
– sequence: 7
  givenname: Tielong
  surname: Zhang
  fullname: Zhang, Tielong
  organization: Space Research Institute , Austrian Academy of Sciences, Graz, Austria
BookMark eNp9kMtLxDAQh4MouD7uHgNeraZ59HGUxRe4KKjoraTJdI1mk5qm4J78191aURH0FGb4vsnMbwutO-8Aob2UHLKC50epYEXCmciPZM1TKtfQ5Ku1jiaEEJ5kLH_YRFtd9zSUtCwn6G3W22haC0nrjYt45jVY4-Y4PgK-luEZAr5pTZAWT71rzLwPMhrvsG8-kBtvZcD3xmk8k3MH0Sh8asBqLOMPYCZfzaJfDNbYmC6VBUz5DtpopO1g9_PdRnenJ7fT8-Ty6uxienyZKCZITIRWJGVcMdJw1Qhea15q0DWABpqBoFozKEqiRE5qIUiZFrXkJKVQaEmhZNtof5zbBv_SQxerJ98Ht_qyoiwTJc3ylK2obKRU8F0XoKmUiR_3xiCNrVJSDWFXQ7LVkGw1hr0SyS-xDWYhw_I_5WBUjG-_l_kTfwfDDZJO
CitedBy_id crossref_primary_10_3847_1538_4357_ac88c4
crossref_primary_10_3390_universe10110407
crossref_primary_10_3847_1538_4357_ac73f6
crossref_primary_10_3847_1538_4357_aba62a
crossref_primary_10_3847_1538_4365_adea79
crossref_primary_10_3847_1538_4357_ac1c07
crossref_primary_10_3847_1538_4357_ad7949
crossref_primary_10_3847_1538_4357_ac80c0
crossref_primary_10_3847_1538_4357_ab7819
crossref_primary_10_1051_0004_6361_202451926
crossref_primary_10_1029_2021JA029528
crossref_primary_10_3847_1538_4357_ac6bf3
crossref_primary_10_3847_1538_3881_ad192d
Cites_doi 10.1016/j.pss.2010.10.014
10.1029/JA085iA12p06861
10.1007/BF00751330
10.1029/2009JA015040
10.1029/95JA02977
10.12942/lrsp-2013-5
10.1007/s11214-015-0211-6
10.1126/science.186.4158.51
10.1007/BF00156388
10.1016/j.pss.2007.01.013
10.1002/2017JA024532
10.1007/BF00146478
10.1002/grl.50392
10.1086/146579
10.1007/BF00145734
10.1002/2015JA021463
10.1023/A:1005092216668
10.1029/2012JA017705
10.1029/92JA02235
10.1002/2016JA022725
10.1007/s11214-007-9246-7
10.1029/2011GL049578
10.1029/RG016i001p00125
10.1007/s11214-007-9247-6
10.1023/A:1005082526237
10.3847/1538-4357/aae3e7
10.1007/BF00216273
10.1016/S0273-1177(97)00439-0
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Oct 20, 2019
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Oct 20, 2019
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab412a
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab412a
apjab412a
GrantInformation_xml – fundername: Science and Technology Development Fund of Macao
  grantid: 008/2016/A1
– fundername: Natural Science Foundation of China
  grantid: 41731067
– fundername: Natural Science Foundation of China
  grantid: 41564007
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c350t-5dc0134c30f4cf54bd49dedbeede26e52dd3e890c570b550918ba4012e8da2e93
IEDL.DBID O3W
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501735300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-637X
IngestDate Wed Aug 13 09:45:14 EDT 2025
Tue Nov 18 20:44:38 EST 2025
Sat Nov 29 05:30:33 EST 2025
Wed Aug 21 03:33:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-5dc0134c30f4cf54bd49dedbeede26e52dd3e890c570b550918ba4012e8da2e93
Notes AAS17033
The Sun and the Heliosphere
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0471-5532
0000-0003-4883-949X
0000-0002-9579-6739
0000-0002-2309-0649
0000-0003-4187-3361
0000-0003-4662-476X
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ab412a/pdf
PQID 2365926713
PQPubID 4562441
PageCount 11
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ab412a
proquest_journals_2365926713
crossref_primary_10_3847_1538_4357_ab412a
iop_journals_10_3847_1538_4357_ab412a
PublicationCentury 2000
PublicationDate 2019-10-20
PublicationDateYYYYMMDD 2019-10-20
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-20
  day: 20
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Parker (apjab412abib15) 1958; 128
Schulte in den Bäumen (apjab412abib19) 2012; 117
Stone (apjab412abib22) 1998; 86
Schatten (apjab412abib17) 1969; 6
Luhmann (apjab412abib11) 1993; 98
Owens (apjab412abib14) 2013; 10
Svalgaard (apjab412abib23) 1974; 186
Borovsky (apjab412abib4) 2010; 115
Ogilvie (apjab412abib13) 1997; 20
Chang (apjab412abib5) 2018; 867
Behannon (apjab412abib3) 1978; 16
Wood (apjab412abib28) 2015; 120
Smith (apjab412abib20) 1998; 86
Anderson (apjab412abib2) 2007; 131
Masunaga (apjab412abib12) 2013; 40
Schulte in den Bäumen (apjab412abib18) 2011; 38
Thomas (apjab412abib27) 1980; 85
Tasnim (apjab412abib25) 2016; 121
Zhang (apjab412abib29) 2007
Altschuler (apjab412abib1) 1969; 9
Tasnim (apjab412abib26) 2018; 123
Solomon (apjab412abib21) 2007; 131
Forsyth (apjab412abib6) 1996; 101
Parker (apjab412abib16) 1965; 4
Lepping (apjab412abib10) 1995; 71
Fox (apjab412abib7) 2016; 204
Svedhem (apjab412abib24) 2007; 55
Hoeksema (apjab412abib8) 1986; 105
Korth (apjab412abib9) 2011; 59
References_xml – volume: 59
  start-page: 2075
  year: 2011
  ident: apjab412abib9
  publication-title: P&SS
  doi: 10.1016/j.pss.2010.10.014
– volume: 85
  start-page: 6861
  year: 1980
  ident: apjab412abib27
  publication-title: JGRA
  doi: 10.1029/JA085iA12p06861
– volume: 71
  start-page: 207
  year: 1995
  ident: apjab412abib10
  publication-title: SSRv
  doi: 10.1007/BF00751330
– volume: 115
  start-page: A09101
  year: 2010
  ident: apjab412abib4
  publication-title: JGRA
  doi: 10.1029/2009JA015040
– volume: 101
  start-page: 395
  year: 1996
  ident: apjab412abib6
  publication-title: JGRA
  doi: 10.1029/95JA02977
– volume: 10
  start-page: 5
  year: 2013
  ident: apjab412abib14
  publication-title: LRSP
  doi: 10.12942/lrsp-2013-5
– volume: 204
  start-page: 7
  year: 2016
  ident: apjab412abib7
  publication-title: SSRv
  doi: 10.1007/s11214-015-0211-6
– volume: 186
  start-page: 51
  year: 1974
  ident: apjab412abib23
  publication-title: Sci
  doi: 10.1126/science.186.4158.51
– volume: 105
  start-page: 205
  year: 1986
  ident: apjab412abib8
  publication-title: SoPh
  doi: 10.1007/BF00156388
– volume: 55
  start-page: 1636
  year: 2007
  ident: apjab412abib24
  publication-title: P&SS
  doi: 10.1016/j.pss.2007.01.013
– volume: 123
  start-page: 1061
  year: 2018
  ident: apjab412abib26
  publication-title: JGRA
  doi: 10.1002/2017JA024532
– volume: 6
  start-page: 442
  year: 1969
  ident: apjab412abib17
  publication-title: SoPh
  doi: 10.1007/BF00146478
– volume: 40
  start-page: 1682
  year: 2013
  ident: apjab412abib12
  publication-title: GeoRL
  doi: 10.1002/grl.50392
– volume: 128
  start-page: 664
  year: 1958
  ident: apjab412abib15
  publication-title: ApJ
  doi: 10.1086/146579
– volume: 9
  start-page: 131
  year: 1969
  ident: apjab412abib1
  publication-title: SoPh
  doi: 10.1007/BF00145734
– volume: 120
  start-page: 7121
  year: 2015
  ident: apjab412abib28
  publication-title: JGRA
  doi: 10.1002/2015JA021463
– volume: 86
  start-page: 613
  year: 1998
  ident: apjab412abib20
  publication-title: SSRv
  doi: 10.1023/A:1005092216668
– volume: 117
  year: 2012
  ident: apjab412abib19
  publication-title: JGR
  doi: 10.1029/2012JA017705
– volume: 98
  start-page: 5559
  year: 1993
  ident: apjab412abib11
  publication-title: JGRA
  doi: 10.1029/92JA02235
– volume: 121
  start-page: 4966
  year: 2016
  ident: apjab412abib25
  publication-title: JGRA
  doi: 10.1002/2016JA022725
– volume: 131
  start-page: 417
  year: 2007
  ident: apjab412abib2
  publication-title: SSRv
  doi: 10.1007/s11214-007-9246-7
– volume: 38
  start-page: L24101
  year: 2011
  ident: apjab412abib18
  publication-title: GeoRL
  doi: 10.1029/2011GL049578
– volume: 16
  start-page: 125
  year: 1978
  ident: apjab412abib3
  publication-title: RvGeo
  doi: 10.1029/RG016i001p00125
– volume: 131
  start-page: 3
  year: 2007
  ident: apjab412abib21
  publication-title: SSRv
  doi: 10.1007/s11214-007-9247-6
– year: 2007
  ident: apjab412abib29
– volume: 86
  start-page: 1
  year: 1998
  ident: apjab412abib22
  publication-title: SSRv
  doi: 10.1023/A:1005082526237
– volume: 867
  start-page: 129
  year: 2018
  ident: apjab412abib5
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae3e7
– volume: 4
  start-page: 666
  year: 1965
  ident: apjab412abib16
  publication-title: SSRv
  doi: 10.1007/BF00216273
– volume: 20
  start-page: 559
  year: 1997
  ident: apjab412abib13
  publication-title: AdSpR
  doi: 10.1016/S0273-1177(97)00439-0
SSID ssj0004299
Score 2.4027295
Snippet By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar...
By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r  =  R 0 (neglecting...
By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms Acceleration
Astrophysics
Empirical equations
Magnetic field configurations
Magnetic fields
Magnetism
Mercury
Mercury (planet)
Planetary magnetic fields
planets and satellites: magnetic fields
Solar corona
Solar cycle
Solar cycle-solar wind relationships
Solar gravitation
Solar magnetic field
Solar maximum
Solar probes
Solar wind
Solar wind flow
Solar wind magnetic fields
Solar wind velocity
Spirals
Sun: activity
Sun: magnetic fields
Venus
Wind flow
Wind speed
Wind velocities
Title Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab412a
https://www.proquest.com/docview/2365926713
Volume 884
WOSCitedRecordID wos000501735300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BpVIvhdJWvOUDReKQbtZ2nEScEGLFoUuRALG3yLEdtBKbrHazVbnQv85MHF4CIaTerGjsWOOxv29szxhgx0lnugikQVflITooiQ5SgUROhE6jjRjkAE2e2V_xyUkyGKSnc7D_EAtTjdul_ycWfaJgr0Ka3wLX0k4zRxHl447OZZcjOfogkkiRkf8Wl49BkTxtua8MlIgH_ozy1RaeYdI8_vfFwtygTW_pv_q5DJ9bkskOvOgXmHPlCqweTGnbuxrdsF3WlP2uxnQFPp760lf4128vGAbjaljWjJ5Ko4B1hjyRNRHSE3ZGZ_PXjGIFh1czb0GsKhqRM_KU2SU6-qyvr0qKkGQ9uiTHdP1EoK__DkezEdXyHw5vsKOMy29w0Ts6PzwO2jcaAiOisA4ia5BESiPCQpoikrmVqXU2R-h1XLmIWytckoYmisM8InaS5Bp9Ou4Sq7lLxXdYKKvSrQJDwCx0kTtkQEoqBFElbOgiZQvaS4rNGnTuRykzbQJzekfjOkNHhjSekcYz0njmNb4Gew81xj55xxuyP3Ags3YGT9-Q27w3jUdhLuh0WqHDv_7OZjbgE1KvlFCQh5uwUE9mbgsWzZ96OJ1sw3z_9mi7sec7UTLx8A
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8AKvEFASUgCH1AEx_W2-vHfjwS9IKROy5Bw71tum33cgm3e7nbM_Lkv-7MdhGMhJj41mym3Wb68ftN25kBOHbSmS4CadCN8hANlEQHqUAiJ0KncY4Y5ABNnNnzeDBIRqN02OY5bXxhqlm79X_Aog8U7FVI61vgXtpp1iiifNzRuexy3ZnZYhWeKKEE5W64EFd3jpE8bfmvDCIRj_w95YOt_IFLq_jvvzbnBnF6L_67r5uw0ZJNduLFt2DFlduwe7Kg4-9qesPesabsTzcW2_Bs6Esv4We_fWgYzKpJWTNKmUaO6wz5Ims8pefsku7orxn5DE7GSz-TWFU0IpdkMbMrNPhZX49L8pRkPXosx3R9T6Cvf0ymyynV8h9Ob7CjjMtX8K336evpWdDmagiMUGEdKGuQTEojwkKaQsncytQ6myMEOx45xa0VLklDo-IwV8RSklyjbcddYjV3qdiBtbIq3S4wBM5CF7lDJhTJCME0EjZ0KrIFnSnFZg86tyOVmTaQOeXTuM7QoCGtZ6T1jLSeea3vwfvfNWY-iMcjsm9xMLN2JS8ekTu4nR53wlzQLXWEhv_rf2zmCNaHH3vZ-efBl314jmwsJWDk4QGs1fOlewNPzfd6spgfNhP7F-Yw9h4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple-point+Modeling+the+Parker+Spiral+Configuration+of+the+Solar+Wind+Magnetic+Field+at+the+Solar+Maximum+of+Solar+Cycle+24&rft.jtitle=The+Astrophysical+journal&rft.au=Chang%2C+Qing&rft.au=Xu%2C+Xiaojun&rft.au=Xu%2C+Qi&rft.au=Zhong%2C+Jun&rft.date=2019-10-20&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=884&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fab412a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon