Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24
By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral...
Saved in:
| Published in: | The Astrophysical journal Vol. 884; no. 2; pp. 102 - 112 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
The American Astronomical Society
20.10.2019
IOP Publishing |
| Subjects: | |
| ISSN: | 0004-637X, 1538-4357 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance (R0). It is inferred that R0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result. |
|---|---|
| AbstractList | By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance (R0). It is inferred that R0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result. By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance ( R 0 ). It is inferred that R 0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result. By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical distance (R 0). It is inferred that R 0 is much larger than that previously assumed. In the near future, the statistical survey of the near-Sun solar wind velocity by Parker Solar Probe can help verify this result. |
| Author | Xu, Xiaojun Xu, Qi Zhong, Jun Chang, Qing Xu, Jiaying Zhang, Tielong Wang, Jing |
| Author_xml | – sequence: 1 givenname: Qing orcidid: 0000-0003-4883-949X surname: Chang fullname: Chang, Qing organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China – sequence: 2 givenname: Xiaojun orcidid: 0000-0002-2309-0649 surname: Xu fullname: Xu, Xiaojun email: xjxu@must.edu.mo organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China – sequence: 3 givenname: Qi orcidid: 0000-0003-4662-476X surname: Xu fullname: Xu, Qi organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China – sequence: 4 givenname: Jun orcidid: 0000-0003-4187-3361 surname: Zhong fullname: Zhong, Jun organization: Chinese Academy of Sciences Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Beijing, People's Republic of China – sequence: 5 givenname: Jiaying orcidid: 0000-0002-9579-6739 surname: Xu fullname: Xu, Jiaying organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China – sequence: 6 givenname: Jing orcidid: 0000-0003-0471-5532 surname: Wang fullname: Wang, Jing organization: Macau University of Science and Technology State Key Laboratory of Lunar and Planetary Sciences, Macao, People's Republic of China – sequence: 7 givenname: Tielong surname: Zhang fullname: Zhang, Tielong organization: Space Research Institute , Austrian Academy of Sciences, Graz, Austria |
| BookMark | eNp9kMtLxDAQh4MouD7uHgNeraZ59HGUxRe4KKjoraTJdI1mk5qm4J78191aURH0FGb4vsnMbwutO-8Aob2UHLKC50epYEXCmciPZM1TKtfQ5Ku1jiaEEJ5kLH_YRFtd9zSUtCwn6G3W22haC0nrjYt45jVY4-Y4PgK-luEZAr5pTZAWT71rzLwPMhrvsG8-kBtvZcD3xmk8k3MH0Sh8asBqLOMPYCZfzaJfDNbYmC6VBUz5DtpopO1g9_PdRnenJ7fT8-Ty6uxienyZKCZITIRWJGVcMdJw1Qhea15q0DWABpqBoFozKEqiRE5qIUiZFrXkJKVQaEmhZNtof5zbBv_SQxerJ98Ht_qyoiwTJc3ylK2obKRU8F0XoKmUiR_3xiCNrVJSDWFXQ7LVkGw1hr0SyS-xDWYhw_I_5WBUjG-_l_kTfwfDDZJO |
| CitedBy_id | crossref_primary_10_3847_1538_4357_ac88c4 crossref_primary_10_3390_universe10110407 crossref_primary_10_3847_1538_4357_ac73f6 crossref_primary_10_3847_1538_4357_aba62a crossref_primary_10_3847_1538_4365_adea79 crossref_primary_10_3847_1538_4357_ac1c07 crossref_primary_10_3847_1538_4357_ad7949 crossref_primary_10_3847_1538_4357_ac80c0 crossref_primary_10_3847_1538_4357_ab7819 crossref_primary_10_1051_0004_6361_202451926 crossref_primary_10_1029_2021JA029528 crossref_primary_10_3847_1538_4357_ac6bf3 crossref_primary_10_3847_1538_3881_ad192d |
| Cites_doi | 10.1016/j.pss.2010.10.014 10.1029/JA085iA12p06861 10.1007/BF00751330 10.1029/2009JA015040 10.1029/95JA02977 10.12942/lrsp-2013-5 10.1007/s11214-015-0211-6 10.1126/science.186.4158.51 10.1007/BF00156388 10.1016/j.pss.2007.01.013 10.1002/2017JA024532 10.1007/BF00146478 10.1002/grl.50392 10.1086/146579 10.1007/BF00145734 10.1002/2015JA021463 10.1023/A:1005092216668 10.1029/2012JA017705 10.1029/92JA02235 10.1002/2016JA022725 10.1007/s11214-007-9246-7 10.1029/2011GL049578 10.1029/RG016i001p00125 10.1007/s11214-007-9247-6 10.1023/A:1005082526237 10.3847/1538-4357/aae3e7 10.1007/BF00216273 10.1016/S0273-1177(97)00439-0 |
| ContentType | Journal Article |
| Copyright | 2019. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Oct 20, 2019 |
| Copyright_xml | – notice: 2019. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Oct 20, 2019 |
| DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
| DOI | 10.3847/1538-4357/ab412a |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| DocumentTitleAlternate | Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24 |
| EISSN | 1538-4357 |
| ExternalDocumentID | 10_3847_1538_4357_ab412a apjab412a |
| GrantInformation_xml | – fundername: Science and Technology Development Fund of Macao grantid: 008/2016/A1 – fundername: Natural Science Foundation of China grantid: 41731067 – fundername: Natural Science Foundation of China grantid: 41564007 |
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX AEINN CITATION 7TG 8FD H8D KL. L7M |
| ID | FETCH-LOGICAL-c350t-5dc0134c30f4cf54bd49dedbeede26e52dd3e890c570b550918ba4012e8da2e93 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501735300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-637X |
| IngestDate | Wed Aug 13 09:45:14 EDT 2025 Tue Nov 18 20:44:38 EST 2025 Sat Nov 29 05:30:33 EST 2025 Wed Aug 21 03:33:06 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-5dc0134c30f4cf54bd49dedbeede26e52dd3e890c570b550918ba4012e8da2e93 |
| Notes | AAS17033 The Sun and the Heliosphere ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0471-5532 0000-0003-4883-949X 0000-0002-9579-6739 0000-0002-2309-0649 0000-0003-4187-3361 0000-0003-4662-476X |
| OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ab412a/pdf |
| PQID | 2365926713 |
| PQPubID | 4562441 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_ab412a proquest_journals_2365926713 crossref_primary_10_3847_1538_4357_ab412a iop_journals_10_3847_1538_4357_ab412a |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-20 |
| PublicationDateYYYYMMDD | 2019-10-20 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | The Astrophysical journal |
| PublicationTitleAbbrev | APJ |
| PublicationTitleAlternate | Astrophys. J |
| PublicationYear | 2019 |
| Publisher | The American Astronomical Society IOP Publishing |
| Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
| References | Parker (apjab412abib15) 1958; 128 Schulte in den Bäumen (apjab412abib19) 2012; 117 Stone (apjab412abib22) 1998; 86 Schatten (apjab412abib17) 1969; 6 Luhmann (apjab412abib11) 1993; 98 Owens (apjab412abib14) 2013; 10 Svalgaard (apjab412abib23) 1974; 186 Borovsky (apjab412abib4) 2010; 115 Ogilvie (apjab412abib13) 1997; 20 Chang (apjab412abib5) 2018; 867 Behannon (apjab412abib3) 1978; 16 Wood (apjab412abib28) 2015; 120 Smith (apjab412abib20) 1998; 86 Anderson (apjab412abib2) 2007; 131 Masunaga (apjab412abib12) 2013; 40 Schulte in den Bäumen (apjab412abib18) 2011; 38 Thomas (apjab412abib27) 1980; 85 Tasnim (apjab412abib25) 2016; 121 Zhang (apjab412abib29) 2007 Altschuler (apjab412abib1) 1969; 9 Tasnim (apjab412abib26) 2018; 123 Solomon (apjab412abib21) 2007; 131 Forsyth (apjab412abib6) 1996; 101 Parker (apjab412abib16) 1965; 4 Lepping (apjab412abib10) 1995; 71 Fox (apjab412abib7) 2016; 204 Svedhem (apjab412abib24) 2007; 55 Hoeksema (apjab412abib8) 1986; 105 Korth (apjab412abib9) 2011; 59 |
| References_xml | – volume: 59 start-page: 2075 year: 2011 ident: apjab412abib9 publication-title: P&SS doi: 10.1016/j.pss.2010.10.014 – volume: 85 start-page: 6861 year: 1980 ident: apjab412abib27 publication-title: JGRA doi: 10.1029/JA085iA12p06861 – volume: 71 start-page: 207 year: 1995 ident: apjab412abib10 publication-title: SSRv doi: 10.1007/BF00751330 – volume: 115 start-page: A09101 year: 2010 ident: apjab412abib4 publication-title: JGRA doi: 10.1029/2009JA015040 – volume: 101 start-page: 395 year: 1996 ident: apjab412abib6 publication-title: JGRA doi: 10.1029/95JA02977 – volume: 10 start-page: 5 year: 2013 ident: apjab412abib14 publication-title: LRSP doi: 10.12942/lrsp-2013-5 – volume: 204 start-page: 7 year: 2016 ident: apjab412abib7 publication-title: SSRv doi: 10.1007/s11214-015-0211-6 – volume: 186 start-page: 51 year: 1974 ident: apjab412abib23 publication-title: Sci doi: 10.1126/science.186.4158.51 – volume: 105 start-page: 205 year: 1986 ident: apjab412abib8 publication-title: SoPh doi: 10.1007/BF00156388 – volume: 55 start-page: 1636 year: 2007 ident: apjab412abib24 publication-title: P&SS doi: 10.1016/j.pss.2007.01.013 – volume: 123 start-page: 1061 year: 2018 ident: apjab412abib26 publication-title: JGRA doi: 10.1002/2017JA024532 – volume: 6 start-page: 442 year: 1969 ident: apjab412abib17 publication-title: SoPh doi: 10.1007/BF00146478 – volume: 40 start-page: 1682 year: 2013 ident: apjab412abib12 publication-title: GeoRL doi: 10.1002/grl.50392 – volume: 128 start-page: 664 year: 1958 ident: apjab412abib15 publication-title: ApJ doi: 10.1086/146579 – volume: 9 start-page: 131 year: 1969 ident: apjab412abib1 publication-title: SoPh doi: 10.1007/BF00145734 – volume: 120 start-page: 7121 year: 2015 ident: apjab412abib28 publication-title: JGRA doi: 10.1002/2015JA021463 – volume: 86 start-page: 613 year: 1998 ident: apjab412abib20 publication-title: SSRv doi: 10.1023/A:1005092216668 – volume: 117 year: 2012 ident: apjab412abib19 publication-title: JGR doi: 10.1029/2012JA017705 – volume: 98 start-page: 5559 year: 1993 ident: apjab412abib11 publication-title: JGRA doi: 10.1029/92JA02235 – volume: 121 start-page: 4966 year: 2016 ident: apjab412abib25 publication-title: JGRA doi: 10.1002/2016JA022725 – volume: 131 start-page: 417 year: 2007 ident: apjab412abib2 publication-title: SSRv doi: 10.1007/s11214-007-9246-7 – volume: 38 start-page: L24101 year: 2011 ident: apjab412abib18 publication-title: GeoRL doi: 10.1029/2011GL049578 – volume: 16 start-page: 125 year: 1978 ident: apjab412abib3 publication-title: RvGeo doi: 10.1029/RG016i001p00125 – volume: 131 start-page: 3 year: 2007 ident: apjab412abib21 publication-title: SSRv doi: 10.1007/s11214-007-9247-6 – year: 2007 ident: apjab412abib29 – volume: 86 start-page: 1 year: 1998 ident: apjab412abib22 publication-title: SSRv doi: 10.1023/A:1005082526237 – volume: 867 start-page: 129 year: 2018 ident: apjab412abib5 publication-title: ApJ doi: 10.3847/1538-4357/aae3e7 – volume: 4 start-page: 666 year: 1965 ident: apjab412abib16 publication-title: SSRv doi: 10.1007/BF00216273 – volume: 20 start-page: 559 year: 1997 ident: apjab412abib13 publication-title: AdSpR doi: 10.1016/S0273-1177(97)00439-0 |
| SSID | ssj0004299 |
| Score | 2.4027295 |
| Snippet | By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R0 (neglecting solar... By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting... By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102 |
| SubjectTerms | Acceleration Astrophysics Empirical equations Magnetic field configurations Magnetic fields Magnetism Mercury Mercury (planet) Planetary magnetic fields planets and satellites: magnetic fields Solar corona Solar cycle Solar cycle-solar wind relationships Solar gravitation Solar magnetic field Solar maximum Solar probes Solar wind Solar wind flow Solar wind magnetic fields Solar wind velocity Spirals Sun: activity Sun: magnetic fields Venus Wind flow Wind speed Wind velocities |
| Title | Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24 |
| URI | https://iopscience.iop.org/article/10.3847/1538-4357/ab412a https://www.proquest.com/docview/2365926713 |
| Volume | 884 |
| WOSCitedRecordID | wos000501735300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BpVIvhdJWvOUDReKQbtZ2nEScEGLFoUuRALG3yLEdtBKbrHazVbnQv85MHF4CIaTerGjsWOOxv29szxhgx0lnugikQVflITooiQ5SgUROhE6jjRjkAE2e2V_xyUkyGKSnc7D_EAtTjdul_ycWfaJgr0Ka3wLX0k4zRxHl447OZZcjOfogkkiRkf8Wl49BkTxtua8MlIgH_ozy1RaeYdI8_vfFwtygTW_pv_q5DJ9bkskOvOgXmHPlCqweTGnbuxrdsF3WlP2uxnQFPp760lf4128vGAbjaljWjJ5Ko4B1hjyRNRHSE3ZGZ_PXjGIFh1czb0GsKhqRM_KU2SU6-qyvr0qKkGQ9uiTHdP1EoK__DkezEdXyHw5vsKOMy29w0Ts6PzwO2jcaAiOisA4ia5BESiPCQpoikrmVqXU2R-h1XLmIWytckoYmisM8InaS5Bp9Ou4Sq7lLxXdYKKvSrQJDwCx0kTtkQEoqBFElbOgiZQvaS4rNGnTuRykzbQJzekfjOkNHhjSekcYz0njmNb4Gew81xj55xxuyP3Ags3YGT9-Q27w3jUdhLuh0WqHDv_7OZjbgE1KvlFCQh5uwUE9mbgsWzZ96OJ1sw3z_9mi7sec7UTLx8A |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8AKvEFASUgCH1AEx_W2-vHfjwS9IKROy5Bw71tum33cgm3e7nbM_Lkv-7MdhGMhJj41mym3Wb68ftN25kBOHbSmS4CadCN8hANlEQHqUAiJ0KncY4Y5ABNnNnzeDBIRqN02OY5bXxhqlm79X_Aog8U7FVI61vgXtpp1iiifNzRuexy3ZnZYhWeKKEE5W64EFd3jpE8bfmvDCIRj_w95YOt_IFLq_jvvzbnBnF6L_67r5uw0ZJNduLFt2DFlduwe7Kg4-9qesPesabsTzcW2_Bs6Esv4We_fWgYzKpJWTNKmUaO6wz5Ims8pefsku7orxn5DE7GSz-TWFU0IpdkMbMrNPhZX49L8pRkPXosx3R9T6Cvf0ymyynV8h9Ob7CjjMtX8K336evpWdDmagiMUGEdKGuQTEojwkKaQsncytQ6myMEOx45xa0VLklDo-IwV8RSklyjbcddYjV3qdiBtbIq3S4wBM5CF7lDJhTJCME0EjZ0KrIFnSnFZg86tyOVmTaQOeXTuM7QoCGtZ6T1jLSeea3vwfvfNWY-iMcjsm9xMLN2JS8ekTu4nR53wlzQLXWEhv_rf2zmCNaHH3vZ-efBl314jmwsJWDk4QGs1fOlewNPzfd6spgfNhP7F-Yw9h4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple-point+Modeling+the+Parker+Spiral+Configuration+of+the+Solar+Wind+Magnetic+Field+at+the+Solar+Maximum+of+Solar+Cycle+24&rft.jtitle=The+Astrophysical+journal&rft.au=Chang%2C+Qing&rft.au=Xu%2C+Xiaojun&rft.au=Xu%2C+Qi&rft.au=Zhong%2C+Jun&rft.date=2019-10-20&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=884&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fab412a&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |