Minimum Model Semantics for Extensional Higher-order Logic Programming with Negation

Extensional higher-order logic programming has been introduced as a generalization of classical logic programming. An important characteristic of this paradigm is that it preserves all the well-known properties of traditional logic programming. In this paper we consider the semantics of negation in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory and practice of logic programming Ročník 14; číslo 4-5; s. 725 - 737
Hlavní autoři: CHARALAMBIDIS, ANGELOS, ÉSIK, ZOLTÁN, RONDOGIANNIS, PANOS
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.07.2014
Témata:
ISSN:1471-0684, 1475-3081
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Extensional higher-order logic programming has been introduced as a generalization of classical logic programming. An important characteristic of this paradigm is that it preserves all the well-known properties of traditional logic programming. In this paper we consider the semantics of negation in the context of the new paradigm. Using some recent results from non-monotonic fixed-point theory, we demonstrate that every higher-order logic program with negation has a unique minimum infinite-valued model. In this way we obtain the first purely model-theoretic semantics for negation in extensional higher-order logic programming. Using our approach, we resolve an old paradox that was introduced by W. W. Wadge in order to demonstrate the semantic difficulties of higher-order logic programming.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1471-0684
1475-3081
DOI:10.1017/S1471068414000313