Fuzzy Neural Pseudo Control With Prescribed Performance for Waverider Vehicles: A Fragility-Avoidance Approach

A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors with desired prescribed performance and rejecting the obstacle of fragility inherent to the traditional prescribed performance control (PPC)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 53; no. 8; pp. 4986 - 4999
Main Authors: Bu, Xiangwei, Lv, Maolong, Lei, Humin, Cao, Jinde
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors with desired prescribed performance and rejecting the obstacle of fragility inherent to the traditional prescribed performance control (PPC). The pseudo control is defined to approximate the nonaffine dynamics of WVs, while there is no need of model affinization. Furthermore, fuzzy neural approximators are combined with the adaptive compensation strategy to resist both system uncertainties and external disturbances. Especially, a new type of nonfragile prescribed performance, being able to self-adjust its prescribed funnel, is proposed to remedy the fragility defect associated with the existing PPC. Finally, the realizability of the spurred prescribed performance is proved via stability proof, and the superiority of the addressed design is tested by compared simulations.
AbstractList A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors with desired prescribed performance and rejecting the obstacle of fragility inherent to the traditional prescribed performance control (PPC). The pseudo control is defined to approximate the nonaffine dynamics of WVs, while there is no need of model affinization. Furthermore, fuzzy neural approximators are combined with the adaptive compensation strategy to resist both system uncertainties and external disturbances. Especially, a new type of nonfragile prescribed performance, being able to self-adjust its prescribed funnel, is proposed to remedy the fragility defect associated with the existing PPC. Finally, the realizability of the spurred prescribed performance is proved via stability proof, and the superiority of the addressed design is tested by compared simulations.
A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors with desired prescribed performance and rejecting the obstacle of fragility inherent to the traditional prescribed performance control (PPC). The pseudo control is defined to approximate the nonaffine dynamics of WVs, while there is no need of model affinization. Furthermore, fuzzy neural approximators are combined with the adaptive compensation strategy to resist both system uncertainties and external disturbances. Especially, a new type of nonfragile prescribed performance, being able to self-adjust its prescribed funnel, is proposed to remedy the fragility defect associated with the existing PPC. Finally, the realizability of the spurred prescribed performance is proved via stability proof, and the superiority of the addressed design is tested by compared simulations.A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors with desired prescribed performance and rejecting the obstacle of fragility inherent to the traditional prescribed performance control (PPC). The pseudo control is defined to approximate the nonaffine dynamics of WVs, while there is no need of model affinization. Furthermore, fuzzy neural approximators are combined with the adaptive compensation strategy to resist both system uncertainties and external disturbances. Especially, a new type of nonfragile prescribed performance, being able to self-adjust its prescribed funnel, is proposed to remedy the fragility defect associated with the existing PPC. Finally, the realizability of the spurred prescribed performance is proved via stability proof, and the superiority of the addressed design is tested by compared simulations.
Author Cao, Jinde
Lei, Humin
Bu, Xiangwei
Lv, Maolong
Author_xml – sequence: 1
  givenname: Xiangwei
  orcidid: 0000-0001-5783-6659
  surname: Bu
  fullname: Bu, Xiangwei
  email: buxiangwei1987@126.com
  organization: Air and Missile Defense College, Air Force Engineering University, Xi'an, China
– sequence: 2
  givenname: Maolong
  orcidid: 0000-0001-6406-2399
  surname: Lv
  fullname: Lv, Maolong
  email: hmleinet@126.com
  organization: College of Air Traffic Control and Navigation, Air Force Engineering University, Xi'an, China
– sequence: 3
  givenname: Humin
  surname: Lei
  fullname: Lei, Humin
  email: maolonglv@163.com
  organization: Air and Missile Defense College, Air Force Engineering University, Xi'an, China
– sequence: 4
  givenname: Jinde
  orcidid: 0000-0003-3133-7119
  surname: Cao
  fullname: Cao, Jinde
  email: jdcao@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37030742$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1UREvpB0BCyBIXLhv8d21zCxEBpApyKFScLK93lrjarFN7t1L66XFIqFAP-DKj0e95Ru89RydDHAChl5TMKCXm3dXi54cZI4zPOJPSMPkEnTFa64oxJU8e-lqdooucb0h5uoyMfoZOuSKcKMHO0LCc7u93-CtMyfV4lWFqI17EYUyxx9dhXONVguxTaKDFK0hdTBs3eMClwdfuDlJoIeEfsA6-h_wez_EyuV-hD-Oumt_F0P6h59ttis6vX6CnneszXBzrOfq-_Hi1-Fxdfvv0ZTG_rDyXZKxE6wz3VFPv204qKRruGqFZ3SpvOJWeKiEE1KapPRW8I9oJAp2pNRXeSMfP0dvDv2Xt7QR5tJuQPfS9GyBO2TJltKLFhrqgbx6hN3FKQ7nOMs2NpIYQU6jXR2pqNtDabQobl3b2r5MFoAfAp5hzgu4BocTuA7P7wOw-MHsMrGjUI40PoxvD3n4X-v8qXx2UAQD-2USUZpzx3-VJoXg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s11071_023_09270_4
crossref_primary_10_1016_j_isatra_2025_07_039
crossref_primary_10_1109_TCYB_2024_3364146
crossref_primary_10_1109_TII_2024_3403259
crossref_primary_10_1109_JIOT_2024_3367172
crossref_primary_10_1002_acs_3720
crossref_primary_10_1177_01423312251366716
crossref_primary_10_1016_j_neunet_2025_107627
crossref_primary_10_1016_j_ejcon_2024_100961
crossref_primary_10_1109_TASE_2024_3353380
crossref_primary_10_1109_TFUZZ_2024_3476393
crossref_primary_10_1109_TITS_2024_3429330
crossref_primary_10_1109_TASE_2023_3336976
crossref_primary_10_1109_TSMC_2023_3342854
crossref_primary_10_1016_j_isatra_2025_04_010
crossref_primary_10_1109_TVT_2024_3472221
crossref_primary_10_1002_rnc_7503
crossref_primary_10_1007_s11071_024_09847_7
crossref_primary_10_1016_j_ast_2023_108839
crossref_primary_10_1109_TAES_2023_3331345
crossref_primary_10_1016_j_isatra_2024_11_052
crossref_primary_10_1109_TITS_2025_3554489
crossref_primary_10_1177_09596518241240157
crossref_primary_10_1016_j_cja_2024_10_014
crossref_primary_10_1016_j_isatra_2023_11_031
crossref_primary_10_1109_JIOT_2024_3510546
crossref_primary_10_1016_j_apm_2025_116264
crossref_primary_10_1016_j_ejcon_2024_101080
crossref_primary_10_1080_21642583_2024_2364035
crossref_primary_10_1109_TSMC_2025_3548306
crossref_primary_10_1007_s40435_025_01612_x
crossref_primary_10_1109_TSMC_2024_3521380
crossref_primary_10_1002_asjc_3472
crossref_primary_10_1002_asjc_3313
crossref_primary_10_1016_j_isatra_2025_01_035
crossref_primary_10_1007_s11071_023_09085_3
crossref_primary_10_1016_j_ast_2023_108803
crossref_primary_10_3390_electronics13081417
crossref_primary_10_1007_s11432_024_4336_y
crossref_primary_10_1109_TSMC_2024_3352905
crossref_primary_10_1109_TIE_2024_3393071
crossref_primary_10_1002_asjc_3317
crossref_primary_10_1016_j_ins_2024_120148
crossref_primary_10_1109_TAES_2024_3456760
crossref_primary_10_1109_TASE_2024_3479321
crossref_primary_10_1109_ACCESS_2024_3411146
crossref_primary_10_1016_j_isatra_2024_05_054
crossref_primary_10_3390_app13095397
crossref_primary_10_1016_j_robot_2025_104991
crossref_primary_10_1109_TASE_2024_3379224
crossref_primary_10_1109_TSMC_2024_3494269
crossref_primary_10_1016_j_automatica_2024_111753
crossref_primary_10_1016_j_actaastro_2024_12_040
crossref_primary_10_1109_TASE_2024_3408453
crossref_primary_10_1109_TASE_2025_3583888
crossref_primary_10_1109_TIV_2023_3302689
crossref_primary_10_1016_j_ins_2024_120152
crossref_primary_10_1016_j_ins_2023_119670
crossref_primary_10_1080_00423114_2025_2477298
crossref_primary_10_3390_aerospace12070618
crossref_primary_10_1007_s00521_024_10575_7
crossref_primary_10_1007_s11431_023_2464_1
crossref_primary_10_1016_j_apm_2025_116122
crossref_primary_10_3390_s23167133
crossref_primary_10_1002_rnc_7572
crossref_primary_10_1109_TFUZZ_2024_3383435
Cites_doi 10.1109/taes.2021.3068442
10.1109/TCYB.2020.3025829
10.1109/TSMC.2019.2894916
10.1109/TCYB.2019.2927309
10.1109/TSMC.2019.2911726
10.1109/TMECH.2018.2800089
10.1109/TMECH.2018.2869002
10.1109/tfuzz.2020.3031385
10.1109/tii.2022.3163573
10.1109/TCYB.2018.2857400
10.1109/TCYB.2020.3042168
10.1109/TAES.2022.3153429
10.1109/TITS.2022.3224424
10.1109/TNNLS.2017.2743784
10.1109/taes.2023.3251314
10.1109/TFUZZ.2019.2934934
10.1109/TCYB.2021.3074566
10.1109/TAES.2020.3040519
10.1109/tfuzz.2022.3217378
10.1109/tnnls.2021.3070824
10.1016/j.proeng.2011.08.078
10.1109/TCST.2020.2968868
10.1109/TNNLS.2017.2712698
10.1109/TFUZZ.2017.2756028
10.1109/TFUZZ.2020.3036706
10.1109/TFUZZ.2021.3089031
10.1109/TCYB.2020.3046316
10.1109/TSMC.2018.2837378
10.1016/j.jfranklin.2018.09.001
10.1016/j.asr.2012.10.014
10.1109/TCYB.2020.2969499
10.1109/TCYB.2017.2692767
10.1016/j.automatica.2014.02.020
10.1109/tac.2022.3147271
10.1109/jmass.2023.3242304
10.1109/TMECH.2019.2928699
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2023.3255925
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4999
ExternalDocumentID 37030742
10_1109_TCYB_2023_3255925
10078232
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Young Talent Support Project for Science and Technology
  grantid: 18-JCJQ-QT-007
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c350t-4da93c181ccdf5754b3ab4826d7c9315c17444e69b6c143f08a40ef96814c95a3
IEDL.DBID RIE
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967231200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 05:33:53 EDT 2025
Mon Jun 30 07:07:51 EDT 2025
Mon Jul 21 05:55:01 EDT 2025
Sat Nov 29 02:02:39 EST 2025
Tue Nov 18 22:22:12 EST 2025
Wed Aug 27 02:25:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-4da93c181ccdf5754b3ab4826d7c9315c17444e69b6c143f08a40ef96814c95a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6406-2399
0000-0003-3133-7119
0000-0001-5783-6659
PMID 37030742
PQID 2839519009
PQPubID 85422
PageCount 14
ParticipantIDs ieee_primary_10078232
proquest_miscellaneous_2798713706
proquest_journals_2839519009
pubmed_primary_37030742
crossref_primary_10_1109_TCYB_2023_3255925
crossref_citationtrail_10_1109_TCYB_2023_3255925
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/taes.2021.3068442
– ident: ref31
  doi: 10.1109/TCYB.2020.3025829
– ident: ref6
  doi: 10.1109/TSMC.2019.2894916
– ident: ref1
  doi: 10.1109/TCYB.2019.2927309
– ident: ref12
  doi: 10.1109/TSMC.2019.2911726
– ident: ref13
  doi: 10.1109/TMECH.2018.2800089
– ident: ref7
  doi: 10.1109/TMECH.2018.2869002
– ident: ref17
  doi: 10.1109/tfuzz.2020.3031385
– ident: ref3
  doi: 10.1109/tii.2022.3163573
– ident: ref28
  doi: 10.1109/TCYB.2018.2857400
– ident: ref35
  doi: 10.1109/TCYB.2020.3042168
– ident: ref20
  doi: 10.1109/TAES.2022.3153429
– ident: ref21
  doi: 10.1109/TITS.2022.3224424
– ident: ref5
  doi: 10.1109/TNNLS.2017.2743784
– ident: ref11
  doi: 10.1109/taes.2023.3251314
– ident: ref9
  doi: 10.1109/TFUZZ.2019.2934934
– ident: ref36
  doi: 10.1109/TCYB.2021.3074566
– ident: ref14
  doi: 10.1109/TAES.2020.3040519
– ident: ref23
  doi: 10.1109/tfuzz.2022.3217378
– ident: ref25
  doi: 10.1109/tnnls.2021.3070824
– ident: ref27
  doi: 10.1016/j.proeng.2011.08.078
– ident: ref19
  doi: 10.1109/TCST.2020.2968868
– ident: ref16
  doi: 10.1109/TNNLS.2017.2712698
– ident: ref18
  doi: 10.1109/TFUZZ.2017.2756028
– ident: ref2
  doi: 10.1109/TFUZZ.2020.3036706
– ident: ref4
  doi: 10.1109/TFUZZ.2021.3089031
– ident: ref32
  doi: 10.1109/TCYB.2020.3046316
– ident: ref10
  doi: 10.1109/TSMC.2018.2837378
– ident: ref24
  doi: 10.1016/j.jfranklin.2018.09.001
– ident: ref26
  doi: 10.1016/j.asr.2012.10.014
– ident: ref29
  doi: 10.1109/TCYB.2020.2969499
– ident: ref30
  doi: 10.1109/TCYB.2017.2692767
– ident: ref22
  doi: 10.1016/j.automatica.2014.02.020
– ident: ref33
  doi: 10.1109/tac.2022.3147271
– ident: ref34
  doi: 10.1109/jmass.2023.3242304
– ident: ref8
  doi: 10.1109/TMECH.2019.2928699
SSID ssj0000816898
Score 2.5805447
Snippet A fuzzy-neural-approximation-based pseudo nonaffine control protocol is proposed for waverider vehicles (WVs), which is capable of guaranteeing tracking errors...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4986
SubjectTerms Aerodynamics
Artificial neural networks
Fragility
Fuzzy control
Fuzzy logic
nonaffine dynamics
prescribed performance
Protocols
pseudo control
Robustness
Tracking
Tracking errors
Transient analysis
Uncertainty
Vehicle dynamics
waverider vehicles (WVs)
Title Fuzzy Neural Pseudo Control With Prescribed Performance for Waverider Vehicles: A Fragility-Avoidance Approach
URI https://ieeexplore.ieee.org/document/10078232
https://www.ncbi.nlm.nih.gov/pubmed/37030742
https://www.proquest.com/docview/2839519009
https://www.proquest.com/docview/2798713706
Volume 53
WOSCitedRecordID wos000967231200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8a1Q67wMYGBMrkSTsAkrukduJ6t1JR7TT1MFg5RY7zslaaErQ2k7a_nmfHLewwJG5W8pxYel8_2-8D4DQTRitTWC5itFyaNOVaIHJTDckYkkNLjPHNJtTl5Wg-17OQrO5zYRDRB5_hwA39XX7Z2NYdlZ0l3qEJsrgvlMq6ZK3tgYrvIOF73w5pwAlWqHCLmcT67Gry8-vAtQofCAeih65jjfDFsOTwiUvyPVaeh5ve7Uxf_eeC9-FlwJds3AnEAexg_RoOggav2KdQZvrzIdTT9vHxgbnqHDRhtsK2bNiki1xn18v1grnwDDIqBZZs9ie_gNGAXRtSAZfBx37gwkfWnbMxIxR842JtH_j4vlmWnnocipYfwffpt6vJBQ_dF7gVabzmsjRaWAIA1pYVgTpZCFNI2o2UymqRpJb2MlJipovMEuiq4pGRMVY6GyXS6tSIN9CrmxrfAUsIZdCjBJWuZOEqWWpjhLIlGYuiUjKCeMOA3IbS5K5Dxm3utyixzh37cse-PLAvgi_bKb-6uhz_Ij5yvPmLsGNLBP0Nm_Oguquc8BYtVRP2jOBk-5qUzt2kmBqblmiUpo0myU8WwdtOPLYf30jV-2d--gH23Nq6IMI-9NZ3LX6EXXu_Xq7ujkmy56NjL9m_AU-j8HU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9CGxJc2AZjC4zhSTsAkrskdpJ6t1JRDW2reihsnCLHedkqoQStzaTtr-fZcQs7DImblTwnlt7Xz_b7ADhMhVaZLgwXIRoudZJwJRC5rmIyhuTQIq1ds4lsPO5fXqqJT1Z3uTCI6ILPsGeH7i6_bExrj8qOIufQBFnc9UTKOOzStVZHKq6HhOt-G9OAE7DI_D1mFKqj6fDH555tFt4TFkbHtmeNcOWwZPzAKbkuK48DTud4Rhv_ueRNeOERJht0IrEFT7B-CVteh-fsgy80_fEV1KP2_v6O2focNGEyx7Zs2LCLXWcXs8U1swEaZFYKLNnkT4YBowG70KQENoePfcdrF1t3zAaMcPCVjba944PbZlY66oEvW74N30ZfpsMT7vsvcCOScMFlqZUwBAGMKSuCdbIQupC0Hykzo0SUGNrNSImpKlJDsKsK-1qGWKm0H0mjEi1ew1rd1LgLLCKcQY8izFQlC1vLUmktMlOSuSiqTAYQLhmQG1-c3PbI-Jm7TUqocsu-3LIv9-wL4NNqyq-uMse_iLctb_4i7NgSwN6SzblX3nlOiIuWqgh9BnCwek1qZ-9SdI1NSzSZoq0myU8awE4nHquPL6XqzSM_fQ_PTqbnZ_nZ1_HpW3hu19mFFO7B2uKmxXfw1NwuZvObfSffvwFNWfLU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Neural+Pseudo+Control+With+Prescribed+Performance+for+Waverider+Vehicles%3A+A+Fragility-Avoidance+Approach&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Bu%2C+Xiangwei&rft.au=Lv%2C+Maolong&rft.au=Lei%2C+Humin&rft.au=Cao%2C+Jinde&rft.date=2023-08-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=53&rft.issue=8&rft.spage=4986&rft_id=info:doi/10.1109%2FTCYB.2023.3255925&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon