Stochastic analysis of average-based distributed algorithms

We analyze average-based distributed algorithms relying on simple and pairwise random interactions among a large and unknown number of anonymous agents. This allows the characterization of global properties emerging from these local interactions. Agents start with an initial integer value, and at ea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of applied probability Ročník 58; číslo 2; s. 394 - 410
Hlavní autori: Mocquard, Yves, Robin, Frédérique, Séricola, Bruno, Anceaume, Emmanuelle
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.06.2021
Applied Probability Trust
Cambridge University press
Predmet:
ISSN:0021-9002, 1475-6072
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We analyze average-based distributed algorithms relying on simple and pairwise random interactions among a large and unknown number of anonymous agents. This allows the characterization of global properties emerging from these local interactions. Agents start with an initial integer value, and at each interaction keep the average integer part of both values as their new value. The convergence occurs when, with high probability, all the agents possess the same value, which means that they all know a property of the global system. Using a well-chosen stochastic coupling, we improve upon existing results by providing explicit and tight bounds on the convergence time. We apply these general results to both the proportion problem and the system size problem.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2020.97