Stochastic analysis of average-based distributed algorithms
We analyze average-based distributed algorithms relying on simple and pairwise random interactions among a large and unknown number of anonymous agents. This allows the characterization of global properties emerging from these local interactions. Agents start with an initial integer value, and at ea...
Gespeichert in:
| Veröffentlicht in: | Journal of applied probability Jg. 58; H. 2; S. 394 - 410 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.06.2021
Applied Probability Trust Cambridge University press |
| Schlagworte: | |
| ISSN: | 0021-9002, 1475-6072 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We analyze average-based distributed algorithms relying on simple and pairwise random interactions among a large and unknown number of anonymous agents. This allows the characterization of global properties emerging from these local interactions. Agents start with an initial integer value, and at each interaction keep the average integer part of both values as their new value. The convergence occurs when, with high probability, all the agents possess the same value, which means that they all know a property of the global system. Using a well-chosen stochastic coupling, we improve upon existing results by providing explicit and tight bounds on the convergence time. We apply these general results to both the proportion problem and the system size problem. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0021-9002 1475-6072 |
| DOI: | 10.1017/jpr.2020.97 |