Stochastic analysis of average-based distributed algorithms

We analyze average-based distributed algorithms relying on simple and pairwise random interactions among a large and unknown number of anonymous agents. This allows the characterization of global properties emerging from these local interactions. Agents start with an initial integer value, and at ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability Jg. 58; H. 2; S. 394 - 410
Hauptverfasser: Mocquard, Yves, Robin, Frédérique, Séricola, Bruno, Anceaume, Emmanuelle
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.06.2021
Applied Probability Trust
Cambridge University press
Schlagworte:
ISSN:0021-9002, 1475-6072
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze average-based distributed algorithms relying on simple and pairwise random interactions among a large and unknown number of anonymous agents. This allows the characterization of global properties emerging from these local interactions. Agents start with an initial integer value, and at each interaction keep the average integer part of both values as their new value. The convergence occurs when, with high probability, all the agents possess the same value, which means that they all know a property of the global system. Using a well-chosen stochastic coupling, we improve upon existing results by providing explicit and tight bounds on the convergence time. We apply these general results to both the proportion problem and the system size problem.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2020.97