Generalized qd algorithm for block band matrices

The generalized qd algorithm for block band matrices is an extension of the block qd algorithm applied to a block tridiagonal matrix. This algorithm is applied to a positive definite symmetric block band matrix. The result concerning the behavior of the eigenvalues of the first and the last diagonal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 61; H. 3; S. 377 - 396
Hauptverfasser: Draux, André, Sadik, Mohamed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.11.2012
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generalized qd algorithm for block band matrices is an extension of the block qd algorithm applied to a block tridiagonal matrix. This algorithm is applied to a positive definite symmetric block band matrix. The result concerning the behavior of the eigenvalues of the first and the last diagonal block of the matrix containing the entries q ( k ) which was obtained in the tridiagonal case is still valid for positive definite symmetric block band matrices. The eigenvalues of the first block constitute strictly increasing sequences and those of the last block constitute strictly decreasing sequences. The theorem of convergence, given in Draux and Sadik (Appl Numer Math 60:1300–1308, 2010 ), also remains valid in this more general case.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-012-9538-1