Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications

The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1–30, 2019...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 181; H. 1; S. 1 - 22
Hauptverfasser: Novotny, Antonio André, Sokołowski, Jan, Żochowski, Antoni
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2019
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1–30, 2019 ), one-term expansions of functionals are required for algorithms of shape-topological optimization. Such an approach corresponds to the simple gradient method in shape optimization. The Newton method of shape optimization can be replaced, for shape-topology optimization, by two-term expansions of shape functionals. Thus, the resulting approximations are more precise and the associated numerical methods are much more complex compared to one-term expansion topological derivative algorithms. In particular, numerical algorithms associated with first-order topological derivatives of shape functionals have been presented in Part II (Novotny et al. 2019 ), together with an account of their applications currently found in the literature, with emphasis on shape and topology optimization. In this last part of the review, second-order topological derivatives are introduced. Second-order algorithms of shape-topological optimization are used for numerical solution of representative examples of inverse reconstruction problems. The main feature of these algorithms is that the method is non-iterative and thus very robust with respect to noisy data as well as independent of initial guesses.
AbstractList The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1–30, 2019 ), one-term expansions of functionals are required for algorithms of shape-topological optimization. Such an approach corresponds to the simple gradient method in shape optimization. The Newton method of shape optimization can be replaced, for shape-topology optimization, by two-term expansions of shape functionals. Thus, the resulting approximations are more precise and the associated numerical methods are much more complex compared to one-term expansion topological derivative algorithms. In particular, numerical algorithms associated with first-order topological derivatives of shape functionals have been presented in Part II (Novotny et al. 2019 ), together with an account of their applications currently found in the literature, with emphasis on shape and topology optimization. In this last part of the review, second-order topological derivatives are introduced. Second-order algorithms of shape-topological optimization are used for numerical solution of representative examples of inverse reconstruction problems. The main feature of these algorithms is that the method is non-iterative and thus very robust with respect to noisy data as well as independent of initial guesses.
The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1–30, 2019), one-term expansions of functionals are required for algorithms of shape-topological optimization. Such an approach corresponds to the simple gradient method in shape optimization. The Newton method of shape optimization can be replaced, for shape-topology optimization, by two-term expansions of shape functionals. Thus, the resulting approximations are more precise and the associated numerical methods are much more complex compared to one-term expansion topological derivative algorithms. In particular, numerical algorithms associated with first-order topological derivatives of shape functionals have been presented in Part II (Novotny et al. 2019), together with an account of their applications currently found in the literature, with emphasis on shape and topology optimization. In this last part of the review, second-order topological derivatives are introduced. Second-order algorithms of shape-topological optimization are used for numerical solution of representative examples of inverse reconstruction problems. The main feature of these algorithms is that the method is non-iterative and thus very robust with respect to noisy data as well as independent of initial guesses.
Author Żochowski, Antoni
Novotny, Antonio André
Sokołowski, Jan
Author_xml – sequence: 1
  givenname: Antonio André
  surname: Novotny
  fullname: Novotny, Antonio André
  organization: Laboratório Nacional de Computação Científica LNCC/MCT, Coordenação de Matemática Aplicada e Computacional
– sequence: 2
  givenname: Jan
  orcidid: 0000-0002-3560-7342
  surname: Sokołowski
  fullname: Sokołowski, Jan
  email: Jan.Sokolowski@univ-lorraine.fr
  organization: UMR 7502 Laboratoire de Mathématiques, Institut Élie Cartan, Université de Lorraine, Systems Research Institute, Polish Academy of Sciences
– sequence: 3
  givenname: Antoni
  surname: Żochowski
  fullname: Żochowski, Antoni
  organization: Systems Research Institute, Polish Academy of Sciences
BackLink https://hal.science/hal-03271074$$DView record in HAL
BookMark eNp9kE1LxDAQhoMouH78AG8BTx6ik6QxjbdFXV1YUdj1JoRskrqV2tSku-C_t7WKIOhpYHiel5l3D23XofYIHVE4pQDyLFFQQhKgOaEZA5JtoREVkhOWy3wbjQAYI5xxtYv2UnoBAJXLbISeFqEJVXguranwlY_lxrTlxiccCjxfmcbjybq2bRlqU6VT_GBii6fT6QWeextqR-6j8xHf-XYVHDa1w-Omqbqw3kgHaKfoNH_4NffR4-R6cXlLZvc308vxjFguoCWsEMJwaZhZKuasK7xhIldQODj3XCmVi0IBz6ST1FvqnIAl86JwSyqtXFq-j06G3JWpdBPLVxPfdTClvh3PdL8DziQFmW1oxx4PbBPD29qnVr-Edey_04yyc8mpYrKj5EDZGFKKvtC2bD-faqMpK01B97XroXbd1a772nXWmfSX-X3Qfw4bnNSx9bOPPzf9LX0Am-CVnA
CitedBy_id crossref_primary_10_1155_2019_5494795
crossref_primary_10_1007_s00158_023_03711_9
crossref_primary_10_1016_j_ijsolstr_2020_06_012
crossref_primary_10_1007_s10957_018_1420_4
crossref_primary_10_1108_EC_08_2021_0471
crossref_primary_10_1108_EC_11_2019_0536
crossref_primary_10_1186_s13362_020_0072_9
crossref_primary_10_1007_s00158_021_02986_0
crossref_primary_10_1007_s12220_023_01224_x
crossref_primary_10_1137_20M1368732
crossref_primary_10_1007_s10957_018_1417_z
crossref_primary_10_1007_s10957_018_1419_x
crossref_primary_10_1007_s10957_019_01502_1
crossref_primary_10_4236_ojop_2025_142004
Cites_doi 10.1093/gji/ggt268
10.1088/0266-5611/29/2/025003
10.1016/j.ijsolstr.2009.01.021
10.1007/s10957-018-1420-4
10.1002/mma.4059
10.1002/cpa.3160370302
10.1088/0266-5611/24/4/045014
10.1016/j.ijsolstr.2010.07.004
10.1080/01630563.2018.1432645
10.1016/j.jcp.2011.01.049
10.1137/070696076
10.1007/s00158-014-1103-1
10.1007/BF00281494
10.1051/m2an:2003014
10.1007/978-1-4899-0030-2
10.1090/surv/034
10.1088/0266-5611/14/3/011
10.3934/ipi.2016003
10.1007/s002110200409
10.1007/b98245
10.1088/0266-5611/21/2/008
10.1088/0266-5611/17/5/307
10.1007/s10444-011-9205-4
10.1007/s00158-009-0436-7
10.1088/0266-5611/22/5/014
10.1007/978-3-642-35245-4
10.1016/j.jcp.2013.10.020
10.1051/m2an:2003024
10.1088/0266-5611/31/7/075009
10.1007/s00158-016-1632-x
10.1023/A:1020528902875
10.1137/120899303
10.1088/1361-6420/aa54e4
10.4208/cicp.100710.021210a
10.1137/S0036141001399234
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
DOI 10.1007/s10957-018-1420-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 22
ExternalDocumentID oai:HAL:hal-03271074v1
10_1007_s10957_018_1420_4
GrantInformation_xml – fundername: CAPES
– fundername: CNPq
– fundername: FAPERJ
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAAVM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADXHL
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
H~9
KOW
N2Q
NDZJH
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VH1
VOH
ZCG
ZWQNP
ZY4
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c350t-2f55a37a2ab92dcdfea25890fd06e399985f90347d71ec1dd50b2e5fdb17c7bc3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460754800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 08:05:05 EST 2025
Tue Nov 04 23:12:56 EST 2025
Sat Nov 29 06:02:29 EST 2025
Tue Nov 18 21:05:55 EST 2025
Fri Feb 21 02:34:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 49J20
Applications in inverse problems
35J15
35Q74
49M15
Second-order method
49N45
Topological derivatives
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-2f55a37a2ab92dcdfea25890fd06e399985f90347d71ec1dd50b2e5fdb17c7bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3560-7342
PQID 2126731927
PQPubID 48247
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_03271074v1
proquest_journals_2126731927
crossref_citationtrail_10_1007_s10957_018_1420_4
crossref_primary_10_1007_s10957_018_1420_4
springer_journals_10_1007_s10957_018_1420_4
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Amstutz, Horchani, Masmoudi (CR20) 2005; 34
Bonnet (CR36) 2009; 46
Kohn, Vogelius (CR40) 1984; 37
Ammari, Kang (CR27) 2003; 34
Isakov (CR38) 1998
Jackowska-Strumiłło, Sokołowski, Żochowski, Henrot (CR24) 2002; 23
Novotny, Sokołowski, Żochowski (CR1) 2019; 180
Tricarico (CR18) 2013; 195
Ammari, Calmon, Iakovleva (CR34) 2008; 1
Leitão, Baumeister (CR17) 2005
Capdeboscq, Vogelius (CR30) 2003; 37
Ammari, Kang (CR35) 2004
Ferreira, Novotny (CR7) 2017; 33
Canelas, Novotny, Roche (CR41) 2011; 230
Fernandez, Novotny, Prakash (CR10) 2018; 39
Bonnet, Cornaggia (CR5) 2017; 51
Carpio, Rapún (CR21) 2008; 24
Novotny, Sokołowski, Żochowski (CR2) 2019; 180
Canelas, Laurain, Novotny (CR11) 2014; 268
de Faria, Novotny (CR3) 2009; 39
Hintermüller, Laurain (CR15) 2008; 37
Masmoudi, Pommier, Samet (CR26) 2005; 21
Guzina, Bonnet (CR23) 2006; 22
Machado, Angelo, Novotny (CR12) 2017; 40
Capdeboscq, Vogelius (CR29) 2003; 37
Cedio-Fengya, Moskow, Vogelius (CR31) 1998; 14
Caubet, Conca, Godoy (CR22) 2016; 10
Canelas, Laurain, Novotny (CR8) 2015; 31
Isakov, Leung, Qian (CR16) 2011; 10
Brühl, Hanke, Vogelius (CR28) 2003; 93
Burger (CR14) 2001; 17
Isakov (CR9) 2006
Canelas, Novotny, Roche (CR42) 2014; 50
Fernandez, Novotny, Prakash (CR43) 2018; 109
Friedman, Vogelius (CR32) 1989; 105
Ammari, Bretin, Garnier, Jing, Kang, Wahab (CR33) 2013; 6
Silva, Matalon, Tortorelli (CR37) 2010; 47
Novotny, Sokołowski (CR4) 2013
Calderón (CR19) 2006; 25
Hintermüller, Laurain, Novotny (CR6) 2012; 36
Isakov (CR39) 1990
Rocha, Novotny (CR13) 2017; 55
Laurain, Hintermüller, Freiberger, Scharfetter (CR25) 2013; 29
M Burger (1420_CR14) 2001; 17
AA Novotny (1420_CR2) 2019; 180
A Leitão (1420_CR17) 2005
A Carpio (1420_CR21) 2008; 24
M Bonnet (1420_CR5) 2017; 51
TJ Machado (1420_CR12) 2017; 40
A Friedman (1420_CR32) 1989; 105
M Hintermüller (1420_CR15) 2008; 37
F Caubet (1420_CR22) 2016; 10
Y Capdeboscq (1420_CR29) 2003; 37
A Laurain (1420_CR25) 2013; 29
L Jackowska-Strumiłło (1420_CR24) 2002; 23
A Canelas (1420_CR42) 2014; 50
R Kohn (1420_CR40) 1984; 37
AA Novotny (1420_CR1) 2019; 180
BB Guzina (1420_CR23) 2006; 22
S Amstutz (1420_CR20) 2005; 34
A Ferreira (1420_CR7) 2017; 33
H Ammari (1420_CR34) 2008; 1
JR Faria de (1420_CR3) 2009; 39
M Brühl (1420_CR28) 2003; 93
M Bonnet (1420_CR36) 2009; 46
L Fernandez (1420_CR43) 2018; 109
V Isakov (1420_CR38) 1998
A Canelas (1420_CR11) 2014; 268
SS Rocha (1420_CR13) 2017; 55
M Masmoudi (1420_CR26) 2005; 21
A Canelas (1420_CR8) 2015; 31
Y Capdeboscq (1420_CR30) 2003; 37
H Ammari (1420_CR33) 2013; 6
AP Calderón (1420_CR19) 2006; 25
V Isakov (1420_CR16) 2011; 10
H Ammari (1420_CR27) 2003; 34
AA Novotny (1420_CR4) 2013
M Hintermüller (1420_CR6) 2012; 36
DJ Cedio-Fengya (1420_CR31) 1998; 14
L Fernandez (1420_CR10) 2018; 39
M Silva (1420_CR37) 2010; 47
V Isakov (1420_CR39) 1990
V Isakov (1420_CR9) 2006
H Ammari (1420_CR35) 2004
P Tricarico (1420_CR18) 2013; 195
A Canelas (1420_CR41) 2011; 230
References_xml – volume: 195
  start-page: 260
  issue: 1
  year: 2013
  end-page: 275
  ident: CR18
  article-title: Global gravity inversion of bodies with arbitrary shape
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt268
– volume: 29
  start-page: 025,003,30
  issue: 2
  year: 2013
  ident: CR25
  article-title: Topological sensitivity analysis in fluorescence optical tomography
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/29/2/025003
– volume: 46
  start-page: 2275
  issue: 11–12
  year: 2009
  end-page: 2292
  ident: CR36
  article-title: Higher-order topological sensitivity for 2-D potential problems
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2009.01.021
– year: 2005
  ident: CR17
  publication-title: Topics in Inverse Problems
– volume: 180
  start-page: 1
  issue: 3
  year: 2019
  end-page: 28
  ident: CR1
  article-title: Topological derivatives of shape functionals. Part II: first order method and applications
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1420-4
– volume: 40
  start-page: 1367
  issue: 15
  year: 2017
  end-page: 1381
  ident: CR12
  article-title: A new one-shot pointwise source reconstruction method
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4059
– volume: 37
  start-page: 289
  issue: 3
  year: 1984
  end-page: 298
  ident: CR40
  article-title: Determining conductivity by boundary measurements
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160370302
– volume: 24
  start-page: 045,014
  issue: 4
  year: 2008
  ident: CR21
  article-title: Solving inhomogeneous inverse problems by topological derivative methods
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/4/045014
– volume: 47
  start-page: 3053
  issue: 22–23
  year: 2010
  end-page: 3066
  ident: CR37
  article-title: Higher order topological derivatives in elasticity
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2010.07.004
– volume: 180
  start-page: 1
  issue: 2
  year: 2019
  end-page: 33
  ident: CR2
  article-title: Topological derivatives of shape functionals. Part I: theory in singularly perturbed geometrical domains
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1420-4
– volume: 51
  start-page: 2069
  issue: 6
  year: 2017
  end-page: 2092
  ident: CR5
  article-title: Higher order topological derivatives for three-dimensional anisotropic elasticity
  publication-title: ESAIM Control Optim. Calc. Var.
– volume: 39
  start-page: 937
  issue: 9
  year: 2018
  end-page: 966
  ident: CR10
  article-title: A non-iterative reconstruction method for an inverse potential problem modeled by a modified Helmholtz equation
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2018.1432645
– volume: 230
  start-page: 3570
  year: 2011
  end-page: 3588
  ident: CR41
  article-title: A new method for inverse electromagnetic casting problems based on the topological derivative
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.049
– volume: 1
  start-page: 169
  year: 2008
  end-page: 187
  ident: CR34
  article-title: Direct elastic imaging of a small inclusion
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070696076
– volume: 50
  start-page: 1151
  issue: 6
  year: 2014
  end-page: 1163
  ident: CR42
  article-title: Topology design of inductors in electromagnetic casting using level-sets and second order topological derivatives
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1103-1
– year: 2006
  ident: CR9
  publication-title: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences
– volume: 105
  start-page: 299
  issue: 4
  year: 1989
  end-page: 326
  ident: CR32
  article-title: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281494
– volume: 37
  start-page: 159
  issue: 1
  year: 2003
  end-page: 173
  ident: CR29
  article-title: A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an:2003014
– volume: 37
  start-page: 913
  issue: 4
  year: 2008
  end-page: 933
  ident: CR15
  article-title: Electrical impedance tomography: from topology to shape
  publication-title: Control Cybern.
– year: 1998
  ident: CR38
  publication-title: Inverse Problems for Partial Diferential Equations
  doi: 10.1007/978-1-4899-0030-2
– year: 1990
  ident: CR39
  publication-title: Inverse Source Problems
  doi: 10.1090/surv/034
– volume: 14
  start-page: 553
  issue: 3
  year: 1998
  end-page: 595
  ident: CR31
  article-title: Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/14/3/011
– volume: 10
  start-page: 327
  issue: 2
  year: 2016
  end-page: 367
  ident: CR22
  article-title: On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2016003
– volume: 93
  start-page: 635
  issue: 4
  year: 2003
  end-page: 654
  ident: CR28
  article-title: A direct impedance tomography algorithm for locating small inhomogeneities
  publication-title: Numer. Math.
  doi: 10.1007/s002110200409
– year: 2004
  ident: CR35
  publication-title: Reconstruction of Small Inhomogeneities from Boundary Measurements
  doi: 10.1007/b98245
– volume: 34
  start-page: 81
  issue: 1
  year: 2005
  end-page: 101
  ident: CR20
  article-title: Crack detection by the topological gradient method
  publication-title: Control Cybern.
– volume: 21
  start-page: 547
  issue: 2
  year: 2005
  end-page: 564
  ident: CR26
  article-title: The topological asymptotic expansion for the Maxwell equations and some applications
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/2/008
– volume: 17
  start-page: 1327
  year: 2001
  end-page: 1356
  ident: CR14
  article-title: A level set method for inverse problems
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/17/5/307
– volume: 36
  start-page: 235
  issue: 2
  year: 2012
  end-page: 265
  ident: CR6
  article-title: Second-order topological expansion for electrical impedance tomography
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-011-9205-4
– volume: 39
  start-page: 547
  issue: 6
  year: 2009
  end-page: 555
  ident: CR3
  article-title: On the second order topologial asymptotic expansion
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-009-0436-7
– volume: 22
  start-page: 1761
  issue: 5
  year: 2006
  end-page: 1785
  ident: CR23
  article-title: Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/22/5/014
– year: 2013
  ident: CR4
  publication-title: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics
  doi: 10.1007/978-3-642-35245-4
– volume: 268
  start-page: 417
  year: 2014
  end-page: 431
  ident: CR11
  article-title: A new reconstruction method for the inverse potential problem
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.020
– volume: 37
  start-page: 227
  issue: 2
  year: 2003
  end-page: 240
  ident: CR30
  article-title: Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an:2003024
– volume: 31
  start-page: 075009
  issue: 7
  year: 2015
  ident: CR8
  article-title: A new reconstruction method for the inverse source problem from partial boundary measurements
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/31/7/075009
– volume: 55
  start-page: 2131
  issue: 6
  year: 2017
  end-page: 2141
  ident: CR13
  article-title: Obstacles reconstruction from partial boundary measurements based on the topological derivative concept
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1632-x
– volume: 23
  start-page: 231
  issue: 2
  year: 2002
  end-page: 255
  ident: CR24
  article-title: On numerical solution of shape inverse problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1020528902875
– volume: 25
  start-page: 133
  issue: 2–3
  year: 2006
  end-page: 138
  ident: CR19
  article-title: On an inverse boundary value problem
  publication-title: Comput. Appl. Math.
– volume: 6
  start-page: 2174
  issue: 4
  year: 2013
  end-page: 2212
  ident: CR33
  article-title: Localization, stability, and resolution of topological derivative based imaging functionals in elasticity
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120899303
– volume: 109
  start-page: 1
  issue: 1–2
  year: 2018
  end-page: 26
  ident: CR43
  article-title: Topological asymptotic analysis of an optimal control problem modeled by a coupled system
  publication-title: Asympt. Anal.
– volume: 33
  start-page: 035005
  issue: 3
  year: 2017
  ident: CR7
  article-title: A new non-iterative reconstruction method for the electrical impedance tomography problem
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa54e4
– volume: 10
  start-page: 1044
  issue: 4
  year: 2011
  end-page: 1070
  ident: CR16
  article-title: A fast local level set method for inverse gravimetry
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.100710.021210a
– volume: 34
  start-page: 1152
  issue: 5
  year: 2003
  end-page: 1166
  ident: CR27
  article-title: High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of inhomogeneities of small diameter
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141001399234
– volume: 1
  start-page: 169
  year: 2008
  ident: 1420_CR34
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070696076
– volume: 39
  start-page: 547
  issue: 6
  year: 2009
  ident: 1420_CR3
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-009-0436-7
– volume: 31
  start-page: 075009
  issue: 7
  year: 2015
  ident: 1420_CR8
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/31/7/075009
– volume-title: Reconstruction of Small Inhomogeneities from Boundary Measurements
  year: 2004
  ident: 1420_CR35
  doi: 10.1007/b98245
– volume-title: Topics in Inverse Problems
  year: 2005
  ident: 1420_CR17
– volume-title: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics
  year: 2013
  ident: 1420_CR4
  doi: 10.1007/978-3-642-35245-4
– volume: 34
  start-page: 1152
  issue: 5
  year: 2003
  ident: 1420_CR27
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141001399234
– volume: 50
  start-page: 1151
  issue: 6
  year: 2014
  ident: 1420_CR42
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1103-1
– volume: 29
  start-page: 025,003,30
  issue: 2
  year: 2013
  ident: 1420_CR25
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/29/2/025003
– volume: 10
  start-page: 327
  issue: 2
  year: 2016
  ident: 1420_CR22
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2016003
– volume: 195
  start-page: 260
  issue: 1
  year: 2013
  ident: 1420_CR18
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt268
– volume: 39
  start-page: 937
  issue: 9
  year: 2018
  ident: 1420_CR10
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2018.1432645
– volume: 180
  start-page: 1
  issue: 2
  year: 2019
  ident: 1420_CR2
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1420-4
– volume: 10
  start-page: 1044
  issue: 4
  year: 2011
  ident: 1420_CR16
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.100710.021210a
– volume: 55
  start-page: 2131
  issue: 6
  year: 2017
  ident: 1420_CR13
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1632-x
– volume: 109
  start-page: 1
  issue: 1–2
  year: 2018
  ident: 1420_CR43
  publication-title: Asympt. Anal.
– volume: 105
  start-page: 299
  issue: 4
  year: 1989
  ident: 1420_CR32
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281494
– volume: 25
  start-page: 133
  issue: 2–3
  year: 2006
  ident: 1420_CR19
  publication-title: Comput. Appl. Math.
– volume: 37
  start-page: 289
  issue: 3
  year: 1984
  ident: 1420_CR40
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160370302
– volume: 6
  start-page: 2174
  issue: 4
  year: 2013
  ident: 1420_CR33
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120899303
– volume: 21
  start-page: 547
  issue: 2
  year: 2005
  ident: 1420_CR26
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/2/008
– volume-title: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences
  year: 2006
  ident: 1420_CR9
– volume: 22
  start-page: 1761
  issue: 5
  year: 2006
  ident: 1420_CR23
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/22/5/014
– volume-title: Inverse Source Problems
  year: 1990
  ident: 1420_CR39
  doi: 10.1090/surv/034
– volume: 14
  start-page: 553
  issue: 3
  year: 1998
  ident: 1420_CR31
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/14/3/011
– volume: 36
  start-page: 235
  issue: 2
  year: 2012
  ident: 1420_CR6
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-011-9205-4
– volume: 37
  start-page: 227
  issue: 2
  year: 2003
  ident: 1420_CR30
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an:2003024
– volume: 180
  start-page: 1
  issue: 3
  year: 2019
  ident: 1420_CR1
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1420-4
– volume: 34
  start-page: 81
  issue: 1
  year: 2005
  ident: 1420_CR20
  publication-title: Control Cybern.
– volume: 33
  start-page: 035005
  issue: 3
  year: 2017
  ident: 1420_CR7
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa54e4
– volume: 51
  start-page: 2069
  issue: 6
  year: 2017
  ident: 1420_CR5
  publication-title: ESAIM Control Optim. Calc. Var.
– volume: 37
  start-page: 913
  issue: 4
  year: 2008
  ident: 1420_CR15
  publication-title: Control Cybern.
– volume: 17
  start-page: 1327
  year: 2001
  ident: 1420_CR14
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/17/5/307
– volume-title: Inverse Problems for Partial Diferential Equations
  year: 1998
  ident: 1420_CR38
  doi: 10.1007/978-1-4899-0030-2
– volume: 93
  start-page: 635
  issue: 4
  year: 2003
  ident: 1420_CR28
  publication-title: Numer. Math.
  doi: 10.1007/s002110200409
– volume: 230
  start-page: 3570
  year: 2011
  ident: 1420_CR41
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.049
– volume: 23
  start-page: 231
  issue: 2
  year: 2002
  ident: 1420_CR24
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1020528902875
– volume: 37
  start-page: 159
  issue: 1
  year: 2003
  ident: 1420_CR29
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an:2003014
– volume: 47
  start-page: 3053
  issue: 22–23
  year: 2010
  ident: 1420_CR37
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2010.07.004
– volume: 46
  start-page: 2275
  issue: 11–12
  year: 2009
  ident: 1420_CR36
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2009.01.021
– volume: 268
  start-page: 417
  year: 2014
  ident: 1420_CR11
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.020
– volume: 40
  start-page: 1367
  issue: 15
  year: 2017
  ident: 1420_CR12
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4059
– volume: 24
  start-page: 045,014
  issue: 4
  year: 2008
  ident: 1420_CR21
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/4/045014
SSID ssj0009874
Score 2.2891395
Snippet The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Applications of Mathematics
Approximation
Asymptotic methods
Asymptotic series
Calculus of Variations and Optimal Control; Optimization
Derivatives
Domains
Engineering
Functionals
Inverse reconstruction
Invited Paper
Iterative methods
Mathematics
Mathematics and Statistics
Newton methods
Numerical methods
Operations Research/Decision Theory
Optimization
Robustness (mathematics)
Shape optimization
Theory of Computation
Topology optimization
Title Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications
URI https://link.springer.com/article/10.1007/s10957-018-1420-4
https://www.proquest.com/docview/2126731927
https://hal.science/hal-03271074
Volume 181
WOSCitedRecordID wos000460754800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6setCDb7G-WMSTEtnsJtnEW1GLBV9YlR6EkOyDCtIWU_v7nc2jraKCHpNMNmFmsjOTmfkG4FDLwKMaI1Vt0sDxXOk6NhnkpNZdD2TKEz9vFL4SNzdhpxPdlX3cWVXtXqUk8516qtkNV8HQF6MeD2MerwZzaO1CO6_hvv00QdoNK-hl5nDGoyqV-d0Sn4xRrWtLIaf8zC-p0dziNJf_9a4rsFQ6mKRRaMQqzOjeGixOwQ7i0fUYqzVbh-eHYk6ClRY5R5JRjgWekb4h7W4y0KSJtq_4ZZidkDvUNdJqtU5J28bSyrm14J3kOp9ETZKeIo2pnPgGPDYvHs4unXLmgiO5T4cOM76fcJGwJI2YksrohPlhRI2igUZnJgp9E1HuCSVcLV2lfJoy7RuVukKKVPJNmO31e3oLSGCEUdJN0SVIPDvRA5ehOoi4yy2IGasDrZgfyxKQ3M7FeI0nUMqWjTGyMbZsjL06HI1vGRRoHL8RH6BEx3QWR_uycRXbc5QzYStRR24ddiuBx-XXm8VozgOBexMTdTiuBDy5_OMTt_9EvQML6H1FRRnQLswO3971HszL0fAle9vPlfoD2YjtxQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9NADLfWDonxsA9golsHp4knUNDlLsk1e6u2Va1ou4oW1AekU3IfGhJKp6Xr3z9fPtqCAGk8JnEuke2c7dj-GeC9UVFADUaqxqaRF_jK91wyyEudux6plCdh0Sg8FONxZz6PJ1Ufd15Xu9cpyWKn3mp2w1Uw9MWoJ8CYJ2jAboAGywHmf5l-2yDtdmroZeZxxuM6lfmnJX4xRo1bVwq55Wf-lhotLE7v4L_e9RD2KweTdEuNOIIdk72EF1uwg3g0WmO15q_g-6yck-CkRa6QZFVggedkYcn0NrkzpIe2r_xlmH8iE9Q1MhgMLsjUxdLau3HgnWRUTKImSaZJdysn_hq-9q5nl32vmrngKR7SpcdsGCZcJCxJY6aVtiZhYSemVtPIoDMTd0IbUx4ILXyjfK1DmjITWp36QolU8WNoZovMvAESWWG18lN0CZLATfTAZaiJYu5zB2LGWkBr5ktVAZK7uRg_5QZK2bFRIhulY6MMWvBhfctdicbxL-JzlOiazuFo97tD6c5RzoSrRF35LWjXApfV15tLNOeRwL2JiRZ8rAW8ufzXJ548ifodPO_PRkM5HIw_n8IeemJxWRLUhuby_sGcwTO1Wv7I798WCv4IBiPwqQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9NADLf2gdB4GBsw0W3AaeIJFHa5S3LN3qqNatW6UqkD7QHplNyHhoSyaun698_OR1sQQ0I8JnEuke3E9tn-GeC9M0nEHUaqzudJEIUmDCgZFOTkricml1lcNQoP1WjUvb5Ox82c07Ktdm9TknVPA6E0FbPjqfXHK41vuCKGwRgBRRj_ROuwGVEdPYXrk29L1N1uC8MsAilk2qY1_7TEL4Zp_YbKIld8zt_SpJX16T__7_fege3G8WS9WlN2Yc0VL-DZChwhHl0uMFzLl_D9qp6fQFJkZ0gyrzDCS3br2eQmmzrWR5tYbyWWn9gYdZANBoMTNqEY2wZfCNSTXVYTqllWWNZbyZW_gq_9z1en50EziyEwMuazQPg4zqTKRJanwhrrXSbibsq95YlDJyftxj7lMlJWhc6E1sY8Fy72Ng-VUbmRe7BR3BbuNbDEK29NmKOrkEU06QOX4S5JZSgJ3Ex0gLeC0KYBKqd5GT_1EmKZ2KiRjZrYqKMOfFjcMq1ROv5GfITSXdARvvZ5b6jpHJdCUYXqPOzAYSt83XzVpUYznyj8ZwnVgY-tsJeXH33i_j9Rv4On47O-Hg5GFwewhQ5aWlcKHcLG7O7evYEnZj77Ud69rXT9AWaK-Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Derivatives+of+Shape+Functionals.+Part+III%3A+Second-Order+Method+and+Applications&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Novotny%2C+Antonio+Andr%C3%A9&rft.au=Soko%C5%82owski%2C+Jan&rft.au=%C5%BBochowski%2C+Antoni&rft.date=2019-04-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=181&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs10957-018-1420-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_018_1420_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon