Teat detection algorithm: YOLO vs. Haar-cascade
In this study we have developed and experimented with two methods of teat detection based on machine learning approach in image recognition and object detection. Automatic milking systems rely strongly on the vision system for successful milking operation initiation which is the attachment of the te...
Gespeichert in:
| Veröffentlicht in: | Journal of mechanical science and technology Jg. 33; H. 4; S. 1869 - 1874 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Seoul
Korean Society of Mechanical Engineers
01.04.2019
Springer Nature B.V 대한기계학회 |
| Schlagworte: | |
| ISSN: | 1738-494X, 1976-3824 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study we have developed and experimented with two methods of teat detection based on machine learning approach in image recognition and object detection. Automatic milking systems rely strongly on the vision system for successful milking operation initiation which is the attachment of the teat cups correctly. Teat detection method currently employed in the industry is based on laser assisted edge detection mechanism, making the current systems less advanced than the existing methods in the field of image processing and robotic vision. By experimenting on a basic object detection method based on Haar-like features, viz. Haar cascade classification method and a latest state-of-the-art method based on convolutional neural nets, viz. YOLO-object detection method, we have compared the results of detection on a fake teat model casted from silicon, especially for indoor environments. This study is in extension to the successful real time detection in a cow farm using Haar-cascade based algorithm. |
|---|---|
| AbstractList | In this study we have developed and experimented with two methods of teat detection based on machine learning approach in image recognition and object detection. Automatic milking systems rely strongly on the vision system for successful milking operation initiation which is the attachment of the teat cups correctly. Teat detection method currently employed in the industry is based on laser assisted edge detection mechanism, making the current systems less advanced than the existing methods in the field of image processing and robotic vision. By experimenting on a basic object detection method based on Haar-like features, viz. Haar cascade classification method and a latest state-of-the-art method based on convolutional neural nets, viz. YOLO-object detection method, we have compared the results of detection on a fake teat model casted from silicon, especially for indoor environments. This study is in extension to the successful real time detection in a cow farm using Haar-cascade based algorithm. In this study we have developed and experimented with two methods of teat detection based on machine learning approach in image recognition and object detection. Automatic milking systems rely strongly on the vision system for successful milking operation initiation which is the attachment of the teat cups correctly. Teat detection method currently employed in the industry is based on laser assisted edge detection mechanism, making the current systems less advanced than the existing methods in the field of image processing and robotic vision. By experimenting on a basic object detection method based on Haar-like features, viz. Haar cascade classification method and a latest state-of-the-art method based on convolutional neural nets, viz. YOLO-object detection method, we have compared the results of detection on a fake teat model casted from silicon, especially for indoor environments. This study is in extension to the successful real time detection in a cow farm using Haar-cascade based algorithm. KCI Citation Count: 1 |
| Author | Ryuh, Beom Sahng Rastogi, Akanksha |
| Author_xml | – sequence: 1 givenname: Akanksha surname: Rastogi fullname: Rastogi, Akanksha email: akankshar@jbnu.ac.kr organization: School of Mechanical Systems Engineering, Chonbuk National University – sequence: 2 givenname: Beom Sahng surname: Ryuh fullname: Ryuh, Beom Sahng organization: School of Mechanical Systems Engineering, Chonbuk National University |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002456065$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kE1LAzEURYNUsK3-AHcDrlykzddMJu5KUVsoFKQLXYVMJqnTj0lNUsF_b-oIgqCr-xb3vPc4A9BrXWsAuMZohBHi44AJQQVEWEBEqYD5GehjwQtIS8J6aea0hEyw5wswCGGDUEEYxn0wXhkVs9pEo2Pj2kzt1s438XV_l70sF8vsPYyymVIeahW0qs0lOLdqF8zVdw7B6uF-NZ3BxfJxPp0soKY5ipAoXmjEiKoML3CpmC2xqUxBudGCImtLxKnIayMqkYvaWk7rKheksGVe1TUdgttubeut3OpGOtV85drJrZeTp9VcMk4wJzR1b7ruwbu3owlRbtzRt-k7SViZ7DCBRGrhrqW9C8EbKw--2Sv_ITGSJ4WyUyiTQnlSKPPE8F-MbqI6eYpeNbt_SdKRIV1p18b__PQ39Aku4YSg |
| CitedBy_id | crossref_primary_10_1007_s11042_022_13644_y crossref_primary_10_1016_j_biosystemseng_2025_104142 crossref_primary_10_1016_j_compag_2022_107224 crossref_primary_10_3390_electronics9121993 crossref_primary_10_1016_j_matpr_2020_11_562 crossref_primary_10_1016_j_compag_2020_105216 crossref_primary_10_1016_j_compag_2021_106391 crossref_primary_10_1016_j_jclepro_2023_137558 |
| Cites_doi | 10.1109/ICCSCE.2017.8284383 10.1006/jcss.1997.1504 |
| ContentType | Journal Article |
| Copyright | KSME & Springer 2019 KSME & Springer 2019. |
| Copyright_xml | – notice: KSME & Springer 2019 – notice: KSME & Springer 2019. |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W ACYCR |
| DOI | 10.1007/s12206-019-0339-5 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection Korean Citation Index |
| DatabaseTitle | CrossRef Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1976-3824 |
| EndPage | 1874 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_4721723 10_1007_s12206_019_0339_5 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LLZTM M7S MA- MK~ ML~ MZR NDZJH NF0 NPVJJ NQJWS O9- P9P PF0 PT4 PTHSS Q2X QOS R89 R9I RHV ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TDB TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZZE ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR CITATION PHGZM PHGZT PQGLB 7TB 8FD DWQXO FR3 P62 PKEHL PQEST PQQKQ PQUKI PRINS AABYN AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADMVV ADOXG AEEQQ AEFTE AEKVL AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SCV UNUBA |
| ID | FETCH-LOGICAL-c350t-2a76c042abe7618a4f81ebe637ec930ff807395de9b959dff73db5926f85bdd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464749300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1738-494X |
| IngestDate | Tue Nov 21 21:47:01 EST 2023 Wed Sep 17 23:58:37 EDT 2025 Tue Nov 18 22:29:51 EST 2025 Sat Nov 29 06:31:34 EST 2025 Fri Feb 21 02:31:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | YOLO Automatic milking systems Haar-cascade Teat detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-2a76c042abe7618a4f81ebe637ec930ff807395de9b959dff73db5926f85bdd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2481004909 |
| PQPubID | 326249 |
| PageCount | 6 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_4721723 proquest_journals_2481004909 crossref_primary_10_1007_s12206_019_0339_5 crossref_citationtrail_10_1007_s12206_019_0339_5 springer_journals_10_1007_s12206_019_0339_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20190400 2019-4-00 20190401 2019-04 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 4 year: 2019 text: 20190400 |
| PublicationDecade | 2010 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul – name: Heidelberg |
| PublicationTitle | Journal of mechanical science and technology |
| PublicationTitleAbbrev | J Mech Sci Technol |
| PublicationYear | 2019 |
| Publisher | Korean Society of Mechanical Engineers Springer Nature B.V 대한기계학회 |
| Publisher_xml | – name: Korean Society of Mechanical Engineers – name: Springer Nature B.V – name: 대한기계학회 |
| References | Marinello, Pezzuolo, Gasparini, Arvidsson, Sartori (CR1) 2015; 5 Hofman, Rujiter, Koekoek, Williem ver der Sluis (CR3) 2012 Jay (CR17) 2016 CR4 De Koning, van der Vost, Meijering (CR2) 2002 CR7 Kortekaas (CR8) 2015 Akhloufi (CR5) 2013 Freund, Schapire (CR11) 1997; 55 Redmon, Farhadi (CR15) 2016 Wilson, Fernandez (CR9) 2006; 21 Trieu (CR16) 2016 Rezaei (CR12) 2014 Redmon, Divvala, Girshick, Farhadi (CR14) 2015 Rastogi, Pal, Ryuh (CR13) 2017 (CR6) 2016 Viola, Jones (CR10) 2001 M Jay (339_CR17) 2016 K De Koning (339_CR2) 2002 P Viola (339_CR10) 2001 M Rezaei (339_CR12) 2014 J Redmon (339_CR15) 2016 H Hofman (339_CR3) 2012 A Rastogi (339_CR13) 2017 M P Kortekaas (339_CR8) 2015 J Redmon (339_CR14) 2015 F Marinello (339_CR1) 2015; 5 339_CR4 Gartner’s Inc Gartner Hype Cycle for Emerging Technologies (339_CR6) 2016 T H Trieu (339_CR16) 2016 339_CR7 M A Akhloufi (339_CR5) 2013 Y Freund (339_CR11) 1997; 55 P I Wilson (339_CR9) 2006; 21 |
| References_xml | – volume: 21 start-page: 127 issue: 4 year: 2006 end-page: 133 ident: CR9 article-title: Facial feature detection using Haar classifiers publication-title: Journal of Computing Science in Colleges – year: 2015 ident: CR14 publication-title: You Only Look Once: Unified, Real-time Object Detection – year: 2016 ident: CR15 publication-title: Yolo9000: Better, Faster, Stronger – year: 2016 ident: CR16 publication-title: Darkflow – start-page: 1 year: 2002 end-page: 11 ident: CR2 publication-title: Automatic Milking Experience and Development in Europe – ident: CR4 – start-page: 74 year: 2017 end-page: 79 ident: CR13 article-title: Real-time teat detection using haar cascade classifier in smart automatic milking system publication-title: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE) doi: 10.1109/ICCSCE.2017.8284383 – year: 2012 ident: CR3 article-title: milking box with robotic attacher and vision system publication-title: US 2012/0272914 A1 – year: 2016 ident: CR17 publication-title: YOLO Series – year: 2013 ident: CR5 article-title: 3D vision system for intelligent milking robot automation publication-title: SPIE, Proceedings of the International Society for Optical Engineering – year: 2016 ident: CR6 publication-title: Gartner’s Inc Connecticut – year: 2015 ident: CR8 publication-title: Milking Robot for Attaching a Teat Cup – year: 2014 ident: CR12 publication-title: Creating a Cascade of Haar Like Classifiers Step by Step – volume: 55 start-page: 119 issue: 1 year: 1997 end-page: 139 ident: CR11 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of Computer and System Science doi: 10.1006/jcss.1997.1504 – ident: CR7 – volume: 5 start-page: 1 year: 2015 end-page: 12 ident: CR1 article-title: Application of Kinect sensor for dynamic soil surface characterization publication-title: Precision Agriculture – year: 2001 ident: CR10 article-title: Rapid object detection using boosted cascade of simple features publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume-title: Creating a Cascade of Haar Like Classifiers Step by Step year: 2014 ident: 339_CR12 – start-page: 74 volume-title: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE) year: 2017 ident: 339_CR13 doi: 10.1109/ICCSCE.2017.8284383 – volume-title: Gartner’s Inc Connecticut year: 2016 ident: 339_CR6 – volume-title: Yolo9000: Better, Faster, Stronger year: 2016 ident: 339_CR15 – volume: 5 start-page: 1 year: 2015 ident: 339_CR1 publication-title: Precision Agriculture – start-page: 1 volume-title: Automatic Milking Experience and Development in Europe year: 2002 ident: 339_CR2 – volume-title: Darkflow year: 2016 ident: 339_CR16 – volume-title: YOLO Series year: 2016 ident: 339_CR17 – volume: 21 start-page: 127 issue: 4 year: 2006 ident: 339_CR9 publication-title: Journal of Computing Science in Colleges – volume-title: US 2012/0272914 A1 year: 2012 ident: 339_CR3 – volume-title: You Only Look Once: Unified, Real-time Object Detection year: 2015 ident: 339_CR14 – volume-title: IEEE Conference on Computer Vision and Pattern Recognition year: 2001 ident: 339_CR10 – volume-title: Milking Robot for Attaching a Teat Cup year: 2015 ident: 339_CR8 – volume-title: SPIE, Proceedings of the International Society for Optical Engineering year: 2013 ident: 339_CR5 – ident: 339_CR4 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 339_CR11 publication-title: Journal of Computer and System Science doi: 10.1006/jcss.1997.1504 – ident: 339_CR7 |
| SSID | ssj0062411 |
| Score | 2.2093897 |
| Snippet | In this study we have developed and experimented with two methods of teat detection based on machine learning approach in image recognition and object... |
| SourceID | nrf proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1869 |
| SubjectTerms | Algorithms Control Dynamical Systems Edge detection Engineering Image processing Indoor environments Industrial and Production Engineering Machine learning Machine vision Mechanical Engineering Neural networks Object recognition Vibration Vision systems 기계공학 |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-46UEPfovTKUU8KdG26UfiRUQcCqKCQ-YppGkyxdnNtu7vN8lap4JePPXQNi3vM8l7-f0A9hWnUayljww5IQqoIogIF6MoTGScJMJXlnnu4Tq-uSG9Hr2rNtyKqq2yjok2UKdDYfbIj_2AeLZMRU9Hb8iwRpnqakWh0YBZg5Lg2da9-zoSRzo72QVXrJ06oEGvrmrao3O-b9fSFLkYUxR-y0uNLFffppw_qqQ2-XSW_vvby7BYTTuds4mdrMCMzFZh4QsY4Rocd3VYdlJZ2uaszOGDvh6ofHo9cR5vr2-dcXHkXHKeI8EL01S_Dt3ORff8ElV0Ckjg0C2Rz-NIaB_lWguRR3igiKdVGOFYCopdpYit2qWSJjSkqVIxTpOQ-pEiYZKmeAOa2TCTm-AkelZHiUsSKgPDWG0QX4QrJOV-yDEJWuDWsmSigho3jBcDNgVJNuJnWvzMiJ-FLTj4fGU0wdn46-E9rSD2Ip6ZQcc21_6QveRMrwGuWBAb0i3cgnatEVb5ZcGm6mjBYa3T6e1fv7j192DbMO9bUzIdPW1olvm73IE5MS6fi3zXGuUHrOTiyg priority: 102 providerName: ProQuest |
| Title | Teat detection algorithm: YOLO vs. Haar-cascade |
| URI | https://link.springer.com/article/10.1007/s12206-019-0339-5 https://www.proquest.com/docview/2481004909 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002456065 |
| Volume | 33 |
| WOSCitedRecordID | wos000464749300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Mechanical Science and Technology, 2019, 33(4), , pp.1869-1874 |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1976-3824 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0062411 issn: 1738-494X databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1976-3824 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0062411 issn: 1738-494X databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1976-3824 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0062411 issn: 1738-494X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1976-3824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062411 issn: 1738-494X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1wfSxFPSrTbNG3iTUVRkHXRRVYvIU0TXdSutNXfbxJbV0UFvbSHpm34JvMIM5kPYFMLFsUGfWTJCVHINEVU-hhFJFFxkshAO-a5q7O43aa9HutU57iLutq9Tkk6Sz087BYEbvfLkI8xQ2QUxo23o5av4eLyqja_kXFJbpcVG00OWdirU5nffeKTMxrNcv0pzvySGnUe53jmX3OdhekqwPT231bEHIyobB6mPrQdXIDdrjHAXqpKV4aVeeLhdpD3y7vHPe_6_Ozceyl2vBMhciRFYcvnF6F7fNQ9PEEVcQKSmPglCkQcSaONwuAdtagINW0ZYUU4VpJhX2vq8nOpYgkjLNU6xmlCWBBpSpI0xUswlg0ytQxeYuI3AzFNmAotN7Xt7SJ9qZgIiMA0bIBfA8hl1VTccls88GE7ZAsFN1BwCwUnDdh6f-XpraPGb4M3jFT4vexz2wfb3m8H_D7nJto_5WFs6bVwA9ZqofFKAwsemJm6tCZrwHYtpOHjH_-48qfRqzAZOCnbUp41GCvzZ7UOE_Kl7Bd5E8YPjtqdi6YtKL001w65abrF-gr8PtvF |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aCtLggcsuolAgQtvLJq-pnYuNhBACplYt7aRVU_dkOY49ppa0JKHTfhT_EdttKJu0ve2BpzwkcRyfL-eSc3w-gF0tWBSb1UeWnBAFTFNEpU9QFCYqThKJtWOeO-3F_T4djdjxGvyu9sLYsspKJzpFnU6l_UfexAFtuTQV-zj7iSxrlM2uVhQaC1h01dWlCdmKD50vRr57GB99HX5uoyWrAJIk9EuERRxJA1VhJhO1qAg0bZk3iUisJCO-1tQlr1LFEhayVOuYpEnIcKRpmKQpMcOuwwPjRWDmKgVPKsUfGWPo4rvY6JCABaMqiep26mHsQneGfEIYCq-ZwfUs19c83BtJWWfrjp7-Z6v0DJ4snWrv0-IreA5rKtuEx_-0WtyC5tAYHS9VpSs9yzwxOTfzLr__eO-dDXoDb14cem0hciRFYbcMbMPwPia8A7VsmqkX4CXGZ2XUpwlTgeXjtv1spC8VEzgUhAZ18CvRcblspG75PCZ81QLaSpsbaXMrbR7WYf_vLbNFF5G7Ln5n8MDH8oLb3t_2eD7l45ybCKfDg9hSipE6NCoA8KXWKfhK-nU4qCC0On3rE1_ePdhb2GgPv_V4r9PvvoJH2KHY1i41oFbmv9RreCjn5UWRv3Hfgwf8npH1B4i2QF0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB71gRAcKE91oYUIwQVkNmvHsY1UVRVl1VVX2z2s0NKL5Th2W7VkS5K24qfx77C9CUuR6K0HTjkkcRzP5xmPZzwfwBurRMrc6CNPTogSYTniOiYopZlhWaaxDcxzX4ZsNOLTqRgvwc_2LIxPq2x1YlDU-Uz7PfIuTngvhKlE1zZpEePd_vb5d-QZpHyktaXTmENk3_y4cu5btTXYdbJ-i3H_8-TTHmoYBpAmNK4RVizVDrbKdSztcZVY3nN_lRJmtCCxtTwEsnIjMkFFbi0jeUYFTi2nWZ4T1-wyrDLnYvpswjE9bI1A6gxj8PWY0yeJSKZtQDWc2sM4uPECxYQIRK-ZxOWitNdWu38FaIPd66_9xyP2EB40i-1oZz47HsGSKR7D_T9KMD6B7sQZoyg3dUhJKyJ1duT6XR9_-xh9PRgeRJfVh2hPqRJpVfmjBE9hchsdfgYrxaww6xBlbi0reMwzYRLP0-3r3OhYG6EwVYQnHYhbMUrdFFj3PB9nclEa2kteOslLL3lJO_Du9yvn8-oiNz382mFDnuoT6WuC--vRTJ6W0nk-A5kwTzVGOrDRgkE22qiSCyR04H0Lp8Xtf37x-c2NvYK7DlByOBjtv4B7OADapzRtwEpdXphNuKMv65OqfBmmRgTyloH1C356STY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Teat+detection+algorithm%3A+YOLO+vs.+Haar-cascade&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Rastogi%2C+Akanksha&rft.au=Ryuh%2C+Beom+Sahng&rft.date=2019-04-01&rft.pub=Korean+Society+of+Mechanical+Engineers&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=33&rft.issue=4&rft.spage=1869&rft.epage=1874&rft_id=info:doi/10.1007%2Fs12206-019-0339-5&rft.externalDocID=10_1007_s12206_019_0339_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon |