Selection Prediction Models Considering Context Effects
This study proposes a method for processing unordered datasets using deep learning techniques and introduces a model capable of simultaneously predicting three context effects and selections. “Context effects” refer to dramatic changes in the selection situation caused by the introduction of new opt...
Saved in:
| Published in: | Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 4; pp. 734 - 742 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Tokyo
Fuji Technology Press Co. Ltd
20.07.2025
|
| Subjects: | |
| ISSN: | 1343-0130, 1883-8014 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study proposes a method for processing unordered datasets using deep learning techniques and introduces a model capable of simultaneously predicting three context effects and selections. “Context effects” refer to dramatic changes in the selection situation caused by the introduction of new options into a set of choices. Five experiments were conducted using different product-selection data. Each experiment focused on predicting context effects, selections, predictions under different context effects, predictions for different types of products, and predictions that considered context effects. The results demonstrated that the proposed model is suitable for classification prediction tasks in complex situations. The more complex the model and the larger the amount of data, the better the results. This study extends the application of neural networks to multi-attribute decision-making problems and contributes to the selection of decision-making models. It also improves the prediction accuracy and analyzes the impact of context effects on choices. |
|---|---|
| AbstractList | This study proposes a method for processing unordered datasets using deep learning techniques and introduces a model capable of simultaneously predicting three context effects and selections. “Context effects” refer to dramatic changes in the selection situation caused by the introduction of new options into a set of choices. Five experiments were conducted using different product-selection data. Each experiment focused on predicting context effects, selections, predictions under different context effects, predictions for different types of products, and predictions that considered context effects. The results demonstrated that the proposed model is suitable for classification prediction tasks in complex situations. The more complex the model and the larger the amount of data, the better the results. This study extends the application of neural networks to multi-attribute decision-making problems and contributes to the selection of decision-making models. It also improves the prediction accuracy and analyzes the impact of context effects on choices. |
| Author | Zhang, Wenhao Hasuike, Takashi |
| Author_xml | – sequence: 1 givenname: Wenhao surname: Zhang fullname: Zhang, Wenhao organization: Department of Industrial and Management Systems Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan – sequence: 2 givenname: Takashi orcidid: 0000-0002-0475-8439 surname: Hasuike fullname: Hasuike, Takashi organization: Department of Industrial and Management Systems Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan |
| BookMark | eNotkE1LAzEQQINUsNb-AU8Fz1tn8rHJHqXUD6goqOcQshNJqZuabEH_vduup3kDjxl4l2zSpY4Yu0ZYcmhqdbt1PsY4LFwt96CFPGNTNEZUBlBOBhZSVIACLti8lC3AwLwGiVOm32hHvo-pW7xmauOIz6mlXVmsUldiSzl2n0fu6adfrEMY_HLFzoPbFZr_zxn7uF-_rx6rzcvD0-puU3mhoK-4Q-41UiMU90SNUdIHj6FtHAaJGpTkJKj2YAwKX7dKO9IOa6cJFAUxYzfj3X1O3wcqvd2mQ-6Gl1ZwgbIxAGaw-Gj5nErJFOw-xy-Xfy2CPTWyYyN7bGRPjcQfiTFcgQ |
| Cites_doi | 10.1080/00207594.2012.666553 10.1145/2988450.2988454 10.1287/mnsc.39.10.1179 10.1086/209205 10.1177/1470593107073844 10.1007/s12144-016-9428-0 10.1007/BF00122574 10.1509/jmkr.41.3.237.35990 10.1006/obhd.1996.0080 10.1086/519151 10.1016/j.neunet.2006.05.043 10.1037//0033-295X.108.2.370 10.1145/3097983.3098005 10.1037/h0032955 10.1207/15327660051044051 10.1086/208899 10.1037//0033-295X.100.3.432 10.1002/bdm.720 10.1037/a0035159 10.1007/s10668-021-01902-2 10.18653/v1/N19-1423 10.1177/00472875211036193 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.20965/jaciii.2025.p0734 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 742 |
| ExternalDocumentID | 10_20965_jaciii_2025_p0734 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c350t-2a12c71e9352cee9854cfc1fd9a1f4170542e3e6c08813c6d57ae7a16a7e05ef3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001545640300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1343-0130 |
| IngestDate | Tue Aug 05 06:10:39 EDT 2025 Sat Nov 29 07:42:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-2a12c71e9352cee9854cfc1fd9a1f4170542e3e6c08813c6d57ae7a16a7e05ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0475-8439 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p0734 |
| PQID | 3231498008 |
| PQPubID | 4911628 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_3231498008 crossref_primary_10_20965_jaciii_2025_p0734 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-20 |
| PublicationDateYYYYMMDD | 2025-07-20 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2025 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2025.p0734-6 key-10.20965/jaciii.2025.p0734-18 key-10.20965/jaciii.2025.p0734-5 key-10.20965/jaciii.2025.p0734-19 key-10.20965/jaciii.2025.p0734-4 key-10.20965/jaciii.2025.p0734-16 key-10.20965/jaciii.2025.p0734-3 key-10.20965/jaciii.2025.p0734-17 key-10.20965/jaciii.2025.p0734-2 key-10.20965/jaciii.2025.p0734-14 key-10.20965/jaciii.2025.p0734-1 key-10.20965/jaciii.2025.p0734-15 key-10.20965/jaciii.2025.p0734-12 key-10.20965/jaciii.2025.p0734-13 key-10.20965/jaciii.2025.p0734-10 key-10.20965/jaciii.2025.p0734-11 key-10.20965/jaciii.2025.p0734-9 key-10.20965/jaciii.2025.p0734-8 key-10.20965/jaciii.2025.p0734-7 key-10.20965/jaciii.2025.p0734-27 key-10.20965/jaciii.2025.p0734-28 key-10.20965/jaciii.2025.p0734-25 key-10.20965/jaciii.2025.p0734-26 key-10.20965/jaciii.2025.p0734-23 key-10.20965/jaciii.2025.p0734-24 key-10.20965/jaciii.2025.p0734-21 key-10.20965/jaciii.2025.p0734-22 key-10.20965/jaciii.2025.p0734-20 |
| References_xml | – ident: key-10.20965/jaciii.2025.p0734-24 – ident: key-10.20965/jaciii.2025.p0734-11 doi: 10.1080/00207594.2012.666553 – ident: key-10.20965/jaciii.2025.p0734-26 – ident: key-10.20965/jaciii.2025.p0734-5 doi: 10.1145/2988450.2988454 – ident: key-10.20965/jaciii.2025.p0734-20 doi: 10.1287/mnsc.39.10.1179 – ident: key-10.20965/jaciii.2025.p0734-2 doi: 10.1086/209205 – ident: key-10.20965/jaciii.2025.p0734-9 doi: 10.1177/1470593107073844 – ident: key-10.20965/jaciii.2025.p0734-14 doi: 10.1007/s12144-016-9428-0 – ident: key-10.20965/jaciii.2025.p0734-22 doi: 10.1007/BF00122574 – ident: key-10.20965/jaciii.2025.p0734-16 doi: 10.1509/jmkr.41.3.237.35990 – ident: key-10.20965/jaciii.2025.p0734-7 doi: 10.1006/obhd.1996.0080 – ident: key-10.20965/jaciii.2025.p0734-1 – ident: key-10.20965/jaciii.2025.p0734-12 doi: 10.1086/519151 – ident: key-10.20965/jaciii.2025.p0734-21 doi: 10.1016/j.neunet.2006.05.043 – ident: key-10.20965/jaciii.2025.p0734-17 doi: 10.1037//0033-295X.108.2.370 – ident: key-10.20965/jaciii.2025.p0734-6 doi: 10.1145/3097983.3098005 – ident: key-10.20965/jaciii.2025.p0734-23 – ident: key-10.20965/jaciii.2025.p0734-3 doi: 10.1287/mnsc.39.10.1179 – ident: key-10.20965/jaciii.2025.p0734-25 – ident: key-10.20965/jaciii.2025.p0734-19 doi: 10.1037/h0032955 – ident: key-10.20965/jaciii.2025.p0734-13 doi: 10.1207/15327660051044051 – ident: key-10.20965/jaciii.2025.p0734-8 doi: 10.1086/208899 – ident: key-10.20965/jaciii.2025.p0734-18 doi: 10.1037//0033-295X.100.3.432 – ident: key-10.20965/jaciii.2025.p0734-10 doi: 10.1002/bdm.720 – ident: key-10.20965/jaciii.2025.p0734-27 doi: 10.1037/a0035159 – ident: key-10.20965/jaciii.2025.p0734-28 doi: 10.1007/s10668-021-01902-2 – ident: key-10.20965/jaciii.2025.p0734-4 doi: 10.18653/v1/N19-1423 – ident: key-10.20965/jaciii.2025.p0734-15 doi: 10.1177/00472875211036193 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.4560165 |
| Snippet | This study proposes a method for processing unordered datasets using deep learning techniques and introduces a model capable of simultaneously predicting three... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 734 |
| SubjectTerms | Artificial intelligence Consumer behavior Consumers Context Decision making Hierarchies Impact analysis Informatics Machine learning Neural networks Prediction models Preferences Task complexity |
| Title | Selection Prediction Models Considering Context Effects |
| URI | https://www.proquest.com/docview/3231498008 |
| Volume | 29 |
| WOSCitedRecordID | wos001545640300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66efDi_InTOXrwJnFJkzbNSVQ2BGEMf8DwUrI0BUW2uVbxz_e9tGV48eKlFAolfH1573tJ-n2EnCvFHDdcU6AGjEqdGwplhAGRE1zkGZQcy7zZhBqPk-lUT-oFt6I-VtnkRJ-os4XFNfKBACIiNdCb5Gr5QdE1CndXawuNTdJGlQS0bphEL008RdAKAEPg6zUXHJCsejCJx4gEq_6jCVEDZfBmLAo6hEADLpcQ-vJ3rfqdqn39GXX-O_JdslMzz-C6CpU9suHm-6TTuDoE9SQ_IOrRW-PA9womK9zG8bfomfZeBI2_JxS8wAtbfZdBJYBcHJLn0fDp9o7W9grUioiVNDQ8tIo7DRwMSqVOImlzy_NMG55LlNmRoRMutpCIuLBxFinjlOGxUY5FLhdHpDVfzN0xCUwcotK8dFpaaZNkNjMKZXpkFuVGzHSXXDRApstKRSOF7sPDnlawpwh76mHvkl4DZFrPqCJdo3jy9-NTso2vwvXXkPVIq1x9ujOyZb_K12LVJ-2b4Xjy0Pe9N1zvFe37oPkB7iPDug |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAGP1wA724i7s56EmimSWdzEFEXFBaS8EK3uJ0MgFFam3q9qf8jX7fpKF48ebBWyAQwrxvebO9B7CrVOSYYTpEahCFUucmxDYSIZETTOQZthwbebMJ1Wwmd3e6NQZf1V0YOlZZ1URfqLNnS2vkhwKJiNRIb5Lj3ktIrlG0u1pZaJRhUXef7zhlK46uzhDfPc4vztunl-HQVSC0Io4GITeMW8WcRuqBHUInsbS5ZXmmDcslqctI7oSrWcw_Jmwti5VxyrCaUS6KXS7wu-MwKUWiKK_qKqziN8apBzISNlrjoQGQ5ZxP0rElEZX3djhprhw-GksCEhxpx0EPU03-7I0_W4Pvdxdz_22k5mF2yKyDkzIVFmDMdRdhrnKtCIZFbAnUjbf-wXgMWn3apvKP5An3VASVfyk29MALd30MglLguViG2z_5_RWY6D533SoEpsZJSV86La20SdLpGEUyRDKLcyM6eg32K-DSXqkSkuLsysOcljCnBHPqYV6DzQq4dFgxinSE2vrvr3dg-rJ93UgbV836BszQZ2mtmUebMDHov7otmLJvg4eiv-2DM4D7v8b4G3z7HTQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+Prediction+Models+Considering+Context+Effects&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Zhang%2C+Wenhao&rft.au=Hasuike+Takashi&rft.date=2025-07-20&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=4&rft.spage=734&rft.epage=742&rft_id=info:doi/10.20965%2Fjaciii.2025.p0734 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |