A vu-decomposition method for a second-order cone programming problem
A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under...
Uloženo v:
| Vydáno v: | Applied mathematics and mechanics Ročník 31; číslo 2; s. 263 - 270 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Shanghai University Press
01.02.2010
School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,P.R.China |
| Témata: | |
| ISSN: | 0253-4827, 1573-2754 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under a certain condition, a twice continuously differentiable trajectory is computed to produce a second-order expansion of the objective function. A conceptual algorithm for solving this problem with a superlinear convergence rate is given. |
|---|---|
| Bibliografie: | O221.2 31-1650/O1 second-order cone programming, nonsmooth optimization,vu-Lagrangian,vu-decomposition O221 |
| ISSN: | 0253-4827 1573-2754 |
| DOI: | 10.1007/s10483-010-0214-6 |