Zirconium-based cubic-perovskite materials for photocatalytic solar cell applications: a DFT study
The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO 3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave a...
Gespeichert in:
| Veröffentlicht in: | RSC advances Jg. 12; H. 42; S. 27517 - 27524 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge
Royal Society of Chemistry
22.09.2022
|
| Schlagworte: | |
| ISSN: | 2046-2069, 2046-2069 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO
3
(X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT)
via
the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO
3
and KZrO
3
are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO
3
and KZrO
3
are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO
3
and KZrO
3
present them as favorable materials for solar cell and LED applications.
The structural, electronic, optical, and mechanical characteristics of cubic inorganic perovskites XZrO
3
(X = Rb and K) were studied using the Cambridge serial total energy package-based DFT. |
|---|---|
| AbstractList | The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO
3
(X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT)
via
the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO
3
and KZrO
3
are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO
3
and KZrO
3
are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO
3
and KZrO
3
present them as favorable materials for solar cell and LED applications. The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO3 and KZrO3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO3 and KZrO3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO3 and KZrO3 present them as favorable materials for solar cell and LED applications. The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO 3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO 3 and KZrO 3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO 3 and KZrO 3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO 3 and KZrO 3 present them as favorable materials for solar cell and LED applications. The structural, electronic, optical, and mechanical characteristics of cubic inorganic perovskites XZrO 3 (X = Rb and K) were studied using the Cambridge serial total energy package-based DFT. The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO3 and KZrO3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO3 and KZrO3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO3 and KZrO3 present them as favorable materials for solar cell and LED applications.The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO3 and KZrO3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO3 and KZrO3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO3 and KZrO3 present them as favorable materials for solar cell and LED applications. |
| Author | Mujtaba, Syed Taqveem Khan, Muhammad Aslam Farooq, Muhammad Umair Hussain, Shoukat Rehman, Jalil Ur Mahmood, Muhammad Ali Tahir, Muhammad Bilal Shahzad, Muhammad Khuram |
| AuthorAffiliation | Khwaja Fareed University of Engineering and Information Technology The Islamia University of Bahawalpur Faisalabad Campus Center of Theoretical and Computational Research Department of Computing and Electronic Engineering Institute of Physics Riphah International University Atlantic Technological University Sligo Centre for Mathematical Modeling and Intelligent Systems for Health and Environment (MISHE) Department of Physics |
| AuthorAffiliation_xml | – name: Riphah International University – name: Khwaja Fareed University of Engineering and Information Technology – name: Atlantic Technological University Sligo – name: Center of Theoretical and Computational Research – name: Department of Physics – name: The Islamia University of Bahawalpur – name: Institute of Physics – name: Centre for Mathematical Modeling and Intelligent Systems for Health and Environment (MISHE) – name: Faisalabad Campus – name: Department of Computing and Electronic Engineering |
| Author_xml | – sequence: 1 givenname: Muhammad Khuram surname: Shahzad fullname: Shahzad, Muhammad Khuram – sequence: 2 givenname: Syed Taqveem surname: Mujtaba fullname: Mujtaba, Syed Taqveem – sequence: 3 givenname: Shoukat surname: Hussain fullname: Hussain, Shoukat – sequence: 4 givenname: Jalil Ur surname: Rehman fullname: Rehman, Jalil Ur – sequence: 5 givenname: Muhammad Umair surname: Farooq fullname: Farooq, Muhammad Umair – sequence: 6 givenname: Muhammad Aslam surname: Khan fullname: Khan, Muhammad Aslam – sequence: 7 givenname: Muhammad Bilal surname: Tahir fullname: Tahir, Muhammad Bilal – sequence: 8 givenname: Muhammad Ali surname: Mahmood fullname: Mahmood, Muhammad Ali |
| BookMark | eNptkU1Lw0AQhhepYK29eBcWvIgQ3Y_sNvFWWusHBUHqxUuYbDa4Nc3G3Y3Qf2_aikpxLjMwzzu8M3OMerWtNUKnlFxRwtPrgjkgnNFkeYD6jMQyYkSmvT_1ERp6vyRdSEGZpH2UvxqnbG3aVZSD1wVWbW5U1GhnP_27CRqvIGhnoPK4tA43bzZYBQGqdTAKe1uBw0pXFYamqUzXMbb2NxjwdLbAPrTF-gQdlp1cD7_zAL3MbheT-2j-dPcwGc8jxQUJES1SIUTMpYxHKWFxnigSq3wkmJYFAcpjoXguCaiSqwQohVQC1WlBy1JzRvgAXezmNs5-tNqHbGX8xhrU2rY-YyOW0JiTJO3Q8z10aVtXd-42FBVUjGTSUWRHKWe9d7rMlAnbBYMDU2WUZJu7Z1P2PN7e_bGTXO5JGmdW4Nb_w2c72Hn1w_0-kX8B6M6Oaw |
| CitedBy_id | crossref_primary_10_1007_s40243_024_00276_5 crossref_primary_10_1016_j_jpcs_2025_112771 crossref_primary_10_1016_j_ijhydene_2024_07_044 crossref_primary_10_1016_j_ijhydene_2024_07_069 crossref_primary_10_1016_j_matchemphys_2024_129377 crossref_primary_10_5772_geet_30 crossref_primary_10_1088_1361_6641_aca5ad crossref_primary_10_1016_j_cocom_2024_e00958 crossref_primary_10_1039_D5CC04675K crossref_primary_10_1002_qua_27481 crossref_primary_10_1016_j_ijhydene_2024_09_305 crossref_primary_10_1016_j_mtcomm_2023_107767 crossref_primary_10_1016_j_est_2025_117957 crossref_primary_10_1016_j_ijhydene_2025_150644 crossref_primary_10_1002_adts_202500104 crossref_primary_10_1016_j_ijhydene_2024_10_324 crossref_primary_10_1016_j_ijhydene_2025_150723 crossref_primary_10_1016_j_jmgm_2025_109109 crossref_primary_10_1016_j_comptc_2023_114085 crossref_primary_10_1016_j_matchemphys_2025_131197 crossref_primary_10_1016_j_comptc_2024_114947 crossref_primary_10_1016_j_heliyon_2023_e13687 crossref_primary_10_1038_s41598_024_76062_0 crossref_primary_10_1016_j_comptc_2024_114889 crossref_primary_10_1515_zpch_2023_0348 crossref_primary_10_1016_j_mssp_2024_108547 crossref_primary_10_1016_j_ssc_2024_115721 crossref_primary_10_1039_D4SE01523A crossref_primary_10_1038_s41598_024_70586_1 crossref_primary_10_1016_j_jpcs_2025_113176 crossref_primary_10_1016_j_ssc_2024_115448 crossref_primary_10_1016_j_cherd_2025_09_011 crossref_primary_10_1016_j_mssp_2024_109255 crossref_primary_10_1016_j_biortech_2023_128638 crossref_primary_10_1016_j_ijhydene_2024_06_403 crossref_primary_10_1016_j_physb_2024_416473 crossref_primary_10_1038_s41598_024_57341_2 crossref_primary_10_1088_1402_4896_ad1737 crossref_primary_10_1088_1402_4896_adc212 crossref_primary_10_1016_j_physb_2024_416116 crossref_primary_10_1016_j_jpcs_2023_111813 crossref_primary_10_1016_j_jpcs_2025_112729 crossref_primary_10_1039_D3RA00263B crossref_primary_10_1016_j_heliyon_2023_e18407 crossref_primary_10_1016_j_inoche_2024_113811 crossref_primary_10_1007_s10904_025_03789_2 crossref_primary_10_1016_j_surfin_2024_105392 crossref_primary_10_1007_s10904_024_03518_1 |
| Cites_doi | 10.1039/D2CE00663D 10.1002/er.6858 10.1016/j.cjph.2016.08.010 10.1016/j.comptc.2022.113624 10.1038/s41557-018-0045-4 10.1002/smtd.202200329 10.1016/j.snb.2003.08.001 10.1016/j.jpowsour.2022.231121 10.1103/PhysRev.136.B864 10.1515/mt-2020-0088 10.1016/j.isci.2022.104090 10.1039/D1MH01918J 10.1080/14786435.2020.1799101 10.1016/j.mssp.2021.105890 10.1021/acs.inorgchem.7b01510 10.1002/adma.201104676 10.1007/s11664-018-06850-8 10.1007/s11356-022-18591-7 10.1063/1.5053844 10.1021/acs.est.1c02970 10.1016/j.ceramint.2020.01.106 10.1002/adfm.202004209 10.1016/j.ssc.2018.03.010 10.1021/acsaem.0c02124 10.1039/C8RA01146J 10.1016/j.apcatb.2022.121467 10.1039/D0TA11448K 10.1021/acs.chemrev.9b00600 10.1016/j.jallcom.2022.164599 10.1021/acsami.9b07891 10.1002/aenm.201502588 10.1080/14786440808520496 10.1103/PhysRev.140.A1133 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry. |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1039/d2ra03218j |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2046-2069 |
| EndPage | 27524 |
| ExternalDocumentID | 10_1039_D2RA03218J d2ra03218j |
| GroupedDBID | -JG 0-7 0R~ AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- GROUPED_DOAJ H13 HZ~ H~N J3I O9- OK1 R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGMRB AHGCF AKBGW APEMP CITATION M~E PGMZT 7SR 8BQ 8FD AGEGJ JG9 7X8 |
| ID | FETCH-LOGICAL-c350t-1d95554366479024b8c04cb752e6d0a1345c3b60acf3c8a11a96a1e9d1ffe3203 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862630500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2046-2069 |
| IngestDate | Fri Sep 05 09:15:00 EDT 2025 Sun Jun 29 16:49:18 EDT 2025 Sat Nov 29 06:30:05 EST 2025 Tue Nov 18 21:30:50 EST 2025 Thu Oct 13 02:30:45 EDT 2022 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 42 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c350t-1d95554366479024b8c04cb752e6d0a1345c3b60acf3c8a11a96a1e9d1ffe3203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6086-1422 0000-0002-3368-6868 0000-0003-4651-2813 |
| OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2022/ra/d2ra03218j |
| PQID | 2721515768 |
| PQPubID | 2047525 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1039_D2RA03218J proquest_journals_2721515768 rsc_primary_d2ra03218j proquest_miscellaneous_2728143089 crossref_primary_10_1039_D2RA03218J |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-22 |
| PublicationDateYYYYMMDD | 2022-09-22 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | RSC advances |
| PublicationYear | 2022 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Parthiban (D2RA03218J/cit27/1) 2016; 10 Liu (D2RA03218J/cit35/1) 2022; 25 Yang (D2RA03218J/cit17/1) 2020; 46 Wang (D2RA03218J/cit5/1) 2018; 10 Kada (D2RA03218J/cit9/1) 2016; 54 Gherriche (D2RA03218J/cit2/1) 2021; 131 Shahzad (D2RA03218J/cit22/1) 2018; 8 Thirumal (D2RA03218J/cit26/1) 2015; 47 Liu (D2RA03218J/cit33/1) 2021; 55 Pugh (D2RA03218J/cit40/1) 1954; 45 yi (D2RA03218J/cit34/1) 2013; 16 Xu (D2RA03218J/cit19/1) 2022; 46 Bidai (D2RA03218J/cit8/1) 2017; 5 Hohenberg (D2RA03218J/cit30/1) 1964; 136 Zhang (D2RA03218J/cit3/1) 2022; 9 Hoat (D2RA03218J/cit38/1) 2018; 275 Zhang (D2RA03218J/cit7/1) 2016; 6 Guechi (D2RA03218J/cit15/1) 2020; 23 Zhao (D2RA03218J/cit16/1) 2021; 10 Giles (D2RA03218J/cit25/1) 2015; 39 Deng (D2RA03218J/cit18/1) 2020; 30 Kohn (D2RA03218J/cit31/1) 1965; 4A Huang (D2RA03218J/cit21/1) 2012; 30 Yu (D2RA03218J/cit13/1) 2022; 314 Li (D2RA03218J/cit28/1) 2018; 113 Yu (D2RA03218J/cit11/1) 2022; 29 Chen (D2RA03218J/cit4/1) 2019; 11 Wei (D2RA03218J/cit10/1) 2022; 24 Padmavathy (D2RA03218J/cit32/1) 2019; 2 Maho (D2RA03218J/cit6/1) 2021; 4 Hiramatsu (D2RA03218J/cit12/1) 2017; 17 Zoubir (D2RA03218J/cit24/1) 2021; 6 Robinson (D2RA03218J/cit29/1) 2020; 120 Lee (D2RA03218J/cit1/1) 2003; 3 Wang (D2RA03218J/cit14/1) 2022; 525 Shi (D2RA03218J/cit20/1) 2022 Huang (D2RA03218J/cit39/1) 2022; 908 ur Rehman (D2RA03218J/cit36/1) 2022; 1209 Hiramatsu (D2RA03218J/cit37/1) 2017; 17 Ling-yi (D2RA03218J/cit23/1) 2016; 19 |
| References_xml | – volume: 24 start-page: 5014 year: 2022 ident: D2RA03218J/cit10/1 publication-title: CrystEngComm doi: 10.1039/D2CE00663D – volume: 46 start-page: 1 year: 2022 ident: D2RA03218J/cit19/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.6858 – volume: 54 start-page: 678 year: 2016 ident: D2RA03218J/cit9/1 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2016.08.010 – volume: 1209 start-page: 113624 year: 2022 ident: D2RA03218J/cit36/1 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2022.113624 – volume: 10 start-page: 667 issue: 6 year: 2018 ident: D2RA03218J/cit5/1 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0045-4 – start-page: 2200329 year: 2022 ident: D2RA03218J/cit20/1 publication-title: Small Methods doi: 10.1002/smtd.202200329 – volume: 3 start-page: 663 year: 2003 ident: D2RA03218J/cit1/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2003.08.001 – volume: 525 start-page: 231121 year: 2022 ident: D2RA03218J/cit14/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231121 – volume: 136 start-page: B864 year: 1964 ident: D2RA03218J/cit30/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 6 start-page: 537 year: 2021 ident: D2RA03218J/cit24/1 publication-title: Mater. Test. doi: 10.1515/mt-2020-0088 – volume: 25 start-page: 104090 issue: 4 year: 2022 ident: D2RA03218J/cit35/1 publication-title: iScience doi: 10.1016/j.isci.2022.104090 – volume: 9 start-page: 1273 issue: 4 year: 2022 ident: D2RA03218J/cit3/1 publication-title: Mater. Horiz. doi: 10.1039/D1MH01918J – volume: 23 start-page: 3023 year: 2020 ident: D2RA03218J/cit15/1 publication-title: Philos. Mag. doi: 10.1080/14786435.2020.1799101 – volume: 131 start-page: 105890 year: 2021 ident: D2RA03218J/cit2/1 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.105890 – volume: 17 start-page: 10535 year: 2017 ident: D2RA03218J/cit12/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01510 – volume: 39 start-page: 19688 year: 2015 ident: D2RA03218J/cit25/1 publication-title: J. Mater. Chem. A – volume: 47 start-page: 23829 year: 2015 ident: D2RA03218J/cit26/1 publication-title: J. Mater. Chem. A – volume: 30 start-page: 4170 year: 2012 ident: D2RA03218J/cit21/1 publication-title: Adv. Mater. doi: 10.1002/adma.201104676 – volume: 2 start-page: 1243 year: 2019 ident: D2RA03218J/cit32/1 publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-06850-8 – volume: 29 start-page: 18423 issue: 13 year: 2022 ident: D2RA03218J/cit11/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-18591-7 – volume: 113 start-page: 233104 issue: 23 year: 2018 ident: D2RA03218J/cit28/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5053844 – volume: 55 start-page: 10734 issue: 15 year: 2021 ident: D2RA03218J/cit33/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02970 – volume: 16 start-page: 165203 year: 2013 ident: D2RA03218J/cit34/1 publication-title: Phys. Rev. B – volume: 5 start-page: 1024 year: 2017 ident: D2RA03218J/cit8/1 publication-title: Arch. Metall. Mater. – volume: 46 start-page: 10917 issue: 8 year: 2020 ident: D2RA03218J/cit17/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.01.106 – volume: 17 start-page: 10535 year: 2017 ident: D2RA03218J/cit37/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01510 – volume: 30 start-page: 2004209 issue: 46 year: 2020 ident: D2RA03218J/cit18/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004209 – volume: 275 start-page: 29 year: 2018 ident: D2RA03218J/cit38/1 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2018.03.010 – volume: 4 start-page: 1108 issue: 2 year: 2021 ident: D2RA03218J/cit6/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02124 – volume: 8 start-page: 19362 year: 2018 ident: D2RA03218J/cit22/1 publication-title: RSC Adv. doi: 10.1039/C8RA01146J – volume: 314 start-page: 121467 year: 2022 ident: D2RA03218J/cit13/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121467 – volume: 10 start-page: 6029 issue: 9 year: 2021 ident: D2RA03218J/cit16/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11448K – volume: 120 start-page: 4007 issue: 9 year: 2020 ident: D2RA03218J/cit29/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00600 – volume: 908 start-page: 164599 issue: 5 year: 2022 ident: D2RA03218J/cit39/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.164599 – volume: 11 start-page: 33188 issue: 36 year: 2019 ident: D2RA03218J/cit4/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07891 – volume: 19 start-page: 195211 year: 2016 ident: D2RA03218J/cit23/1 publication-title: Phys. Rev. B – volume: 10 start-page: 2067 year: 2016 ident: D2RA03218J/cit27/1 publication-title: Chem. Commun. – volume: 6 start-page: 1502588 issue: 11 year: 2016 ident: D2RA03218J/cit7/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502588 – volume: 45 start-page: 823 issue: 367 year: 1954 ident: D2RA03218J/cit40/1 publication-title: Philos. Mag. doi: 10.1080/14786440808520496 – volume: 4A start-page: A1133 year: 1965 ident: D2RA03218J/cit31/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 |
| SSID | ssj0000651261 |
| Score | 2.5606983 |
| Snippet | The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO
3
(X = Rb and K) based on Rb and K were studied... The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied... |
| SourceID | proquest crossref rsc |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 27517 |
| SubjectTerms | Density functional theory Ductile-brittle transition Energy gap Lattice parameters Light emitting diodes Mechanical properties Optical properties Perovskites Photovoltaic cells Plane waves Solar cells Zirconium |
| Title | Zirconium-based cubic-perovskite materials for photocatalytic solar cell applications: a DFT study |
| URI | https://www.proquest.com/docview/2721515768 https://www.proquest.com/docview/2728143089 |
| Volume | 12 |
| WOSCitedRecordID | wos000862630500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gQQviNtEYVRBICQUBZK4uZi3qVuFRlfQmqKKl8hxHKWjTbukqTYe-A_8Y46d68YexgMvUeQ4ieXzJf7Osf0dhN4QxgPLjnSNUBpp_ZDCmWvbWohtnRHKjUjGO76NnPHYnc3I107nd7UXZrtwksS9uCDr_2pqKANji62z_2Du-qFQAOdgdDiC2eF4K8N_n6fg487zpSZGqFBleTBnmtAD32YiVKsCRy3aIZcYruPVZiWDOJdCuzUTrq4qwvlqe2672BN9OPRaerSVrPdkUK0kqPn5JKbxzwI8J3lMl0saqp_jPKXLxsBnGxpI5jq5hFZ69HzL-bJBWZbRQt5gEq_yH7RenXPK4zJoewwuxEKdpu3ABfi8Yi6nFcs0wTUHyxWZWt7zG8qqH7TZAmKhxVX9bh2r2Pn510CgY6GjGpop1TGwmLNmuKum-Mdf_OF0NPK9o5n3dn2uiURkYsK-zMqyg-7A04lYJXjyqwnbAWMzTKnCWze1Er3F5EPzvqs0p_FddtIqsYwkMN5D9KD0PJSDAjGPUIcnj9G9QZXw7wkKriFHuY4cpUaOAshRriJHkchRBHKUNnI-KlQB3CgSN0_RdHjkDT5pZQoOjWFL32hGSCwgnNi2-w4BOhe4TO-zwLFMboc6NXDfYjiwdcoizFxqGJTY1OAkNKKIY1PHe2g3WSX8GVJcM2Rm5FAGPn4_MiPXCUxuAEGKbBoYIeuid1WP-azUpxdpUha-XCeBiX9onh7I3j3uotd13XWhynJjrf2q4_3yA8180xEkV3jZXfSqvgw9LfqHJnyVyzou-BG6S7poDwxWv6Ox7_Nb3PwC3W9wv492N2nOX6K7bLuZZ2kP7TgztydjQD2JsT9SDaYx |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zirconium-based+cubic-perovskite+materials+for+photocatalytic+solar+cell+applications%3A+a+DFT+study&rft.jtitle=RSC+advances&rft.au=Shahzad%2C+Muhammad+Khuram&rft.au=Mujtaba%2C+Syed+Taqveem&rft.au=Hussain%2C+Shoukat&rft.au=Rehman%2C+Jalil+Ur&rft.date=2022-09-22&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=12&rft.issue=42&rft.spage=27517&rft_id=info:doi/10.1039%2Fd2ra03218j&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |