Zirconium-based cubic-perovskite materials for photocatalytic solar cell applications: a DFT study

The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO 3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances Jg. 12; H. 42; S. 27517 - 27524
Hauptverfasser: Shahzad, Muhammad Khuram, Mujtaba, Syed Taqveem, Hussain, Shoukat, Rehman, Jalil Ur, Farooq, Muhammad Umair, Khan, Muhammad Aslam, Tahir, Muhammad Bilal, Mahmood, Muhammad Ali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Royal Society of Chemistry 22.09.2022
Schlagworte:
ISSN:2046-2069, 2046-2069
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO 3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO 3 and KZrO 3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO 3 and KZrO 3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO 3 and KZrO 3 present them as favorable materials for solar cell and LED applications. The structural, electronic, optical, and mechanical characteristics of cubic inorganic perovskites XZrO 3 (X = Rb and K) were studied using the Cambridge serial total energy package-based DFT.
AbstractList The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO 3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO 3 and KZrO 3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO 3 and KZrO 3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO 3 and KZrO 3 present them as favorable materials for solar cell and LED applications.
The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO3 and KZrO3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO3 and KZrO3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO3 and KZrO3 present them as favorable materials for solar cell and LED applications.
The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO 3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO 3 and KZrO 3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO 3 and KZrO 3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO 3 and KZrO 3 present them as favorable materials for solar cell and LED applications. The structural, electronic, optical, and mechanical characteristics of cubic inorganic perovskites XZrO 3 (X = Rb and K) were studied using the Cambridge serial total energy package-based DFT.
The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO3 and KZrO3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO3 and KZrO3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO3 and KZrO3 present them as favorable materials for solar cell and LED applications.The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied using Cambridge Serial Total Energy Package (CASTEP)-based density functional theory (DFT) via the ultrasoft pseudo-potential (USP) plane wave and generalized gradient approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The measured lattice parameters are 3.55 Å and 4.23 Å, and the band gaps of RbZrO3 and KZrO3 are 3.57 eV and 3.78 eV, respectively. Our results indicate that the compounds have indirect and wide bandgaps, making them useful for improving conductivity. It is observed that the compounds have anisotropic, ductile, and brittle natures. The anisotropic factor values of RbZrO3 and KZrO3 are 0.67067 and 0.87224, and their Poisson's ratios are 0.27356 and 0.25853, respectively. In terms of optical properties, they exhibited high optical absorption and conductivity and were active in the visible region for solar cell applications. These results indicate that they could be highly useful for light-emitting diodes (LEDs) and other reflection purposes owing to their indirect bandgap. The results of our investigation of RbZrO3 and KZrO3 present them as favorable materials for solar cell and LED applications.
Author Mujtaba, Syed Taqveem
Khan, Muhammad Aslam
Farooq, Muhammad Umair
Hussain, Shoukat
Rehman, Jalil Ur
Mahmood, Muhammad Ali
Tahir, Muhammad Bilal
Shahzad, Muhammad Khuram
AuthorAffiliation Khwaja Fareed University of Engineering and Information Technology
The Islamia University of Bahawalpur
Faisalabad Campus
Center of Theoretical and Computational Research
Department of Computing and Electronic Engineering
Institute of Physics
Riphah International University
Atlantic Technological University Sligo
Centre for Mathematical Modeling and Intelligent Systems for Health and Environment (MISHE)
Department of Physics
AuthorAffiliation_xml – name: Riphah International University
– name: Khwaja Fareed University of Engineering and Information Technology
– name: Atlantic Technological University Sligo
– name: Center of Theoretical and Computational Research
– name: Department of Physics
– name: The Islamia University of Bahawalpur
– name: Institute of Physics
– name: Centre for Mathematical Modeling and Intelligent Systems for Health and Environment (MISHE)
– name: Faisalabad Campus
– name: Department of Computing and Electronic Engineering
Author_xml – sequence: 1
  givenname: Muhammad Khuram
  surname: Shahzad
  fullname: Shahzad, Muhammad Khuram
– sequence: 2
  givenname: Syed Taqveem
  surname: Mujtaba
  fullname: Mujtaba, Syed Taqveem
– sequence: 3
  givenname: Shoukat
  surname: Hussain
  fullname: Hussain, Shoukat
– sequence: 4
  givenname: Jalil Ur
  surname: Rehman
  fullname: Rehman, Jalil Ur
– sequence: 5
  givenname: Muhammad Umair
  surname: Farooq
  fullname: Farooq, Muhammad Umair
– sequence: 6
  givenname: Muhammad Aslam
  surname: Khan
  fullname: Khan, Muhammad Aslam
– sequence: 7
  givenname: Muhammad Bilal
  surname: Tahir
  fullname: Tahir, Muhammad Bilal
– sequence: 8
  givenname: Muhammad Ali
  surname: Mahmood
  fullname: Mahmood, Muhammad Ali
BookMark eNptkU1Lw0AQhhepYK29eBcWvIgQ3Y_sNvFWWusHBUHqxUuYbDa4Nc3G3Y3Qf2_aikpxLjMwzzu8M3OMerWtNUKnlFxRwtPrgjkgnNFkeYD6jMQyYkSmvT_1ERp6vyRdSEGZpH2UvxqnbG3aVZSD1wVWbW5U1GhnP_27CRqvIGhnoPK4tA43bzZYBQGqdTAKe1uBw0pXFYamqUzXMbb2NxjwdLbAPrTF-gQdlp1cD7_zAL3MbheT-2j-dPcwGc8jxQUJES1SIUTMpYxHKWFxnigSq3wkmJYFAcpjoXguCaiSqwQohVQC1WlBy1JzRvgAXezmNs5-tNqHbGX8xhrU2rY-YyOW0JiTJO3Q8z10aVtXd-42FBVUjGTSUWRHKWe9d7rMlAnbBYMDU2WUZJu7Z1P2PN7e_bGTXO5JGmdW4Nb_w2c72Hn1w_0-kX8B6M6Oaw
CitedBy_id crossref_primary_10_1007_s40243_024_00276_5
crossref_primary_10_1016_j_jpcs_2025_112771
crossref_primary_10_1016_j_ijhydene_2024_07_044
crossref_primary_10_1016_j_ijhydene_2024_07_069
crossref_primary_10_1016_j_matchemphys_2024_129377
crossref_primary_10_5772_geet_30
crossref_primary_10_1088_1361_6641_aca5ad
crossref_primary_10_1016_j_cocom_2024_e00958
crossref_primary_10_1039_D5CC04675K
crossref_primary_10_1002_qua_27481
crossref_primary_10_1016_j_ijhydene_2024_09_305
crossref_primary_10_1016_j_mtcomm_2023_107767
crossref_primary_10_1016_j_est_2025_117957
crossref_primary_10_1016_j_ijhydene_2025_150644
crossref_primary_10_1002_adts_202500104
crossref_primary_10_1016_j_ijhydene_2024_10_324
crossref_primary_10_1016_j_ijhydene_2025_150723
crossref_primary_10_1016_j_jmgm_2025_109109
crossref_primary_10_1016_j_comptc_2023_114085
crossref_primary_10_1016_j_matchemphys_2025_131197
crossref_primary_10_1016_j_comptc_2024_114947
crossref_primary_10_1016_j_heliyon_2023_e13687
crossref_primary_10_1038_s41598_024_76062_0
crossref_primary_10_1016_j_comptc_2024_114889
crossref_primary_10_1515_zpch_2023_0348
crossref_primary_10_1016_j_mssp_2024_108547
crossref_primary_10_1016_j_ssc_2024_115721
crossref_primary_10_1039_D4SE01523A
crossref_primary_10_1038_s41598_024_70586_1
crossref_primary_10_1016_j_jpcs_2025_113176
crossref_primary_10_1016_j_ssc_2024_115448
crossref_primary_10_1016_j_cherd_2025_09_011
crossref_primary_10_1016_j_mssp_2024_109255
crossref_primary_10_1016_j_biortech_2023_128638
crossref_primary_10_1016_j_ijhydene_2024_06_403
crossref_primary_10_1016_j_physb_2024_416473
crossref_primary_10_1038_s41598_024_57341_2
crossref_primary_10_1088_1402_4896_ad1737
crossref_primary_10_1088_1402_4896_adc212
crossref_primary_10_1016_j_physb_2024_416116
crossref_primary_10_1016_j_jpcs_2023_111813
crossref_primary_10_1016_j_jpcs_2025_112729
crossref_primary_10_1039_D3RA00263B
crossref_primary_10_1016_j_heliyon_2023_e18407
crossref_primary_10_1016_j_inoche_2024_113811
crossref_primary_10_1007_s10904_025_03789_2
crossref_primary_10_1016_j_surfin_2024_105392
crossref_primary_10_1007_s10904_024_03518_1
Cites_doi 10.1039/D2CE00663D
10.1002/er.6858
10.1016/j.cjph.2016.08.010
10.1016/j.comptc.2022.113624
10.1038/s41557-018-0045-4
10.1002/smtd.202200329
10.1016/j.snb.2003.08.001
10.1016/j.jpowsour.2022.231121
10.1103/PhysRev.136.B864
10.1515/mt-2020-0088
10.1016/j.isci.2022.104090
10.1039/D1MH01918J
10.1080/14786435.2020.1799101
10.1016/j.mssp.2021.105890
10.1021/acs.inorgchem.7b01510
10.1002/adma.201104676
10.1007/s11664-018-06850-8
10.1007/s11356-022-18591-7
10.1063/1.5053844
10.1021/acs.est.1c02970
10.1016/j.ceramint.2020.01.106
10.1002/adfm.202004209
10.1016/j.ssc.2018.03.010
10.1021/acsaem.0c02124
10.1039/C8RA01146J
10.1016/j.apcatb.2022.121467
10.1039/D0TA11448K
10.1021/acs.chemrev.9b00600
10.1016/j.jallcom.2022.164599
10.1021/acsami.9b07891
10.1002/aenm.201502588
10.1080/14786440808520496
10.1103/PhysRev.140.A1133
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
This journal is © The Royal Society of Chemistry.
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
– notice: This journal is © The Royal Society of Chemistry.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1039/d2ra03218j
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 27524
ExternalDocumentID 10_1039_D2RA03218J
d2ra03218j
GroupedDBID -JG
0-7
0R~
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGMRB
AHGCF
AKBGW
APEMP
CITATION
M~E
PGMZT
7SR
8BQ
8FD
AGEGJ
JG9
7X8
ID FETCH-LOGICAL-c350t-1d95554366479024b8c04cb752e6d0a1345c3b60acf3c8a11a96a1e9d1ffe3203
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862630500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-2069
IngestDate Fri Sep 05 09:15:00 EDT 2025
Sun Jun 29 16:49:18 EDT 2025
Sat Nov 29 06:30:05 EST 2025
Tue Nov 18 21:30:50 EST 2025
Thu Oct 13 02:30:45 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-1d95554366479024b8c04cb752e6d0a1345c3b60acf3c8a11a96a1e9d1ffe3203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6086-1422
0000-0002-3368-6868
0000-0003-4651-2813
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2022/ra/d2ra03218j
PQID 2721515768
PQPubID 2047525
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_D2RA03218J
proquest_journals_2721515768
rsc_primary_d2ra03218j
proquest_miscellaneous_2728143089
crossref_primary_10_1039_D2RA03218J
PublicationCentury 2000
PublicationDate 2022-09-22
PublicationDateYYYYMMDD 2022-09-22
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-22
  day: 22
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle RSC advances
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Parthiban (D2RA03218J/cit27/1) 2016; 10
Liu (D2RA03218J/cit35/1) 2022; 25
Yang (D2RA03218J/cit17/1) 2020; 46
Wang (D2RA03218J/cit5/1) 2018; 10
Kada (D2RA03218J/cit9/1) 2016; 54
Gherriche (D2RA03218J/cit2/1) 2021; 131
Shahzad (D2RA03218J/cit22/1) 2018; 8
Thirumal (D2RA03218J/cit26/1) 2015; 47
Liu (D2RA03218J/cit33/1) 2021; 55
Pugh (D2RA03218J/cit40/1) 1954; 45
yi (D2RA03218J/cit34/1) 2013; 16
Xu (D2RA03218J/cit19/1) 2022; 46
Bidai (D2RA03218J/cit8/1) 2017; 5
Hohenberg (D2RA03218J/cit30/1) 1964; 136
Zhang (D2RA03218J/cit3/1) 2022; 9
Hoat (D2RA03218J/cit38/1) 2018; 275
Zhang (D2RA03218J/cit7/1) 2016; 6
Guechi (D2RA03218J/cit15/1) 2020; 23
Zhao (D2RA03218J/cit16/1) 2021; 10
Giles (D2RA03218J/cit25/1) 2015; 39
Deng (D2RA03218J/cit18/1) 2020; 30
Kohn (D2RA03218J/cit31/1) 1965; 4A
Huang (D2RA03218J/cit21/1) 2012; 30
Yu (D2RA03218J/cit13/1) 2022; 314
Li (D2RA03218J/cit28/1) 2018; 113
Yu (D2RA03218J/cit11/1) 2022; 29
Chen (D2RA03218J/cit4/1) 2019; 11
Wei (D2RA03218J/cit10/1) 2022; 24
Padmavathy (D2RA03218J/cit32/1) 2019; 2
Maho (D2RA03218J/cit6/1) 2021; 4
Hiramatsu (D2RA03218J/cit12/1) 2017; 17
Zoubir (D2RA03218J/cit24/1) 2021; 6
Robinson (D2RA03218J/cit29/1) 2020; 120
Lee (D2RA03218J/cit1/1) 2003; 3
Wang (D2RA03218J/cit14/1) 2022; 525
Shi (D2RA03218J/cit20/1) 2022
Huang (D2RA03218J/cit39/1) 2022; 908
ur Rehman (D2RA03218J/cit36/1) 2022; 1209
Hiramatsu (D2RA03218J/cit37/1) 2017; 17
Ling-yi (D2RA03218J/cit23/1) 2016; 19
References_xml – volume: 24
  start-page: 5014
  year: 2022
  ident: D2RA03218J/cit10/1
  publication-title: CrystEngComm
  doi: 10.1039/D2CE00663D
– volume: 46
  start-page: 1
  year: 2022
  ident: D2RA03218J/cit19/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6858
– volume: 54
  start-page: 678
  year: 2016
  ident: D2RA03218J/cit9/1
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2016.08.010
– volume: 1209
  start-page: 113624
  year: 2022
  ident: D2RA03218J/cit36/1
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2022.113624
– volume: 10
  start-page: 667
  issue: 6
  year: 2018
  ident: D2RA03218J/cit5/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0045-4
– start-page: 2200329
  year: 2022
  ident: D2RA03218J/cit20/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202200329
– volume: 3
  start-page: 663
  year: 2003
  ident: D2RA03218J/cit1/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2003.08.001
– volume: 525
  start-page: 231121
  year: 2022
  ident: D2RA03218J/cit14/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231121
– volume: 136
  start-page: B864
  year: 1964
  ident: D2RA03218J/cit30/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 6
  start-page: 537
  year: 2021
  ident: D2RA03218J/cit24/1
  publication-title: Mater. Test.
  doi: 10.1515/mt-2020-0088
– volume: 25
  start-page: 104090
  issue: 4
  year: 2022
  ident: D2RA03218J/cit35/1
  publication-title: iScience
  doi: 10.1016/j.isci.2022.104090
– volume: 9
  start-page: 1273
  issue: 4
  year: 2022
  ident: D2RA03218J/cit3/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH01918J
– volume: 23
  start-page: 3023
  year: 2020
  ident: D2RA03218J/cit15/1
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2020.1799101
– volume: 131
  start-page: 105890
  year: 2021
  ident: D2RA03218J/cit2/1
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.105890
– volume: 17
  start-page: 10535
  year: 2017
  ident: D2RA03218J/cit12/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01510
– volume: 39
  start-page: 19688
  year: 2015
  ident: D2RA03218J/cit25/1
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 23829
  year: 2015
  ident: D2RA03218J/cit26/1
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 4170
  year: 2012
  ident: D2RA03218J/cit21/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104676
– volume: 2
  start-page: 1243
  year: 2019
  ident: D2RA03218J/cit32/1
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-018-06850-8
– volume: 29
  start-page: 18423
  issue: 13
  year: 2022
  ident: D2RA03218J/cit11/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-18591-7
– volume: 113
  start-page: 233104
  issue: 23
  year: 2018
  ident: D2RA03218J/cit28/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5053844
– volume: 55
  start-page: 10734
  issue: 15
  year: 2021
  ident: D2RA03218J/cit33/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c02970
– volume: 16
  start-page: 165203
  year: 2013
  ident: D2RA03218J/cit34/1
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 1024
  year: 2017
  ident: D2RA03218J/cit8/1
  publication-title: Arch. Metall. Mater.
– volume: 46
  start-page: 10917
  issue: 8
  year: 2020
  ident: D2RA03218J/cit17/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.01.106
– volume: 17
  start-page: 10535
  year: 2017
  ident: D2RA03218J/cit37/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01510
– volume: 30
  start-page: 2004209
  issue: 46
  year: 2020
  ident: D2RA03218J/cit18/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004209
– volume: 275
  start-page: 29
  year: 2018
  ident: D2RA03218J/cit38/1
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2018.03.010
– volume: 4
  start-page: 1108
  issue: 2
  year: 2021
  ident: D2RA03218J/cit6/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02124
– volume: 8
  start-page: 19362
  year: 2018
  ident: D2RA03218J/cit22/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01146J
– volume: 314
  start-page: 121467
  year: 2022
  ident: D2RA03218J/cit13/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121467
– volume: 10
  start-page: 6029
  issue: 9
  year: 2021
  ident: D2RA03218J/cit16/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11448K
– volume: 120
  start-page: 4007
  issue: 9
  year: 2020
  ident: D2RA03218J/cit29/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00600
– volume: 908
  start-page: 164599
  issue: 5
  year: 2022
  ident: D2RA03218J/cit39/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.164599
– volume: 11
  start-page: 33188
  issue: 36
  year: 2019
  ident: D2RA03218J/cit4/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07891
– volume: 19
  start-page: 195211
  year: 2016
  ident: D2RA03218J/cit23/1
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 2067
  year: 2016
  ident: D2RA03218J/cit27/1
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1502588
  issue: 11
  year: 2016
  ident: D2RA03218J/cit7/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502588
– volume: 45
  start-page: 823
  issue: 367
  year: 1954
  ident: D2RA03218J/cit40/1
  publication-title: Philos. Mag.
  doi: 10.1080/14786440808520496
– volume: 4A
  start-page: A1133
  year: 1965
  ident: D2RA03218J/cit31/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
SSID ssj0000651261
Score 2.5606983
Snippet The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO 3 (X = Rb and K) based on Rb and K were studied...
The structural, electronic, optical, and mechanical characteristics of the cubic inorganic perovskites XZrO3 (X = Rb and K) based on Rb and K were studied...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27517
SubjectTerms Density functional theory
Ductile-brittle transition
Energy gap
Lattice parameters
Light emitting diodes
Mechanical properties
Optical properties
Perovskites
Photovoltaic cells
Plane waves
Solar cells
Zirconium
Title Zirconium-based cubic-perovskite materials for photocatalytic solar cell applications: a DFT study
URI https://www.proquest.com/docview/2721515768
https://www.proquest.com/docview/2728143089
Volume 12
WOSCitedRecordID wos000862630500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gQQviNtEYVRBICQUBZK4uZi3qVuFRlfQmqKKl8hxHKWjTbukqTYe-A_8Y46d68YexgMvUeQ4ieXzJf7Osf0dhN4QxgPLjnSNUBpp_ZDCmWvbWohtnRHKjUjGO76NnPHYnc3I107nd7UXZrtwksS9uCDr_2pqKANji62z_2Du-qFQAOdgdDiC2eF4K8N_n6fg487zpSZGqFBleTBnmtAD32YiVKsCRy3aIZcYruPVZiWDOJdCuzUTrq4qwvlqe2672BN9OPRaerSVrPdkUK0kqPn5JKbxzwI8J3lMl0saqp_jPKXLxsBnGxpI5jq5hFZ69HzL-bJBWZbRQt5gEq_yH7RenXPK4zJoewwuxEKdpu3ABfi8Yi6nFcs0wTUHyxWZWt7zG8qqH7TZAmKhxVX9bh2r2Pn510CgY6GjGpop1TGwmLNmuKum-Mdf_OF0NPK9o5n3dn2uiURkYsK-zMqyg-7A04lYJXjyqwnbAWMzTKnCWze1Er3F5EPzvqs0p_FddtIqsYwkMN5D9KD0PJSDAjGPUIcnj9G9QZXw7wkKriFHuY4cpUaOAshRriJHkchRBHKUNnI-KlQB3CgSN0_RdHjkDT5pZQoOjWFL32hGSCwgnNi2-w4BOhe4TO-zwLFMboc6NXDfYjiwdcoizFxqGJTY1OAkNKKIY1PHe2g3WSX8GVJcM2Rm5FAGPn4_MiPXCUxuAEGKbBoYIeuid1WP-azUpxdpUha-XCeBiX9onh7I3j3uotd13XWhynJjrf2q4_3yA8180xEkV3jZXfSqvgw9LfqHJnyVyzou-BG6S7poDwxWv6Ox7_Nb3PwC3W9wv492N2nOX6K7bLuZZ2kP7TgztydjQD2JsT9SDaYx
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zirconium-based+cubic-perovskite+materials+for+photocatalytic+solar+cell+applications%3A+a+DFT+study&rft.jtitle=RSC+advances&rft.au=Shahzad%2C+Muhammad+Khuram&rft.au=Mujtaba%2C+Syed+Taqveem&rft.au=Hussain%2C+Shoukat&rft.au=Rehman%2C+Jalil+Ur&rft.date=2022-09-22&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=12&rft.issue=42&rft.spage=27517&rft_id=info:doi/10.1039%2Fd2ra03218j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon