jMetal: A Java framework for multi-objective optimization

This paper describes jMetal, an object-oriented Java-based framework aimed at the development, experimentation, and study of metaheuristics for solving multi-objective optimization problems. jMetal includes a number of classic and modern state-of-the-art optimizers, a wide set of benchmark problems,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in engineering software (1992) Jg. 42; H. 10; S. 760 - 771
Hauptverfasser: Durillo, Juan J., Nebro, Antonio J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2011
Schlagworte:
ISSN:0965-9978
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper describes jMetal, an object-oriented Java-based framework aimed at the development, experimentation, and study of metaheuristics for solving multi-objective optimization problems. jMetal includes a number of classic and modern state-of-the-art optimizers, a wide set of benchmark problems, and a set of well-known quality indicators to assess the performance of the algorithms. The framework also provides support to carry out full experimental studies, which can be configured and executed by using jMetal’s graphical interface. Other features include the automatic generation of statistical information of the obtained results, and taking advantage of the current availability of multi-core processors to speed-up the running time of the experiments. In this work, we include two case studies to illustrate the use of jMetal in both solving a problem with a metaheuristic and designing and performing an experimental study.
AbstractList This paper describes jMetal, an object-oriented Java-based framework aimed at the development, experimentation, and study of metaheuristics for solving multi-objective optimization problems. jMetal includes a number of classic and modern state-of-the-art optimizers, a wide set of benchmark problems, and a set of well-known quality indicators to assess the performance of the algorithms. The framework also provides support to carry out full experimental studies, which can be configured and executed by using jMetal's graphical interface. Other features include the automatic generation of statistical information of the obtained results, and taking advantage of the current availability of multi-core processors to speed-up the running time of the experiments. In this work, we include two case studies to illustrate the use of jMetal in both solving a problem with a metaheuristic and designing and performing an experimental study.
Author Nebro, Antonio J.
Durillo, Juan J.
Author_xml – sequence: 1
  givenname: Juan J.
  surname: Durillo
  fullname: Durillo, Juan J.
  email: durillo@lcc.uma.es
– sequence: 2
  givenname: Antonio J.
  surname: Nebro
  fullname: Nebro, Antonio J.
  email: antonio@lcc.uma.es
BookMark eNqNkMtOwzAQRb0oEm3hH7JjlTDOo4lZIJWKp4rYwNpy7DFySOJiu0Hw9aQUCYkNrEYa3Xs0c2Zk0tseCYkoJBTo4rRJhBqwf_ZWhyQFShMoEqD5hEyBLYqYsbI6JDPvGxi3kNIpYc09BtGeRcvoTgwi0k50-GbdS6Sti7ptG0xs6wZlMANGdhNMZz5EMLY_IgdatB6Pv-ecPF1dPq5u4vXD9e1quY5lVkCIqdQAGQOdQq1KrbGuMM-pkJACqAqwVLqs0lrLnGYq16BKOV4uFpKJKsuzbE5O9tyNs69b9IF3xktsW9Gj3XrOoGRFnrN0TFb7pHTWe4eab5zphHvnFPhOEG_4jyC-E8Sh4KOKsXr-qypN-HozOGHa_wAu9gAcVQwGHffSYC9RGTfK48qavyGfTp6NhA
CitedBy_id crossref_primary_10_1002_spe_2342
crossref_primary_10_1016_j_jss_2018_12_015
crossref_primary_10_1016_j_tcs_2022_05_008
crossref_primary_10_1016_j_inffus_2014_10_003
crossref_primary_10_1016_j_asoc_2016_04_034
crossref_primary_10_1109_TEVC_2015_2512930
crossref_primary_10_1007_s12597_024_00899_2
crossref_primary_10_1016_j_future_2013_07_005
crossref_primary_10_1016_j_asoc_2016_04_030
crossref_primary_10_1016_j_advengsoft_2020_102959
crossref_primary_10_1002_spe_2459
crossref_primary_10_1080_0305215X_2016_1271661
crossref_primary_10_1016_j_asoc_2017_05_004
crossref_primary_10_1109_ACCESS_2021_3115848
crossref_primary_10_1007_s00521_023_08286_6
crossref_primary_10_3390_app14198941
crossref_primary_10_1016_j_ejor_2015_06_071
crossref_primary_10_1002_spe_2690
crossref_primary_10_1007_s00500_015_1830_2
crossref_primary_10_1007_s12293_015_0151_4
crossref_primary_10_1016_j_autcon_2020_103252
crossref_primary_10_1080_0305215X_2011_641542
crossref_primary_10_1007_s00500_015_1767_5
crossref_primary_10_1007_s10489_020_01788_z
crossref_primary_10_1109_ACCESS_2021_3111130
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1007_s10852_014_9255_y
crossref_primary_10_1007_s40534_018_0175_9
crossref_primary_10_3390_mca27060103
crossref_primary_10_1109_TSE_2017_2757486
crossref_primary_10_1088_1748_0221_17_04_C04038
crossref_primary_10_1109_ACCESS_2025_3609403
crossref_primary_10_1016_j_neucom_2020_01_114
crossref_primary_10_1109_TSE_2024_3388910
crossref_primary_10_3390_app12199627
crossref_primary_10_1109_JIOT_2019_2892940
crossref_primary_10_1016_j_future_2018_10_046
crossref_primary_10_1016_j_advengsoft_2017_07_001
crossref_primary_10_1016_j_asoc_2024_111232
crossref_primary_10_1109_TCC_2024_3450858
crossref_primary_10_1111_itor_13407
crossref_primary_10_1002_mcda_1604
crossref_primary_10_3390_math10050688
crossref_primary_10_1016_j_ins_2021_05_037
crossref_primary_10_1111_nrm_12256
crossref_primary_10_1016_j_protcy_2012_09_064
crossref_primary_10_1002_spe_2594
crossref_primary_10_1007_s12021_016_9309_6
crossref_primary_10_1007_s11721_019_00170_1
crossref_primary_10_1016_j_future_2018_10_037
crossref_primary_10_1038_srep34107
crossref_primary_10_1109_TEVC_2021_3103386
crossref_primary_10_1016_j_asoc_2013_06_016
crossref_primary_10_1109_TSE_2017_2774829
crossref_primary_10_1016_j_jhydrol_2025_133044
crossref_primary_10_1016_j_knosys_2020_106717
crossref_primary_10_1016_j_procs_2015_02_152
crossref_primary_10_1145_3408301
crossref_primary_10_1016_j_asoc_2022_109622
crossref_primary_10_1061__ASCE_CP_1943_5487_0000643
crossref_primary_10_1109_TEVC_2019_2949841
crossref_primary_10_1016_j_ins_2017_03_026
crossref_primary_10_1016_j_heliyon_2021_e07017
crossref_primary_10_1145_3241742
crossref_primary_10_3390_math12233733
crossref_primary_10_1109_ACCESS_2018_2832074
crossref_primary_10_1016_j_jss_2017_02_044
crossref_primary_10_1016_j_knosys_2018_05_015
crossref_primary_10_1109_TCYB_2016_2621008
crossref_primary_10_1177_1687814018765535
crossref_primary_10_1109_TEVC_2017_2778560
crossref_primary_10_1002_for_3259
crossref_primary_10_1016_j_cmpb_2025_108846
crossref_primary_10_1007_s11704_022_1390_4
crossref_primary_10_1007_s00158_015_1291_3
crossref_primary_10_1109_TSE_2022_3171404
crossref_primary_10_1016_j_ins_2016_08_003
crossref_primary_10_1016_j_swevo_2021_100980
crossref_primary_10_1007_s10462_019_09719_2
crossref_primary_10_1109_TCYB_2018_2849403
crossref_primary_10_1016_j_advengsoft_2016_04_001
crossref_primary_10_1109_TSE_2018_2803055
crossref_primary_10_1016_j_ijpe_2018_04_020
crossref_primary_10_1145_3204459
crossref_primary_10_1016_j_cl_2018_04_003
crossref_primary_10_1007_s10589_015_9815_8
crossref_primary_10_3390_app14114878
crossref_primary_10_1016_j_cmpb_2020_105432
crossref_primary_10_1007_s10489_017_0929_9
crossref_primary_10_1109_TSMC_2022_3221466
crossref_primary_10_1016_j_ejor_2015_03_005
crossref_primary_10_4018_ijsir_2015010102
crossref_primary_10_1007_s10664_017_9500_x
crossref_primary_10_1016_j_cie_2019_106076
crossref_primary_10_1109_TEVC_2020_2991040
crossref_primary_10_1109_TSE_2017_2650914
crossref_primary_10_1109_ACCESS_2017_2788700
crossref_primary_10_1109_TEVC_2019_2927526
crossref_primary_10_1016_j_asoc_2019_03_050
crossref_primary_10_1109_TCYB_2014_2367526
crossref_primary_10_1016_j_aei_2012_06_001
crossref_primary_10_1016_j_eswa_2023_119895
crossref_primary_10_1109_TIFS_2021_3096029
crossref_primary_10_1007_s00521_021_05805_1
crossref_primary_10_1016_j_amc_2014_09_013
crossref_primary_10_1016_j_asoc_2019_106027
crossref_primary_10_1016_j_swevo_2021_100841
crossref_primary_10_1016_j_swevo_2015_01_004
crossref_primary_10_1007_s10098_016_1173_4
crossref_primary_10_1016_j_jclepro_2013_07_060
crossref_primary_10_1016_j_jcomc_2025_100647
crossref_primary_10_1016_j_knosys_2014_06_002
crossref_primary_10_1016_j_eswa_2013_05_035
crossref_primary_10_1016_j_jss_2014_12_041
crossref_primary_10_1109_ACCESS_2020_2972076
crossref_primary_10_1016_j_swevo_2021_100960
crossref_primary_10_1016_j_enbuild_2015_09_011
crossref_primary_10_1016_j_ins_2019_02_054
crossref_primary_10_1016_j_compbiomed_2017_03_028
crossref_primary_10_1016_j_aei_2018_02_002
crossref_primary_10_1016_j_asoc_2014_08_069
crossref_primary_10_3233_ICA_210659
crossref_primary_10_3390_math8112018
crossref_primary_10_1109_TEVC_2019_2940828
crossref_primary_10_1111_exsy_12672
crossref_primary_10_1016_j_asoc_2021_108151
crossref_primary_10_1016_j_asoc_2024_111897
crossref_primary_10_1016_j_cor_2011_11_014
crossref_primary_10_1007_s00500_015_1842_y
crossref_primary_10_1007_s10898_019_00782_1
crossref_primary_10_1016_j_jss_2016_09_045
crossref_primary_10_1080_0305215X_2011_641718
crossref_primary_10_1057_s41274_017_0210_y
crossref_primary_10_1007_s12065_021_00644_4
crossref_primary_10_1016_j_asoc_2020_106851
crossref_primary_10_1016_j_jmsy_2022_05_002
crossref_primary_10_1007_s13748_017_0116_6
crossref_primary_10_1016_j_eswa_2019_03_052
crossref_primary_10_1111_itor_12294
crossref_primary_10_1109_TSMC_2021_3131312
crossref_primary_10_1007_s11590_020_01690_0
crossref_primary_10_1109_ACCESS_2020_3022866
crossref_primary_10_1007_s00500_018_3065_5
crossref_primary_10_1007_s00158_013_1025_3
crossref_primary_10_1007_s13369_020_04536_0
crossref_primary_10_1109_TIE_2017_2711540
crossref_primary_10_1002_mmce_22335
crossref_primary_10_1109_TCC_2014_2300855
crossref_primary_10_1109_TEVC_2014_2339823
crossref_primary_10_1016_j_asoc_2019_105757
crossref_primary_10_1016_j_renene_2015_09_003
crossref_primary_10_1287_ijoc_2013_0580
crossref_primary_10_1080_0305215X_2019_1618289
crossref_primary_10_1016_j_jocs_2022_101858
crossref_primary_10_1109_TCYB_2015_2404806
crossref_primary_10_1109_TIE_2016_2598674
crossref_primary_10_1155_2018_5865168
crossref_primary_10_1016_j_csi_2021_103546
crossref_primary_10_1080_10556788_2020_1808977
crossref_primary_10_1007_s11227_020_03183_4
crossref_primary_10_1016_j_enconman_2015_04_077
crossref_primary_10_1177_1178622120975829
crossref_primary_10_2166_hydro_2014_204
crossref_primary_10_1016_j_cie_2022_108252
crossref_primary_10_1109_TSE_2017_2777831
crossref_primary_10_1007_s10489_014_0555_8
crossref_primary_10_1007_s13748_019_00198_8
crossref_primary_10_1016_j_asoc_2020_106712
crossref_primary_10_15388_25_INFOR603
crossref_primary_10_1016_j_asoc_2014_10_049
crossref_primary_10_1016_j_ejor_2019_07_073
crossref_primary_10_1109_TETCI_2017_2699193
crossref_primary_10_1287_ijoc_2020_0966
crossref_primary_10_1016_j_jocs_2024_102361
crossref_primary_10_1016_j_advengsoft_2014_07_002
crossref_primary_10_1007_s10664_022_10170_1
crossref_primary_10_1016_j_envsoft_2022_105316
crossref_primary_10_1016_j_ins_2020_02_056
crossref_primary_10_1016_j_mechmachtheory_2019_06_023
crossref_primary_10_1016_j_agwat_2019_105857
crossref_primary_10_3389_fnbot_2023_1196683
crossref_primary_10_3390_mca30020045
crossref_primary_10_1109_TSC_2013_2295791
crossref_primary_10_1016_j_asoc_2022_109478
crossref_primary_10_1371_journal_pone_0126199
crossref_primary_10_21303_2461_4262_2021_001857
crossref_primary_10_1109_TEVC_2016_2587808
crossref_primary_10_1016_j_engappai_2022_105249
crossref_primary_10_1007_s00500_023_07994_4
crossref_primary_10_1016_j_asoc_2018_10_039
crossref_primary_10_1016_j_compbiolchem_2019_05_003
crossref_primary_10_1016_j_eswa_2022_118075
crossref_primary_10_1162_EVCO_a_00104
crossref_primary_10_1016_j_ins_2020_03_093
crossref_primary_10_1016_j_asoc_2015_11_005
crossref_primary_10_1109_TEVC_2023_3287399
crossref_primary_10_1109_ACCESS_2018_2875122
crossref_primary_10_1016_j_chaos_2020_109738
crossref_primary_10_1016_j_cor_2014_02_013
crossref_primary_10_1007_s12065_022_00761_8
crossref_primary_10_1007_s10586_012_0220_0
crossref_primary_10_1007_s12065_022_00784_1
crossref_primary_10_1007_s40819_016_0156_9
crossref_primary_10_1145_3571853
crossref_primary_10_1007_s10710_018_9341_4
crossref_primary_10_1007_s10898_016_0420_x
crossref_primary_10_1155_2015_631872
crossref_primary_10_1016_j_jss_2019_03_012
crossref_primary_10_4018_IJAMC_2019100102
crossref_primary_10_1016_j_engappai_2016_10_013
crossref_primary_10_1007_s42979_021_00511_0
crossref_primary_10_1016_j_eswa_2019_04_056
crossref_primary_10_1111_exsy_12364
crossref_primary_10_1016_j_asoc_2024_111960
crossref_primary_10_1016_j_ecolmodel_2014_08_019
crossref_primary_10_1162_EVCO_a_00163
crossref_primary_10_1007_s10586_013_0325_0
crossref_primary_10_1287_ijoc_2023_0250
crossref_primary_10_1109_TSE_2017_2778711
crossref_primary_10_1371_journal_pone_0153507
crossref_primary_10_1016_j_jss_2013_03_081
crossref_primary_10_1109_TBDATA_2017_2782785
crossref_primary_10_1155_2016_9358358
crossref_primary_10_1162_EVCO_a_00175
crossref_primary_10_1016_j_ifacol_2015_08_114
crossref_primary_10_1016_j_knosys_2020_106619
crossref_primary_10_1109_LRA_2020_2972894
crossref_primary_10_1109_ACCESS_2018_2876273
crossref_primary_10_1109_MS_2020_3039694
crossref_primary_10_1016_j_eswa_2013_01_008
crossref_primary_10_1007_s10270_017_0610_0
crossref_primary_10_1016_j_asoc_2015_06_022
crossref_primary_10_1109_ACCESS_2023_3310825
crossref_primary_10_1111_itor_12590
crossref_primary_10_1016_j_ins_2022_03_020
crossref_primary_10_1155_2015_463230
crossref_primary_10_1007_s00500_015_1736_z
crossref_primary_10_1016_j_asoc_2015_06_020
crossref_primary_10_1109_ACCESS_2021_3066323
crossref_primary_10_1109_TEVC_2020_3011829
crossref_primary_10_1109_TCYB_2020_2968301
crossref_primary_10_3390_electronics10111232
crossref_primary_10_1016_j_jss_2019_02_028
crossref_primary_10_1007_s00271_021_00724_4
crossref_primary_10_1007_s00500_015_1810_6
crossref_primary_10_1007_s10664_022_10127_4
crossref_primary_10_1007_s41109_017_0058_8
crossref_primary_10_1016_j_asoc_2020_106760
crossref_primary_10_1016_j_knosys_2018_02_022
crossref_primary_10_1109_ACCESS_2018_2869732
crossref_primary_10_1524_auto_2012_1033
crossref_primary_10_1016_j_asoc_2017_01_038
crossref_primary_10_1007_s12065_021_00698_4
crossref_primary_10_1016_j_amc_2013_05_027
crossref_primary_10_1016_j_asoc_2016_08_024
crossref_primary_10_3390_molecules200610154
crossref_primary_10_1007_s00500_023_08505_1
crossref_primary_10_1016_j_cie_2023_109815
crossref_primary_10_1038_cddis_2015_393
crossref_primary_10_1109_TCYB_2014_2307319
crossref_primary_10_1007_s13198_016_0467_6
crossref_primary_10_1109_TEVC_2017_2704782
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_1007_s10489_021_02669_9
crossref_primary_10_1134_S0361768820080150
crossref_primary_10_1016_j_eswa_2023_120138
crossref_primary_10_1007_s10515_018_0235_8
crossref_primary_10_1016_j_cie_2018_05_018
crossref_primary_10_1108_AAOUJ_01_2017_0012
crossref_primary_10_4018_jkss_2013040101
crossref_primary_10_1080_0952813X_2015_1132260
crossref_primary_10_1186_s12918_015_0175_x
crossref_primary_10_1016_j_simpat_2015_07_001
crossref_primary_10_1145_3176644
crossref_primary_10_1007_s10732_017_9323_3
crossref_primary_10_1016_j_cor_2016_08_012
crossref_primary_10_1016_j_eswa_2023_122009
crossref_primary_10_1145_2790303
crossref_primary_10_1016_j_sysarc_2015_02_002
crossref_primary_10_1016_j_asoc_2019_105911
crossref_primary_10_1016_j_endm_2018_07_013
crossref_primary_10_1007_s10479_016_2221_5
crossref_primary_10_1016_j_jss_2019_03_064
crossref_primary_10_1007_s00500_019_04423_3
crossref_primary_10_1016_j_asoc_2015_06_033
crossref_primary_10_1016_j_cie_2016_12_020
crossref_primary_10_3390_math8050785
crossref_primary_10_1016_j_sorms_2015_08_001
crossref_primary_10_4018_IJDST_2019040103
crossref_primary_10_1007_s00500_015_1891_2
crossref_primary_10_1016_j_neucom_2012_12_057
crossref_primary_10_1016_j_jss_2014_08_024
crossref_primary_10_1109_TEVC_2017_2785346
crossref_primary_10_1002_cpe_6362
crossref_primary_10_1002_smr_1777
crossref_primary_10_1016_j_ejor_2025_06_012
crossref_primary_10_1016_j_cor_2023_106489
crossref_primary_10_1007_s10489_021_02918_x
crossref_primary_10_1016_j_eswa_2014_03_051
crossref_primary_10_3390_pr12050869
crossref_primary_10_1007_s00521_023_09145_0
crossref_primary_10_1111_coin_12439
crossref_primary_10_1007_s42979_020_00265_1
crossref_primary_10_1007_s10664_022_10151_4
crossref_primary_10_1016_j_micpro_2020_103159
crossref_primary_10_1109_TII_2017_2788019
crossref_primary_10_1177_1548512917712614
crossref_primary_10_1109_ACCESS_2020_2999081
crossref_primary_10_3390_math9080853
crossref_primary_10_1145_3400031
crossref_primary_10_1016_j_asoc_2020_106560
crossref_primary_10_3390_atmos11121293
crossref_primary_10_1016_j_ejor_2019_01_039
crossref_primary_10_1016_j_jag_2024_103832
crossref_primary_10_1109_TCYB_2018_2872803
crossref_primary_10_1109_ACCESS_2020_3014871
crossref_primary_10_1016_j_engappai_2014_10_020
crossref_primary_10_1016_j_engappai_2013_06_002
crossref_primary_10_1016_j_eswa_2019_113101
crossref_primary_10_1016_j_knosys_2015_05_029
crossref_primary_10_1016_j_asoc_2017_11_041
crossref_primary_10_1007_s10845_016_1291_1
crossref_primary_10_1016_j_ins_2021_09_007
crossref_primary_10_1016_j_compeleceng_2015_02_006
crossref_primary_10_1016_j_asoc_2016_07_026
crossref_primary_10_1016_j_protcy_2015_02_028
crossref_primary_10_1109_TEVC_2015_2420112
crossref_primary_10_1002_cpe_4156
crossref_primary_10_1016_j_asoc_2019_105707
crossref_primary_10_1109_TEVC_2019_2909636
crossref_primary_10_1145_3725855
crossref_primary_10_1007_s12652_021_03482_5
crossref_primary_10_1016_j_ces_2013_08_013
crossref_primary_10_1109_TEVC_2019_2958921
crossref_primary_10_1155_2023_2005465
crossref_primary_10_1002_cpe_70133
crossref_primary_10_1109_THMS_2016_2573830
crossref_primary_10_1016_j_engappai_2024_108593
crossref_primary_10_1016_j_eswa_2021_115184
crossref_primary_10_1155_2016_5413520
crossref_primary_10_1016_j_scico_2014_06_016
crossref_primary_10_1016_j_asoc_2016_07_059
crossref_primary_10_1109_TPDS_2020_2989869
crossref_primary_10_1016_j_asoc_2017_03_041
crossref_primary_10_1016_j_jss_2021_110967
crossref_primary_10_1016_j_enbuild_2016_06_043
crossref_primary_10_1016_j_asoc_2016_06_013
crossref_primary_10_1016_j_cma_2024_116964
crossref_primary_10_1016_j_autcon_2021_104084
crossref_primary_10_1016_j_asoc_2018_11_041
crossref_primary_10_1016_j_asoc_2016_07_040
crossref_primary_10_1007_s00500_013_1086_7
crossref_primary_10_1109_TCAD_2015_2501299
crossref_primary_10_1109_TSE_2018_2882176
crossref_primary_10_26634_jcc_2_4_4907
crossref_primary_10_1007_s00500_014_1308_7
crossref_primary_10_1016_j_softx_2024_101640
crossref_primary_10_1109_TEVC_2015_2459718
crossref_primary_10_1109_TSE_2018_2868082
crossref_primary_10_3390_en12071270
crossref_primary_10_1016_j_patrec_2020_02_021
crossref_primary_10_1145_3464939
crossref_primary_10_1016_j_swevo_2019_100598
crossref_primary_10_1007_s10589_014_9709_1
crossref_primary_10_1109_TIA_2022_3217029
crossref_primary_10_1109_TCYB_2017_2772250
crossref_primary_10_1111_itor_13169
crossref_primary_10_1016_j_eswa_2019_113134
crossref_primary_10_1007_s10732_024_09544_z
crossref_primary_10_1016_j_engappai_2019_02_003
crossref_primary_10_1080_0305215X_2017_1337756
crossref_primary_10_1007_s00500_023_09049_0
crossref_primary_10_1016_j_asoc_2019_105977
crossref_primary_10_1016_j_ejor_2021_05_042
crossref_primary_10_1016_j_asoc_2017_03_012
crossref_primary_10_1109_TEVC_2016_2549267
crossref_primary_10_3233_JIFS_169212
crossref_primary_10_1007_s10586_020_03205_z
crossref_primary_10_1109_TSE_2018_2874648
crossref_primary_10_1002_cpe_4044
crossref_primary_10_1016_j_enconman_2025_120069
crossref_primary_10_1016_j_infsof_2021_106565
crossref_primary_10_1016_j_swevo_2017_04_005
crossref_primary_10_15388_24_INFOR560
crossref_primary_10_1016_j_asoc_2018_04_009
crossref_primary_10_1016_j_infsof_2021_106568
crossref_primary_10_1007_s00500_020_05411_8
crossref_primary_10_1016_j_ins_2016_05_026
crossref_primary_10_1109_TEVC_2015_2443001
crossref_primary_10_1080_00207721_2013_823526
crossref_primary_10_1145_3373417
crossref_primary_10_1002_int_21892
crossref_primary_10_1016_j_eswa_2017_02_014
crossref_primary_10_3138_infor_50_4_163
crossref_primary_10_1109_ACCESS_2022_3169596
crossref_primary_10_1016_j_asoc_2014_03_045
crossref_primary_10_1016_j_psep_2022_12_005
crossref_primary_10_1016_j_compbiomed_2025_110632
crossref_primary_10_1016_j_procs_2015_04_105
crossref_primary_10_1016_j_infsof_2019_05_013
crossref_primary_10_1016_j_ins_2017_08_078
crossref_primary_10_1007_s10898_014_0213_z
crossref_primary_10_1007_s13042_020_01120_8
crossref_primary_10_1109_ACCESS_2020_2990567
crossref_primary_10_3390_app12031491
crossref_primary_10_1016_j_asoc_2016_06_043
crossref_primary_10_1007_s00521_022_08095_3
crossref_primary_10_1007_s10664_019_09761_2
crossref_primary_10_1109_TSE_2015_2510633
crossref_primary_10_1016_j_jnca_2017_03_019
crossref_primary_10_31908_19098367_2014
crossref_primary_10_3390_app10010251
crossref_primary_10_1371_journal_pone_0155176
crossref_primary_10_1016_j_eswa_2018_04_012
crossref_primary_10_1109_TEVC_2018_2879078
crossref_primary_10_1016_j_compchemeng_2017_02_017
crossref_primary_10_1016_j_enbuild_2023_113476
crossref_primary_10_1007_s00158_017_1764_7
crossref_primary_10_3390_sym14010106
crossref_primary_10_1145_3643751
crossref_primary_10_1016_j_asoc_2021_107794
crossref_primary_10_1016_j_jpdc_2013_12_004
crossref_primary_10_1007_s10515_019_00266_2
crossref_primary_10_1007_s00500_018_3269_8
crossref_primary_10_1109_ACCESS_2023_3272335
crossref_primary_10_1038_s41598_023_31123_8
crossref_primary_10_1007_s12293_021_00333_w
crossref_primary_10_1080_0305215X_2019_1651310
crossref_primary_10_1016_j_asoc_2018_06_050
crossref_primary_10_1007_s10586_015_0478_0
crossref_primary_10_1016_j_jss_2018_07_076
crossref_primary_10_1016_j_procs_2015_08_625
crossref_primary_10_1007_s10898_014_0214_y
crossref_primary_10_1016_j_future_2020_02_020
crossref_primary_10_3390_w11102018
crossref_primary_10_3390_pr8050508
crossref_primary_10_1016_j_advengsoft_2016_06_004
crossref_primary_10_1007_s10664_021_10049_7
crossref_primary_10_1016_j_swevo_2018_02_004
crossref_primary_10_1016_j_heliyon_2020_e03670
crossref_primary_10_1007_s10664_020_09808_9
crossref_primary_10_1007_s40815_020_00928_4
crossref_primary_10_1109_TEVC_2016_2519378
crossref_primary_10_1016_j_ejor_2024_06_001
crossref_primary_10_1002_nag_3059
crossref_primary_10_1016_j_swevo_2021_100888
crossref_primary_10_1109_TSMC_2017_2654301
crossref_primary_10_1145_3375636
crossref_primary_10_1007_s11721_023_00227_2
crossref_primary_10_1109_TASE_2020_3011428
crossref_primary_10_1155_2017_8696985
crossref_primary_10_1016_j_swevo_2018_03_011
crossref_primary_10_1016_j_jnca_2018_04_005
crossref_primary_10_1016_j_ins_2021_12_067
crossref_primary_10_1016_j_knosys_2024_112666
crossref_primary_10_3390_app10196653
crossref_primary_10_1016_j_asoc_2021_107533
crossref_primary_10_1016_j_advengsoft_2019_04_007
crossref_primary_10_1109_TSC_2021_3094322
crossref_primary_10_1109_TCYB_2021_3098186
crossref_primary_10_1016_j_patrec_2014_05_008
crossref_primary_10_1145_3514233
crossref_primary_10_1186_s13638_016_0651_z
crossref_primary_10_1016_j_asoc_2015_04_061
crossref_primary_10_1080_0305215X_2025_2546450
crossref_primary_10_1080_23270012_2016_1233514
crossref_primary_10_1016_j_cl_2016_07_007
crossref_primary_10_1016_j_cma_2024_117429
crossref_primary_10_1016_j_eswa_2023_123044
crossref_primary_10_1109_ACCESS_2021_3123825
crossref_primary_10_1007_s10489_016_0787_x
crossref_primary_10_1016_j_suscom_2018_05_008
crossref_primary_10_1016_j_energy_2017_07_056
crossref_primary_10_1109_JSYST_2021_3076481
crossref_primary_10_4018_ijsir_2014100104
crossref_primary_10_1016_j_asoc_2017_07_052
crossref_primary_10_1016_j_cie_2017_08_009
crossref_primary_10_1016_j_enbuild_2016_05_090
crossref_primary_10_1016_j_future_2022_10_008
crossref_primary_10_1007_s10922_021_09599_4
crossref_primary_10_1016_j_jpdc_2017_05_018
crossref_primary_10_1109_MCI_2024_3401420
crossref_primary_10_1109_TEVC_2022_3146316
crossref_primary_10_3390_math7090824
crossref_primary_10_1109_ACCESS_2019_2929196
crossref_primary_10_1080_0305215X_2025_2544215
crossref_primary_10_1007_s00186_016_0560_2
crossref_primary_10_3390_math13101681
crossref_primary_10_1109_ACCESS_2023_3322691
crossref_primary_10_1186_s40411_016_0030_9
crossref_primary_10_1016_j_ejor_2014_09_033
crossref_primary_10_1007_s00500_018_03697_3
crossref_primary_10_1109_ACCESS_2021_3085529
crossref_primary_10_1007_s12559_020_09730_8
crossref_primary_10_1109_TEVC_2016_2602348
crossref_primary_10_1109_ACCESS_2020_3046494
crossref_primary_10_1177_00375497211020083
crossref_primary_10_1109_TEVC_2017_2671462
crossref_primary_10_1007_s10852_012_9208_2
crossref_primary_10_1109_TCYB_2015_2487318
crossref_primary_10_3390_en9020101
crossref_primary_10_1007_s12652_017_0601_6
crossref_primary_10_1007_s00500_015_1665_x
crossref_primary_10_1016_j_cie_2024_110422
crossref_primary_10_1016_j_jclepro_2016_05_061
crossref_primary_10_1016_j_envsoft_2014_06_020
crossref_primary_10_1109_TEVC_2018_2881153
crossref_primary_10_1007_s00521_024_09746_3
crossref_primary_10_1371_journal_pcbi_1006533
crossref_primary_10_1016_j_asoc_2016_03_004
crossref_primary_10_1016_j_asoc_2021_107582
crossref_primary_10_1016_j_asoc_2020_106078
crossref_primary_10_1080_12460125_2018_1468174
Cites_doi 10.1007/BF02430364
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2008.925798
10.1080/03052150108940926
10.1016/j.advengsoft.2009.01.001
10.1109/CEC.2010.5586354
10.1162/106365600568202
10.1109/TEVC.2005.861417
10.1109/CEC.2008.4631047
10.1162/106365600568167
10.1007/s00158-002-0178-2
10.1162/evco.1994.2.3.221
10.1109/TEVC.2007.913109
10.1109/TEVC.2009.2034647
10.1109/4235.797969
10.1109/4235.996017
10.1109/ICSMC.1995.537993
10.1109/3468.650320
10.1145/937503.937505
10.1007/BF01743536
10.1109/CEC.2005.1554717
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.advengsoft.2011.05.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EndPage 771
ExternalDocumentID 10_1016_j_advengsoft_2011_05_014
S0965997811001219
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c350t-1cf00390f20bd7ffeb8e441ac0200d80e7df782bfc413d4f0d7c011a6c9a83433
ISICitedReferencesCount 851
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000293872100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Sun Sep 28 02:56:40 EDT 2025
Tue Nov 18 22:01:41 EST 2025
Sat Nov 29 08:11:07 EST 2025
Fri Feb 23 02:24:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Experimentation
Software tool
Performance assessment support
Multi-objective optimization
Object-oriented architecture
Metaheuristics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-1cf00390f20bd7ffeb8e441ac0200d80e7df782bfc413d4f0d7c011a6c9a83433
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 907954492
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_907954492
crossref_primary_10_1016_j_advengsoft_2011_05_014
crossref_citationtrail_10_1016_j_advengsoft_2011_05_014
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2011_05_014
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Advances in engineering software (1992)
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Weise, Zapf, Chiong, Nebro (b0005) 2009; vol. 193/2009
Knowles J, Thiele L, Zitzler E. A tutorial on the performance assessment of stochastic multiobjective optimizers, Tech. Rep. 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich; 2006.
Kukkonen S, Lampinen J. GDE3: The third evolution step of generalized differential evolution. In: IEEE congress on evolutionary computation (CEC’2005); 2005. p. 443–50.
Sağ, Çunkaş (b0060) 2009; 40
Ray, Tai, Seow (b0185) 2001; 33
Osyczka, Kundo (b0175) 1995; 10
Nebro A, Durillo J. jMetal 3.1 User Manual; 2010.
Nebro, Durillo, Luna, Dorronsoro, Alba (b0075) 2007; vol. 4403
Li, Zhang (b0085) 2009; 12
Nebro, Durillo, Coello Coello, Luna, Alba (b0205) 2008; vol. 5199
Durillo, Nebro, Luna, Alba (b0220) 2009; vol. 5467
Nebro, Alba, Molina, Chicano, Luna, Durillo (b0120) 2007
Deb, Pratap, Agarwal, Meyarivan (b0030) 2002; 6
Eskandari, Geiger, Lamont (b0105) 2007; vol. 4403
Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A. AbYSS: Adapting Scatter Search to Multiobjective Optimization. IEEE Trans Evol Comput 12(4):439–457.
Zitzler, Künzli (b0110) 2004
Deb (b0020) 2001
Tanaka M, Watanabe H, Furukawa Y, Tanino T. Ga-based decision support system for multicriteria optimization. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, vol. 2; 1995. p. 1556–1561.
Beume, Naujoks, Emmerich (b0125) 2007; 181
Huband, Hingston, Barone, While (b0140) 2006; 10
Van Veldhuizen DA, Lamont GB. Multiobjective evolutionary algorithm research: A history and analysis, Tech. Rep. TR-98-03, Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force Inst.Technol., Wright-Patterson, AFB, OH; 1998.
Durillo JJ, Nebro AJ, Coello Coello CA, Luna F, Alba E. A comparative study of the effect of parameter scalability in multi-objective metaheuristics. In: CEC 2008, Hong Kong; 2008. p. 255–66.
Zhou A, Jin Y, Zhang Q, Sendhoff B, Tsang E. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE Congress on evolutionary computation; 2006. p. 3234–41.
Corne D, Jerram N, Knowles J, Oates M. PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Genetic and evolutionary computation conference (GECCO-2001), Morgan Kaufmann; 2001. p. 283–90.
Reyes, Coello Coello (b0070) 2005; vol. 3410
Deb, Thiele, Laumanns, Zitzler (b0135) 2005
Bleuler, Laumanns, Thiele, Zitzler (b0050) 2003
Greiner, Emperador, Winter, Galván (b0090) 2006; vol. 4403
Durillo J, Nebro A, Alba E. The jmetal framework for multi-objective optimization: Design and architecture. In: CEC 2010, Barcelona, Spain; 2010, p. 4138–325.
Zhang Q, Zhou A, Zhao SZ, Suganthan PN, Liu W, Tiwari S. Multiobjective optimization test instances for the cec 2009 special session and competition, Tech. Rep. CES-487, University of Essex and Nanyang Technological University, Essex, UK and Singapore, September 2008.
Schaffer J. Multiple objective optimization with vector evaluated genetic algorithms. In: Grefensttete J, editor. First international conference on genetic algorithms, Hillsdale, NJ; 1987. p. 93–100.
Reyes-Sierra, Coello Coello (b0045) 2006; 2
Knowles, Corne (b0035) 2000; 8
Nebro, Durillo, García-Nieto, Coello Coello, Luna, Alba (b0115) 2009
Fonseca, Flemming (b0155) 1998; 28
Blum, Roli (b0015) 2003; 35
Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis D, Periaux J, Papailou P, Fogarty T, editors. EUROGEN 2001. Evolutionary methods for design, optimization and control with applications to industrial problems, Athens, Greece; 2002. p. 95–100.
Zitzler, Thiele (b0190) 1999; 3
Kursawe (b0150) 1990
Hooker (b0240) 1995; 1
Kurpati, Azarm, Wu (b0180) 2002; 23
Durillo J, Nebro A, Luna F, Dorronsoro B, Alba E. jMetal: a Java framework for developing multi-objective optimization metaheuristics, Tech. Rep. ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Campus de Teatinos; 2006.
Zitzler, Deb, Thiele (b0130) 2000; 8
Durillo, Nebro, Coello, García-Nieto, Luna, Alba (b0215) 2010; 14
Durillo, Nebro, Luna, Alba (b0095) 2008; vol. 5199
Coello Coello, Lamont, Van Veldhuizen (b0025) 2007
Srinivas, Deb (b0165) 1995; 2
Glover, Kochenberger (b0010) 2003
Kursawe (10.1016/j.advengsoft.2011.05.014_b0150) 1990
Deb (10.1016/j.advengsoft.2011.05.014_b0030) 2002; 6
Zitzler (10.1016/j.advengsoft.2011.05.014_b0130) 2000; 8
Srinivas (10.1016/j.advengsoft.2011.05.014_b0165) 1995; 2
Reyes-Sierra (10.1016/j.advengsoft.2011.05.014_b0045) 2006; 2
Li (10.1016/j.advengsoft.2011.05.014_b0085) 2009; 12
10.1016/j.advengsoft.2011.05.014_b0170
Huband (10.1016/j.advengsoft.2011.05.014_b0140) 2006; 10
Durillo (10.1016/j.advengsoft.2011.05.014_b0215) 2010; 14
10.1016/j.advengsoft.2011.05.014_b0065
Bleuler (10.1016/j.advengsoft.2011.05.014_b0050) 2003
Hooker (10.1016/j.advengsoft.2011.05.014_b0240) 1995; 1
10.1016/j.advengsoft.2011.05.014_b0040
10.1016/j.advengsoft.2011.05.014_b0145
10.1016/j.advengsoft.2011.05.014_b0200
10.1016/j.advengsoft.2011.05.014_b0100
Fonseca (10.1016/j.advengsoft.2011.05.014_b0155) 1998; 28
10.1016/j.advengsoft.2011.05.014_b0225
Blum (10.1016/j.advengsoft.2011.05.014_b0015) 2003; 35
Nebro (10.1016/j.advengsoft.2011.05.014_b0075) 2007; vol. 4403
Durillo (10.1016/j.advengsoft.2011.05.014_b0095) 2008; vol. 5199
Kurpati (10.1016/j.advengsoft.2011.05.014_b0180) 2002; 23
Eskandari (10.1016/j.advengsoft.2011.05.014_b0105) 2007; vol. 4403
Nebro (10.1016/j.advengsoft.2011.05.014_b0120) 2007
Sağ (10.1016/j.advengsoft.2011.05.014_b0060) 2009; 40
Zitzler (10.1016/j.advengsoft.2011.05.014_b0190) 1999; 3
10.1016/j.advengsoft.2011.05.014_b0160
Osyczka (10.1016/j.advengsoft.2011.05.014_b0175) 1995; 10
Durillo (10.1016/j.advengsoft.2011.05.014_b0220) 2009; vol. 5467
10.1016/j.advengsoft.2011.05.014_b0080
Beume (10.1016/j.advengsoft.2011.05.014_b0125) 2007; 181
10.1016/j.advengsoft.2011.05.014_b0230
Glover (10.1016/j.advengsoft.2011.05.014_b0010) 2003
10.1016/j.advengsoft.2011.05.014_b0195
Nebro (10.1016/j.advengsoft.2011.05.014_b0205) 2008; vol. 5199
Ray (10.1016/j.advengsoft.2011.05.014_b0185) 2001; 33
Zitzler (10.1016/j.advengsoft.2011.05.014_b0110) 2004
Deb (10.1016/j.advengsoft.2011.05.014_b0135) 2005
Greiner (10.1016/j.advengsoft.2011.05.014_b0090) 2006; vol. 4403
10.1016/j.advengsoft.2011.05.014_b0210
10.1016/j.advengsoft.2011.05.014_b0055
Weise (10.1016/j.advengsoft.2011.05.014_b0005) 2009; vol. 193/2009
Coello Coello (10.1016/j.advengsoft.2011.05.014_b0025) 2007
Nebro (10.1016/j.advengsoft.2011.05.014_b0115) 2009
Deb (10.1016/j.advengsoft.2011.05.014_b0020) 2001
Reyes (10.1016/j.advengsoft.2011.05.014_b0070) 2005; vol. 3410
10.1016/j.advengsoft.2011.05.014_b0235
Knowles (10.1016/j.advengsoft.2011.05.014_b0035) 2000; 8
References_xml – volume: vol. 5199
  start-page: 661
  year: 2008
  end-page: 670
  ident: b0095
  article-title: Solving three-objective optimization problems using a new hybrid cellular genetic algorithm
  publication-title: Parallel problem solving from nature-PPSN X
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b0140
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans Evol Comput
– volume: 2
  start-page: 221
  year: 1995
  end-page: 248
  ident: b0165
  article-title: Multiobjective function optimization using nondominated sorting genetic algorithms
  publication-title: Evol Comput
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0190
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans Evol Comput
– reference: Zhou A, Jin Y, Zhang Q, Sendhoff B, Tsang E. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE Congress on evolutionary computation; 2006. p. 3234–41.
– volume: 40
  start-page: 902
  year: 2009
  end-page: 912
  ident: b0060
  article-title: A tool for multiobjective evolutionary algorithms
  publication-title: Adv Eng Softw
– year: 2001
  ident: b0020
  article-title: Multi-objective optimization using evolutionary algorithms
– start-page: 105
  year: 2005
  end-page: 145
  ident: b0135
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary multiobjective optimization. theoretical advances and applications
– volume: 35
  start-page: 268
  year: 2003
  end-page: 308
  ident: b0015
  article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison
  publication-title: ACM Comput Surv
– reference: Durillo JJ, Nebro AJ, Coello Coello CA, Luna F, Alba E. A comparative study of the effect of parameter scalability in multi-objective metaheuristics. In: CEC 2008, Hong Kong; 2008. p. 255–66.
– reference: Durillo J, Nebro A, Alba E. The jmetal framework for multi-objective optimization: Design and architecture. In: CEC 2010, Barcelona, Spain; 2010, p. 4138–325.
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b0125
  article-title: SMS-E MOA: Multiobjective selection based on dominated hypervolume
  publication-title: Eur J Oper Res
– reference: Schaffer J. Multiple objective optimization with vector evaluated genetic algorithms. In: Grefensttete J, editor. First international conference on genetic algorithms, Hillsdale, NJ; 1987. p. 93–100.
– volume: vol. 193/2009
  start-page: 1
  year: 2009
  end-page: 50
  ident: b0005
  article-title: Why is optimization difficult?
  publication-title: Nature-inspired algorithms for optimisation
– reference: Corne D, Jerram N, Knowles J, Oates M. PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Genetic and evolutionary computation conference (GECCO-2001), Morgan Kaufmann; 2001. p. 283–90.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0030
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evolut Comput
– volume: vol. 4403
  start-page: 575
  year: 2006
  end-page: 589
  ident: b0090
  article-title: Improving computational mechanics optimum design using helper objectives: an application in frame bar structures
  publication-title: Fourth international conference on evolutionary multicriterion optimization, EMO 2007
– reference: Tanaka M, Watanabe H, Furukawa Y, Tanino T. Ga-based decision support system for multicriteria optimization. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, vol. 2; 1995. p. 1556–1561.
– start-page: 832
  year: 2004
  end-page: 842
  ident: b0110
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel problem solving from nature (PPSN VIII)
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: b0035
  article-title: Approximating the nondominated front using the pareto archived evolution strategy
  publication-title: Evol Comput
– start-page: 494
  year: 2003
  end-page: 508
  ident: b0050
  article-title: PISA – a platform and programming language independent interface for search algorithms
  publication-title: Evolutionary multi-criterion optimization (EMO 2003)
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0130
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol Comput
– reference: Durillo J, Nebro A, Luna F, Dorronsoro B, Alba E. jMetal: a Java framework for developing multi-objective optimization metaheuristics, Tech. Rep. ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Campus de Teatinos; 2006.
– reference: Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A. AbYSS: Adapting Scatter Search to Multiobjective Optimization. IEEE Trans Evol Comput 12(4):439–457.
– reference: Zhang Q, Zhou A, Zhao SZ, Suganthan PN, Liu W, Tiwari S. Multiobjective optimization test instances for the cec 2009 special session and competition, Tech. Rep. CES-487, University of Essex and Nanyang Technological University, Essex, UK and Singapore, September 2008.
– volume: 2
  start-page: 287
  year: 2006
  end-page: 308
  ident: b0045
  article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art
  publication-title: Int J Comput Intell Res
– reference: Kukkonen S, Lampinen J. GDE3: The third evolution step of generalized differential evolution. In: IEEE congress on evolutionary computation (CEC’2005); 2005. p. 443–50.
– volume: 10
  start-page: 94
  year: 1995
  end-page: 99
  ident: b0175
  article-title: A new method to solve generalized multicriteria optimization problems using a simple genetic algorithm
  publication-title: Struct Optimiz
– volume: 33
  start-page: 399
  year: 2001
  end-page: 424
  ident: b0185
  article-title: An evolutionary algorithm for multiobjective optimization
  publication-title: Eng Opt
– volume: 28
  start-page: 38
  year: 1998
  end-page: 47
  ident: b0155
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms-part ii: application example
  publication-title: IEEE Trans System, Man, Cybern
– volume: 23
  start-page: 204
  year: 2002
  end-page: 213
  ident: b0180
  article-title: Constraint handling improvements for multi-objective genetic algorithms
  publication-title: Struct Multidiscipl Opt
– volume: vol. 3410
  start-page: 509
  year: 2005
  end-page: 519
  ident: b0070
  article-title: Improving PSO-based multi-objective optimization using crowding, mutation and
  publication-title: Third international conference on evolutionary multicriterion optimization, EMO 2005
– reference: Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis D, Periaux J, Papailou P, Fogarty T, editors. EUROGEN 2001. Evolutionary methods for design, optimization and control with applications to industrial problems, Athens, Greece; 2002. p. 95–100.
– year: 2007
  ident: b0025
  article-title: Evolutionary algorithms for solving multi-objective problems
– start-page: 66
  year: 2009
  end-page: 73
  ident: b0115
  article-title: Smpso: a new pso-based metaheuristic for multi-objective optimization
  publication-title: 2009 IEEE symposium on computational intelligence in multicriteria decision-making (MCDM 2009)
– start-page: 876
  year: 2007
  end-page: 883
  ident: b0120
  article-title: Optimal antenna placement using a new multi-objective chc algorithm
  publication-title: GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation
– year: 2003
  ident: b0010
  article-title: Handbook of metaheuristics
– reference: Knowles J, Thiele L, Zitzler E. A tutorial on the performance assessment of stochastic multiobjective optimizers, Tech. Rep. 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich; 2006.
– volume: 14
  start-page: 618
  year: 2010
  end-page: 635
  ident: b0215
  article-title: A study of multi-objective metaheuristics when solving parameter scalable problems
  publication-title: IEEE Trans Evol Comput
– volume: vol. 5467
  start-page: 183
  year: 2009
  end-page: 197
  ident: b0220
  article-title: On the effect of the steady-state selection scheme in multi-objective genetic algorithms
  publication-title: 5th International conference, EMO 2009
– volume: vol. 4403
  start-page: 126
  year: 2007
  end-page: 140
  ident: b0075
  article-title: Design issues in a multiobjective cellular genetic algorithm
  publication-title: Evolutionary multi-criterion optimization. 4th International conference, EMO 2007
– volume: 1
  start-page: 33
  year: 1995
  end-page: 42
  ident: b0240
  article-title: Testing heuristics: we have it all wrong
  publication-title: J Heuristics
– reference: Nebro A, Durillo J. jMetal 3.1 User Manual; 2010.
– start-page: 193
  year: 1990
  end-page: 197
  ident: b0150
  article-title: A variant of evolution strategies for vector optimization
  publication-title: Parallel problem solving for nature
– volume: vol. 5199
  start-page: 763
  year: 2008
  end-page: 772
  ident: b0205
  article-title: A study of convergence speed in multi-objective metaheuristics
  publication-title: Parallel problem solving from nature-PPSN X
– volume: 12
  start-page: 284
  year: 2009
  end-page: 302
  ident: b0085
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Trans Evol Comput
– volume: vol. 4403
  start-page: 141
  year: 2007
  end-page: 155
  ident: b0105
  article-title: FastPGA: a dynamic population sizing approach for solving expensive multiobjective optimization problems
  publication-title: Evolutionary multi-criterion optimization. 4th International conference, EMO 2007
– reference: Van Veldhuizen DA, Lamont GB. Multiobjective evolutionary algorithm research: A history and analysis, Tech. Rep. TR-98-03, Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force Inst.Technol., Wright-Patterson, AFB, OH; 1998.
– volume: 2
  start-page: 287
  issue: 3
  year: 2006
  ident: 10.1016/j.advengsoft.2011.05.014_b0045
  article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art
  publication-title: Int J Comput Intell Res
– start-page: 105
  year: 2005
  ident: 10.1016/j.advengsoft.2011.05.014_b0135
  article-title: Scalable test problems for evolutionary multiobjective optimization
– year: 2007
  ident: 10.1016/j.advengsoft.2011.05.014_b0025
– volume: 1
  start-page: 33
  year: 1995
  ident: 10.1016/j.advengsoft.2011.05.014_b0240
  article-title: Testing heuristics: we have it all wrong
  publication-title: J Heuristics
  doi: 10.1007/BF02430364
– volume: vol. 4403
  start-page: 141
  year: 2007
  ident: 10.1016/j.advengsoft.2011.05.014_b0105
  article-title: FastPGA: a dynamic population sizing approach for solving expensive multiobjective optimization problems
– volume: vol. 4403
  start-page: 575
  year: 2006
  ident: 10.1016/j.advengsoft.2011.05.014_b0090
  article-title: Improving computational mechanics optimum design using helper objectives: an application in frame bar structures
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.advengsoft.2011.05.014_b0125
  article-title: SMS-E MOA: Multiobjective selection based on dominated hypervolume
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.08.008
– volume: 12
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.advengsoft.2011.05.014_b0085
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.925798
– volume: vol. 5467
  start-page: 183
  year: 2009
  ident: 10.1016/j.advengsoft.2011.05.014_b0220
  article-title: On the effect of the steady-state selection scheme in multi-objective genetic algorithms
– volume: vol. 3410
  start-page: 509
  year: 2005
  ident: 10.1016/j.advengsoft.2011.05.014_b0070
  article-title: Improving PSO-based multi-objective optimization using crowding, mutation and ϵ-dominance
– volume: 33
  start-page: 399
  issue: 3
  year: 2001
  ident: 10.1016/j.advengsoft.2011.05.014_b0185
  article-title: An evolutionary algorithm for multiobjective optimization
  publication-title: Eng Opt
  doi: 10.1080/03052150108940926
– volume: 40
  start-page: 902
  issue: 9
  year: 2009
  ident: 10.1016/j.advengsoft.2011.05.014_b0060
  article-title: A tool for multiobjective evolutionary algorithms
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2009.01.001
– volume: vol. 5199
  start-page: 661
  year: 2008
  ident: 10.1016/j.advengsoft.2011.05.014_b0095
  article-title: Solving three-objective optimization problems using a new hybrid cellular genetic algorithm
– year: 2003
  ident: 10.1016/j.advengsoft.2011.05.014_b0010
– start-page: 66
  year: 2009
  ident: 10.1016/j.advengsoft.2011.05.014_b0115
  article-title: Smpso: a new pso-based metaheuristic for multi-objective optimization
– ident: 10.1016/j.advengsoft.2011.05.014_b0225
  doi: 10.1109/CEC.2010.5586354
– ident: 10.1016/j.advengsoft.2011.05.014_b0055
  doi: 10.1109/CEC.2010.5586354
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.advengsoft.2011.05.014_b0130
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol Comput
  doi: 10.1162/106365600568202
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.advengsoft.2011.05.014_b0140
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.861417
– ident: 10.1016/j.advengsoft.2011.05.014_b0210
  doi: 10.1109/CEC.2008.4631047
– start-page: 832
  year: 2004
  ident: 10.1016/j.advengsoft.2011.05.014_b0110
  article-title: Indicator-based selection in multiobjective search
– volume: vol. 5199
  start-page: 763
  year: 2008
  ident: 10.1016/j.advengsoft.2011.05.014_b0205
  article-title: A study of convergence speed in multi-objective metaheuristics
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.advengsoft.2011.05.014_b0035
  article-title: Approximating the nondominated front using the pareto archived evolution strategy
  publication-title: Evol Comput
  doi: 10.1162/106365600568167
– volume: 23
  start-page: 204
  issue: 3
  year: 2002
  ident: 10.1016/j.advengsoft.2011.05.014_b0180
  article-title: Constraint handling improvements for multi-objective genetic algorithms
  publication-title: Struct Multidiscipl Opt
  doi: 10.1007/s00158-002-0178-2
– volume: 2
  start-page: 221
  issue: 3
  year: 1995
  ident: 10.1016/j.advengsoft.2011.05.014_b0165
  article-title: Multiobjective function optimization using nondominated sorting genetic algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
– ident: 10.1016/j.advengsoft.2011.05.014_b0230
  doi: 10.1109/CEC.2010.5586354
– start-page: 193
  year: 1990
  ident: 10.1016/j.advengsoft.2011.05.014_b0150
  article-title: A variant of evolution strategies for vector optimization
– volume: vol. 193/2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.advengsoft.2011.05.014_b0005
  article-title: Why is optimization difficult?
– ident: 10.1016/j.advengsoft.2011.05.014_b0080
  doi: 10.1109/TEVC.2007.913109
– volume: 14
  start-page: 618
  issue: 4
  year: 2010
  ident: 10.1016/j.advengsoft.2011.05.014_b0215
  article-title: A study of multi-objective metaheuristics when solving parameter scalable problems
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2009.2034647
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.advengsoft.2011.05.014_b0190
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.advengsoft.2011.05.014_b0030
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/4235.996017
– ident: 10.1016/j.advengsoft.2011.05.014_b0145
– ident: 10.1016/j.advengsoft.2011.05.014_b0170
  doi: 10.1109/ICSMC.1995.537993
– ident: 10.1016/j.advengsoft.2011.05.014_b0195
– ident: 10.1016/j.advengsoft.2011.05.014_b0040
– start-page: 494
  year: 2003
  ident: 10.1016/j.advengsoft.2011.05.014_b0050
  article-title: PISA – a platform and programming language independent interface for search algorithms
– volume: vol. 4403
  start-page: 126
  year: 2007
  ident: 10.1016/j.advengsoft.2011.05.014_b0075
  article-title: Design issues in a multiobjective cellular genetic algorithm
– ident: 10.1016/j.advengsoft.2011.05.014_b0065
– year: 2001
  ident: 10.1016/j.advengsoft.2011.05.014_b0020
– volume: 28
  start-page: 38
  year: 1998
  ident: 10.1016/j.advengsoft.2011.05.014_b0155
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms-part ii: application example
  publication-title: IEEE Trans System, Man, Cybern
  doi: 10.1109/3468.650320
– ident: 10.1016/j.advengsoft.2011.05.014_b0200
– volume: 35
  start-page: 268
  issue: 3
  year: 2003
  ident: 10.1016/j.advengsoft.2011.05.014_b0015
  article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison
  publication-title: ACM Comput Surv
  doi: 10.1145/937503.937505
– ident: 10.1016/j.advengsoft.2011.05.014_b0235
– start-page: 876
  year: 2007
  ident: 10.1016/j.advengsoft.2011.05.014_b0120
  article-title: Optimal antenna placement using a new multi-objective chc algorithm
– volume: 10
  start-page: 94
  year: 1995
  ident: 10.1016/j.advengsoft.2011.05.014_b0175
  article-title: A new method to solve generalized multicriteria optimization problems using a simple genetic algorithm
  publication-title: Struct Optimiz
  doi: 10.1007/BF01743536
– ident: 10.1016/j.advengsoft.2011.05.014_b0100
  doi: 10.1109/CEC.2005.1554717
– ident: 10.1016/j.advengsoft.2011.05.014_b0160
SSID ssj0014021
Score 2.5322502
Snippet This paper describes jMetal, an object-oriented Java-based framework aimed at the development, experimentation, and study of metaheuristics for solving...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 760
SubjectTerms Availability
Benchmarking
Computer programs
Experimentation
Java (programming language)
Metaheuristics
Multi-objective optimization
Object oriented
Object-oriented architecture
Object-oriented programming
Optimization
Performance assessment support
Running
Software tool
Title jMetal: A Java framework for multi-objective optimization
URI https://dx.doi.org/10.1016/j.advengsoft.2011.05.014
https://www.proquest.com/docview/907954492
Volume 42
WOSCitedRecordID wos000293872100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5w4LGAWF7ygVvllZs4cQynChbBClYcFqk3y3Fs1Go3WfXF_nzGsZ1EBURB4hJVbm0lmen4m_E3Mwi9yrTJLBc5sZZxAvt1TlQhFMnZxAC8NbnJ2kThT_z8vJjNxJfRyMZcmO0lr-vi5kZc_1dRwxgI26XO_oW4u0VhAD6D0OEKYofrXoJffDYAqH3G-ZnaqrGN_KuWUtgyCElTLrylGzdgM65CMuYQqU49OaCly5q-aOF4BXb7u6OLuQpPQiSDUMK7zXIej3I2Li3qpA81lyGfxrUsnjfxq6qLn0biWhc3zDMihO-7E00oS4aqQgcGkftuAWFv5b7dyk9m20cQFieqAgv_zT1IKK7qaqqyfquKx_M7O1jHK4yUtYXsV5JuJUkzSV2_88OEZwIM-OH04-nsrDtvAi-67a0YHy5wvjwT8Nd39Tsgs7Oltzjl4j66GxwMPPWK8QCNTH2E7gVnAwdTvoKh2M8jjh2hO4PilA-R8Ir0Gk-xUyPcqREGNcI7aoSHavQIfX1_evH2AwmNNohOM7omE21djja1CS0rbq0pCwMwWWnwJWhVUMMrC0iytBogT8UsrbiGF6FyLVSRsjR9jA7qpjZPEHYIEnz0gsHPmU1hDsAkbgvBRKEmFT9GPL41qUMVetcM5VL-SXbHaNLNvPaVWPaY8yYKRgZE6ZGiBM3bYzaOspRgdN1JmqpNs1lJQbnIGBPJ03-4qWfodv_Heo4O1suNeYFu6e16vlq-DJr5A2whpsU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=jMetal%3A+A+Java+framework+for+multi-objective+optimization&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Durillo%2C+Juan+J.&rft.au=Nebro%2C+Antonio+J.&rft.date=2011-10-01&rft.issn=0965-9978&rft.volume=42&rft.issue=10&rft.spage=760&rft.epage=771&rft_id=info:doi/10.1016%2Fj.advengsoft.2011.05.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_advengsoft_2011_05_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon