Boosting Double Coverage for k-Server via Imperfect Predictions

We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 87; H. 11; S. 1477 - 1517
Hauptverfasser: Lindermayr, Alexander, Megow, Nicole, Simon, Bertrand
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2025
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k -server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless . Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data.
AbstractList Abstract We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k -server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless. Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data.
We study the online k-server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k-server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless. Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data.
We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k -server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless . Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data.
We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k -server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless . Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data.
Author Simon, Bertrand
Megow, Nicole
Lindermayr, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  surname: Lindermayr
  fullname: Lindermayr, Alexander
  email: linderal@uni-bremen.de
  organization: Faculty of Mathematics and Computer Science, University of Bremen
– sequence: 2
  givenname: Nicole
  surname: Megow
  fullname: Megow, Nicole
  organization: Faculty of Mathematics and Computer Science, University of Bremen
– sequence: 3
  givenname: Bertrand
  surname: Simon
  fullname: Simon, Bertrand
  organization: IN2P3 Computing Center, CNRS
BackLink https://hal.science/hal-05193496$$DView record in HAL
BookMark eNp9kE1Lw0AQhhdRsK3-AU8BTx5WZz-S3T1JrR8tFBTU87JJJjW1zdbdtOC_NzWiN0_DDM_7MjxDctj4Bgk5Y3DJANRVBJCpoMBTCkwIQc0BGTApOIVUskMyAKY0lRlTx2QY4xKAcWWyAbm-8T62dbNIbv02X2Ey8TsMboFJ5UPyTp8xdHuyq10yW28wVFi0yVPAsi7a2jfxhBxVbhXx9GeOyOv93ctkSuePD7PJeE4LkUJLWc40BwN5qVEWqLjUqZEuy4E7jljw0hWiBIbaOFFykFAKp7RQGrFSwMWIXPS9b25lN6Feu_BpvavtdDy3-xukzAhpsh3r2POe3QT_scXY2qXfhqZ7zwqe8owrZUxH8Z4qgo8xYPVby8Dupdpequ2k2m-pdh8SfSh2cLPA8Ff9T-oLc495eg
Cites_doi 10.1109/IJCNN.2005.1555954
10.1145/3582689
10.1145/3183713.3196909
10.1137/1.9781611975994.112
10.1109/TLA.2016.7786315
10.4230/LIPIcs.ICALP.2021.57
10.1016/j.cosrev.2009.04.002
10.4230/LIPIcs.ITCS.2022.99
10.1007/978-3-319-77404-6_5
10.1016/j.eswa.2019.06.015
10.1145/3490148.3538595
10.1145/3564246.3585132
10.1007/s10878-019-00493-z
10.1609/aaai.v36i9.21208
10.1145/3447579
10.1137/1.9781611977073.3
10.1145/2020408.2020579
10.1137/0220008
10.1137/0404017
10.1145/3365002
10.1016/j.tcs.2004.06.002
10.1017/CBO9781107298019
10.1137/1.9781611977073.4
10.1145/1250910.1250952
10.1145/1968.1972
10.1016/j.tcs.2004.06.001
10.1609/aaai.v36i8.20854
10.4230/LIPIcs.ITCS.2024.62
10.1017/9781108637435.037
10.4230/LIPIcs.SWAT.2022.30
10.4230/LIPIcs.ITCS.2023.12
10.1145/3188745.3188798
10.1007/978-3-030-73879-2_2
10.1007/s00453-024-01270-z
10.1287/moor.2022.0225
10.1145/210118.210128
10.1145/3490486.3538296
10.1145/62212.62243
10.1109/FOCS54457.2022.00036
10.1145/3313276.3316370
10.1016/0196-6774(90)90003-W
10.1145/2786.2793
10.1137/1.9781611977912.126
10.4230/LIPIcs.ESA.2023.12
10.1137/1116025
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID C6C
AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s00453-025-01333-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1517
ExternalDocumentID oai:HAL:hal-05193496v1
10_1007_s00453_025_01333_9
GrantInformation_xml – fundername: Universität Bremen (1013)
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~EX
AAYXX
CITATION
JQ2
1XC
ID FETCH-LOGICAL-c350t-1b182090bd8e4ce7248594a6b02a2eec2dac3d01e89a3d2040d3a78378eef7023
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001527693100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Tue Dec 02 06:20:51 EST 2025
Sun Nov 09 08:11:50 EST 2025
Sat Nov 29 07:29:00 EST 2025
Sun Sep 21 01:10:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Learning-augmented algorithms
Online k-server problem
Competitive analysis
Consistency
Robustness
Advice
Imperfect predictions
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-1b182090bd8e4ce7248594a6b02a2eec2dac3d01e89a3d2040d3a78378eef7023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2565-1163
OpenAccessLink https://link.springer.com/10.1007/s00453-025-01333-9
PQID 3252627799
PQPubID 2043795
PageCount 41
ParticipantIDs hal_primary_oai_HAL_hal_05193496v1
proquest_journals_3252627799
crossref_primary_10_1007_s00453_025_01333_9
springer_journals_10_1007_s00453_025_01333_9
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References A Borodin (1333_CR13) 1998
VN Vapnik (1333_CR53) 1971; 16
1333_CR37
W Zhang (1333_CR55) 2020; 39
1333_CR38
1333_CR39
E Koutsoupias (1333_CR36) 2004; 324
1333_CR5
1333_CR4
1333_CR7
1333_CR9
1333_CR8
1333_CR33
S Shalev-Shwartz (1333_CR50) 2014
1333_CR30
A Lindermayr (1333_CR40) 2020
1333_CR3
M Chrobak (1333_CR22) 1991; 20
1333_CR31
1333_CR2
1333_CR32
M Chrobak (1333_CR23) 1991; 4
E Koutsoupias (1333_CR34) 2009; 3
1333_CR26
1333_CR28
1333_CR29
P Agrawal (1333_CR1) 2024; 49
A Antoniadis (1333_CR6) 2023; 19
ML Costa (1333_CR27) 2016; 14
MS Manasse (1333_CR45) 1990; 11
1333_CR25
1333_CR21
1333_CR19
1333_CR15
E Koutsoupias (1333_CR35) 1995; 42
1333_CR16
1333_CR17
1333_CR18
LG Valiant (1333_CR52) 1984; 27
DD Sleator (1333_CR51) 1985; 28
1333_CR12
1333_CR14
1333_CR10
1333_CR54
Y Bartal (1333_CR11) 2004; 324
1333_CR48
1333_CR49
R Lins (1333_CR41) 2019; 135
T Lykouris (1333_CR42) 2021; 68
1333_CR44
M Chrobak (1333_CR24) 2025; 87
A Chiplunkar (1333_CR20) 2020; 16
1333_CR46
1333_CR47
1333_CR43
References_xml – ident: 1333_CR39
– ident: 1333_CR2
– ident: 1333_CR12
– ident: 1333_CR33
  doi: 10.1109/IJCNN.2005.1555954
– volume: 19
  start-page: 19:1
  issue: 2
  year: 2023
  ident: 1333_CR6
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3582689
– ident: 1333_CR37
  doi: 10.1145/3183713.3196909
– ident: 1333_CR49
  doi: 10.1137/1.9781611975994.112
– volume-title: Online Computation and Competitive Analysis
  year: 1998
  ident: 1333_CR13
– ident: 1333_CR32
– volume: 14
  start-page: 4351
  issue: 10
  year: 2016
  ident: 1333_CR27
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2016.7786315
– ident: 1333_CR26
  doi: 10.4230/LIPIcs.ICALP.2021.57
– volume: 3
  start-page: 105
  issue: 2
  year: 2009
  ident: 1333_CR34
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.04.002
– ident: 1333_CR38
  doi: 10.4230/LIPIcs.ITCS.2022.99
– ident: 1333_CR5
  doi: 10.1007/978-3-319-77404-6_5
– volume: 135
  start-page: 212
  year: 2019
  ident: 1333_CR41
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.06.015
– ident: 1333_CR19
  doi: 10.1145/3490148.3538595
– ident: 1333_CR16
  doi: 10.1145/3564246.3585132
– volume: 39
  start-page: 509
  issue: 2
  year: 2020
  ident: 1333_CR55
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-019-00493-z
– ident: 1333_CR29
  doi: 10.1609/aaai.v36i9.21208
– volume-title: Learning-augmented Online Algorithms for the 2-server Problem on the Line and Generalizations
  year: 2020
  ident: 1333_CR40
– volume: 68
  start-page: 24:1
  issue: 4
  year: 2021
  ident: 1333_CR42
  publication-title: J. ACM
  doi: 10.1145/3447579
– ident: 1333_CR7
  doi: 10.1137/1.9781611977073.3
– ident: 1333_CR21
  doi: 10.1145/2020408.2020579
– volume: 20
  start-page: 144
  issue: 1
  year: 1991
  ident: 1333_CR22
  publication-title: SIAM J. Comput.
  doi: 10.1137/0220008
– volume: 4
  start-page: 172
  issue: 2
  year: 1991
  ident: 1333_CR23
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/0404017
– volume: 16
  start-page: 14:1
  issue: 1
  year: 2020
  ident: 1333_CR20
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3365002
– volume: 324
  start-page: 347
  issue: 2–3
  year: 2004
  ident: 1333_CR36
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2004.06.002
– volume-title: Understanding Machine Learning - From Theory to Algorithms
  year: 2014
  ident: 1333_CR50
  doi: 10.1017/CBO9781107298019
– ident: 1333_CR10
  doi: 10.1137/1.9781611977073.4
– ident: 1333_CR47
– ident: 1333_CR43
  doi: 10.1145/1250910.1250952
– volume: 27
  start-page: 1134
  issue: 11
  year: 1984
  ident: 1333_CR52
  publication-title: Commun. ACM
  doi: 10.1145/1968.1972
– ident: 1333_CR28
– volume: 324
  start-page: 337
  issue: 2–3
  year: 2004
  ident: 1333_CR11
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2004.06.001
– ident: 1333_CR4
– ident: 1333_CR54
  doi: 10.1609/aaai.v36i8.20854
– ident: 1333_CR31
  doi: 10.4230/LIPIcs.ITCS.2024.62
– ident: 1333_CR46
  doi: 10.1017/9781108637435.037
– ident: 1333_CR48
  doi: 10.4230/LIPIcs.SWAT.2022.30
– ident: 1333_CR9
  doi: 10.4230/LIPIcs.ITCS.2023.12
– ident: 1333_CR17
  doi: 10.1145/3188745.3188798
– ident: 1333_CR18
  doi: 10.1007/978-3-030-73879-2_2
– volume: 87
  start-page: 89
  issue: 1
  year: 2025
  ident: 1333_CR24
  publication-title: Algorithmica
  doi: 10.1007/s00453-024-01270-z
– volume: 49
  start-page: 2626
  issue: 4
  year: 2024
  ident: 1333_CR1
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2022.0225
– volume: 42
  start-page: 971
  issue: 5
  year: 1995
  ident: 1333_CR35
  publication-title: J. ACM
  doi: 10.1145/210118.210128
– ident: 1333_CR30
  doi: 10.1145/3490486.3538296
– ident: 1333_CR44
  doi: 10.1145/62212.62243
– ident: 1333_CR15
  doi: 10.1109/FOCS54457.2022.00036
– ident: 1333_CR25
  doi: 10.1145/3313276.3316370
– volume: 11
  start-page: 208
  issue: 2
  year: 1990
  ident: 1333_CR45
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(90)90003-W
– ident: 1333_CR3
– volume: 28
  start-page: 202
  issue: 2
  year: 1985
  ident: 1333_CR51
  publication-title: Commun. ACM
  doi: 10.1145/2786.2793
– ident: 1333_CR14
  doi: 10.1137/1.9781611977912.126
– ident: 1333_CR8
  doi: 10.4230/LIPIcs.ESA.2023.12
– volume: 16
  start-page: 264
  issue: 2
  year: 1971
  ident: 1333_CR53
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1116025
SSID ssj0012796
Score 2.4268305
Snippet We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request...
We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request...
We study the online k-server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request...
Abstract We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1477
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Lower bounds
Machine learning
Mathematics of Computing
Theory of Computation
Title Boosting Double Coverage for k-Server via Imperfect Predictions
URI https://link.springer.com/article/10.1007/s00453-025-01333-9
https://www.proquest.com/docview/3252627799
https://hal.science/hal-05193496
Volume 87
WOSCitedRecordID wos001527693100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWK1yiLedCHZTbPZk9RiqVBK8UVvYV_BorSS1P5-d7ZJfaAHvSbLbDKzs_PBzHyD0FkmaGaojkmms5hEIVUk0cYSJkMZGy4SbT3PbJ8PBsloJIZlU1hRVbtXKUl_Uy-b3QB9QM4Ris0YY0SsojUX7hJwx9u7x2XugHI_lQvmzpPIBeiyVeZnGV_C0eoTFEN-QprfkqM-5nTr__vaLbRZYkzcXhyKbbRiJzuoXs1vwKU776LLq-m0gLJn7GC0erG4A_Wc7oLBDsniZwL3iFs_H0t849B1DpUfeJhDasef1j300L2-7_RIOVCBaNYKZiRUQNcuAmUSGzkjAJ2ZiGSsAiqptZoaqZkJQpsIyQx1_m2Y5EA5b23GXXTfR7XJdGIPEFYsTiLJjZQii0IRKRsKHSTun1nLZipsoPNKr-nrgjcjXTIke92kTjep100qGujUqX65ECive-1-Cs88xIxEPHcim5Vl0tLRipTRFo0p58LJuKgs8fH69y0P_7b8CG1QMKbvQmyi2ix_s8doXc9n4yI_8QfwHXSs0uk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-QC-uT3ysGsSbBtok2zYnWUVZcV0WX3gLaZLiouxKu-7vNxPb-kAPem1D0s4kmQ_mm28QOsgEzQzVEcl0FhEe0pQk2ljCVKgiE4tEW68z2417veThQfTLorCiYrtXKUl_U9fFboA-IOcIZDPGGBHTaJa7iAVEvuub-zp3QGPflQv6zhPuAnRZKvPzHF_C0fQjkCE_Ic1vyVEfc84b__vaJbRYYkzcft8Uy2jKDldQo-rfgMvjvIqOT0ajAmjP2MHo9NniU-BzugsGOySLnwjcI278ZKDwhUPXOTA_cD-H1I7frWvo7vzs9rRDyoYKRLNWMCZhCnLtIkhNYrlzAsiZCa6iNKCKWqupUZqZILSJUMxQd74NUzFIzlubxS66r6OZ4WhoNxBOWZRwFRulRMZDwVMbCh0k7p9Zy2ZpuIkOK7vKl3fdDFkrJHvbSGcb6W0jxSbad6avB4LkdafdlfDMQ0wuoombsll5RpYHrZCMtmhE41i4OY4qT3y8_n3Jrb8N30Pzndurruxe9C630QIFx_qKxCaaGeevdgfN6cl4UOS7fjO-AWEN1c0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIMSF8RSPARHiBhFtkrXNCfGahpimSTzELUqTVEygDXVjv584a8tDcEBcWytt7Tj-KtufETrMBM0M1RHJdBYRHtKUJNpYwlSoIhOLRFvPM9uJu93k8VH0PnXx-2r3MiU57WkAlqbB-OTVZCdV4xsgEcg_QuEZY4yIWTTHYWgQ_K_fPlR5BBr7CV0wg55wF6yLtpmf1_gSmmafoDDyE-r8lij18adV__-bL6OlAnvis-lmWUEzdrCK6uVcB1y4-Ro6PR8OR1AOjR28Tl8svoA6T3fwYIdw8TOB88XJT_oKXzvUnUNFCO7lkPLxu3gd3beu7i7apBi0QDRrBmMSpkDjLoLUJJY74wDNmeAqSgOqqLWaGqWZCUKbCMUMdX5vmIqBit7aLHZRfwPVBsOB3UQ4ZVHCVWyUEhkPBU9tKHSQuG9mTZul4RY6KnUsX6d8GrJiTva6kU430utGii104MxQCQIVdvusI-Gah55cRBO3ZKO0kiwccCQZbdKIxrFwaxyXVvm4_fsjt_8mvo8Wepct2bnu3uygRQp29Y2KDVQb5292F83rybg_yvf8vnwH63LesQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Double+Coverage+for+k-Server+via+Imperfect+Predictions&rft.jtitle=Algorithmica&rft.au=Lindermayr+Alexander&rft.au=Megow%2C+Nicole&rft.au=Bertrand%2C+Simon&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=87&rft.issue=11&rft.spage=1477&rft.epage=1517&rft_id=info:doi/10.1007%2Fs00453-025-01333-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon