Boosting Double Coverage for k-Server via Imperfect Predictions
We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however...
Gespeichert in:
| Veröffentlicht in: | Algorithmica Jg. 87; H. 11; S. 1477 - 1517 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2025
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We study the online
k
-server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for
k
-server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any
k
almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting
local
and
memoryless
properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is
memoryless
. Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data. |
|---|---|
| AbstractList | Abstract We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k -server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless. Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data. We study the online k-server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k-server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless. Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data. We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k -server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless . Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data. We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request sequence, we assume that there is given some advice (for example, machine-learned predictions) on an algorithm’s decision. There is, however, no guarantee on the quality of the prediction, and it might be far from being correct. Our main result is a learning-augmented variation of the well-known Double Coverage algorithm for k -server on the line (Chrobak et al. in SIAM J Discret Math 4(2):172–181, 1991) in which we integrate predictions as well as our trust into their quality. We give an error-dependent worst-case performance guarantee, which is a function of a user-defined confidence parameter, and which interpolates smoothly between an optimal performance in case that all predictions are correct, and the best-possible performance regardless of the prediction quality. When given good predictions, we improve upon known lower bounds for online algorithms without advice. We further show that our algorithm achieves for any k almost optimal guarantees, within a class of deterministic learning-augmented algorithms respecting local and memoryless properties. Our algorithm outperforms a previously proposed (more general) learning-augmented algorithm. It is noteworthy that the previous algorithm crucially exploits memory, whereas our algorithm is memoryless . Finally, we demonstrate in experiments the practicability and the superior performance of our algorithm on real-world data. |
| Author | Simon, Bertrand Megow, Nicole Lindermayr, Alexander |
| Author_xml | – sequence: 1 givenname: Alexander surname: Lindermayr fullname: Lindermayr, Alexander email: linderal@uni-bremen.de organization: Faculty of Mathematics and Computer Science, University of Bremen – sequence: 2 givenname: Nicole surname: Megow fullname: Megow, Nicole organization: Faculty of Mathematics and Computer Science, University of Bremen – sequence: 3 givenname: Bertrand surname: Simon fullname: Simon, Bertrand organization: IN2P3 Computing Center, CNRS |
| BackLink | https://hal.science/hal-05193496$$DView record in HAL |
| BookMark | eNp9kE1Lw0AQhhdRsK3-AU8BTx5WZz-S3T1JrR8tFBTU87JJJjW1zdbdtOC_NzWiN0_DDM_7MjxDctj4Bgk5Y3DJANRVBJCpoMBTCkwIQc0BGTApOIVUskMyAKY0lRlTx2QY4xKAcWWyAbm-8T62dbNIbv02X2Ey8TsMboFJ5UPyTp8xdHuyq10yW28wVFi0yVPAsi7a2jfxhBxVbhXx9GeOyOv93ctkSuePD7PJeE4LkUJLWc40BwN5qVEWqLjUqZEuy4E7jljw0hWiBIbaOFFykFAKp7RQGrFSwMWIXPS9b25lN6Feu_BpvavtdDy3-xukzAhpsh3r2POe3QT_scXY2qXfhqZ7zwqe8owrZUxH8Z4qgo8xYPVby8Dupdpequ2k2m-pdh8SfSh2cLPA8Ff9T-oLc495eg |
| Cites_doi | 10.1109/IJCNN.2005.1555954 10.1145/3582689 10.1145/3183713.3196909 10.1137/1.9781611975994.112 10.1109/TLA.2016.7786315 10.4230/LIPIcs.ICALP.2021.57 10.1016/j.cosrev.2009.04.002 10.4230/LIPIcs.ITCS.2022.99 10.1007/978-3-319-77404-6_5 10.1016/j.eswa.2019.06.015 10.1145/3490148.3538595 10.1145/3564246.3585132 10.1007/s10878-019-00493-z 10.1609/aaai.v36i9.21208 10.1145/3447579 10.1137/1.9781611977073.3 10.1145/2020408.2020579 10.1137/0220008 10.1137/0404017 10.1145/3365002 10.1016/j.tcs.2004.06.002 10.1017/CBO9781107298019 10.1137/1.9781611977073.4 10.1145/1250910.1250952 10.1145/1968.1972 10.1016/j.tcs.2004.06.001 10.1609/aaai.v36i8.20854 10.4230/LIPIcs.ITCS.2024.62 10.1017/9781108637435.037 10.4230/LIPIcs.SWAT.2022.30 10.4230/LIPIcs.ITCS.2023.12 10.1145/3188745.3188798 10.1007/978-3-030-73879-2_2 10.1007/s00453-024-01270-z 10.1287/moor.2022.0225 10.1145/210118.210128 10.1145/3490486.3538296 10.1145/62212.62243 10.1109/FOCS54457.2022.00036 10.1145/3313276.3316370 10.1016/0196-6774(90)90003-W 10.1145/2786.2793 10.1137/1.9781611977912.126 10.4230/LIPIcs.ESA.2023.12 10.1137/1116025 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | C6C AAYXX CITATION JQ2 1XC |
| DOI | 10.1007/s00453-025-01333-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 1517 |
| ExternalDocumentID | oai:HAL:hal-05193496v1 10_1007_s00453_025_01333_9 |
| GrantInformation_xml | – fundername: Universität Bremen (1013) |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFSG ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~EX AAYXX CITATION JQ2 1XC |
| ID | FETCH-LOGICAL-c350t-1b182090bd8e4ce7248594a6b02a2eec2dac3d01e89a3d2040d3a78378eef7023 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001527693100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Tue Dec 02 06:20:51 EST 2025 Sun Nov 09 08:11:50 EST 2025 Sat Nov 29 07:29:00 EST 2025 Sun Sep 21 01:10:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Learning-augmented algorithms Online k-server problem Competitive analysis Consistency Robustness Advice Imperfect predictions |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-1b182090bd8e4ce7248594a6b02a2eec2dac3d01e89a3d2040d3a78378eef7023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2565-1163 |
| OpenAccessLink | https://link.springer.com/10.1007/s00453-025-01333-9 |
| PQID | 3252627799 |
| PQPubID | 2043795 |
| PageCount | 41 |
| ParticipantIDs | hal_primary_oai_HAL_hal_05193496v1 proquest_journals_3252627799 crossref_primary_10_1007_s00453_025_01333_9 springer_journals_10_1007_s00453_025_01333_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | A Borodin (1333_CR13) 1998 VN Vapnik (1333_CR53) 1971; 16 1333_CR37 W Zhang (1333_CR55) 2020; 39 1333_CR38 1333_CR39 E Koutsoupias (1333_CR36) 2004; 324 1333_CR5 1333_CR4 1333_CR7 1333_CR9 1333_CR8 1333_CR33 S Shalev-Shwartz (1333_CR50) 2014 1333_CR30 A Lindermayr (1333_CR40) 2020 1333_CR3 M Chrobak (1333_CR22) 1991; 20 1333_CR31 1333_CR2 1333_CR32 M Chrobak (1333_CR23) 1991; 4 E Koutsoupias (1333_CR34) 2009; 3 1333_CR26 1333_CR28 1333_CR29 P Agrawal (1333_CR1) 2024; 49 A Antoniadis (1333_CR6) 2023; 19 ML Costa (1333_CR27) 2016; 14 MS Manasse (1333_CR45) 1990; 11 1333_CR25 1333_CR21 1333_CR19 1333_CR15 E Koutsoupias (1333_CR35) 1995; 42 1333_CR16 1333_CR17 1333_CR18 LG Valiant (1333_CR52) 1984; 27 DD Sleator (1333_CR51) 1985; 28 1333_CR12 1333_CR14 1333_CR10 1333_CR54 Y Bartal (1333_CR11) 2004; 324 1333_CR48 1333_CR49 R Lins (1333_CR41) 2019; 135 T Lykouris (1333_CR42) 2021; 68 1333_CR44 M Chrobak (1333_CR24) 2025; 87 A Chiplunkar (1333_CR20) 2020; 16 1333_CR46 1333_CR47 1333_CR43 |
| References_xml | – ident: 1333_CR39 – ident: 1333_CR2 – ident: 1333_CR12 – ident: 1333_CR33 doi: 10.1109/IJCNN.2005.1555954 – volume: 19 start-page: 19:1 issue: 2 year: 2023 ident: 1333_CR6 publication-title: ACM Trans. Algorithms doi: 10.1145/3582689 – ident: 1333_CR37 doi: 10.1145/3183713.3196909 – ident: 1333_CR49 doi: 10.1137/1.9781611975994.112 – volume-title: Online Computation and Competitive Analysis year: 1998 ident: 1333_CR13 – ident: 1333_CR32 – volume: 14 start-page: 4351 issue: 10 year: 2016 ident: 1333_CR27 publication-title: IEEE Lat. Am. Trans. doi: 10.1109/TLA.2016.7786315 – ident: 1333_CR26 doi: 10.4230/LIPIcs.ICALP.2021.57 – volume: 3 start-page: 105 issue: 2 year: 2009 ident: 1333_CR34 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.04.002 – ident: 1333_CR38 doi: 10.4230/LIPIcs.ITCS.2022.99 – ident: 1333_CR5 doi: 10.1007/978-3-319-77404-6_5 – volume: 135 start-page: 212 year: 2019 ident: 1333_CR41 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.06.015 – ident: 1333_CR19 doi: 10.1145/3490148.3538595 – ident: 1333_CR16 doi: 10.1145/3564246.3585132 – volume: 39 start-page: 509 issue: 2 year: 2020 ident: 1333_CR55 publication-title: J. Comb. Optim. doi: 10.1007/s10878-019-00493-z – ident: 1333_CR29 doi: 10.1609/aaai.v36i9.21208 – volume-title: Learning-augmented Online Algorithms for the 2-server Problem on the Line and Generalizations year: 2020 ident: 1333_CR40 – volume: 68 start-page: 24:1 issue: 4 year: 2021 ident: 1333_CR42 publication-title: J. ACM doi: 10.1145/3447579 – ident: 1333_CR7 doi: 10.1137/1.9781611977073.3 – ident: 1333_CR21 doi: 10.1145/2020408.2020579 – volume: 20 start-page: 144 issue: 1 year: 1991 ident: 1333_CR22 publication-title: SIAM J. Comput. doi: 10.1137/0220008 – volume: 4 start-page: 172 issue: 2 year: 1991 ident: 1333_CR23 publication-title: SIAM J. Discret. Math. doi: 10.1137/0404017 – volume: 16 start-page: 14:1 issue: 1 year: 2020 ident: 1333_CR20 publication-title: ACM Trans. Algorithms doi: 10.1145/3365002 – volume: 324 start-page: 347 issue: 2–3 year: 2004 ident: 1333_CR36 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2004.06.002 – volume-title: Understanding Machine Learning - From Theory to Algorithms year: 2014 ident: 1333_CR50 doi: 10.1017/CBO9781107298019 – ident: 1333_CR10 doi: 10.1137/1.9781611977073.4 – ident: 1333_CR47 – ident: 1333_CR43 doi: 10.1145/1250910.1250952 – volume: 27 start-page: 1134 issue: 11 year: 1984 ident: 1333_CR52 publication-title: Commun. ACM doi: 10.1145/1968.1972 – ident: 1333_CR28 – volume: 324 start-page: 337 issue: 2–3 year: 2004 ident: 1333_CR11 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2004.06.001 – ident: 1333_CR4 – ident: 1333_CR54 doi: 10.1609/aaai.v36i8.20854 – ident: 1333_CR31 doi: 10.4230/LIPIcs.ITCS.2024.62 – ident: 1333_CR46 doi: 10.1017/9781108637435.037 – ident: 1333_CR48 doi: 10.4230/LIPIcs.SWAT.2022.30 – ident: 1333_CR9 doi: 10.4230/LIPIcs.ITCS.2023.12 – ident: 1333_CR17 doi: 10.1145/3188745.3188798 – ident: 1333_CR18 doi: 10.1007/978-3-030-73879-2_2 – volume: 87 start-page: 89 issue: 1 year: 2025 ident: 1333_CR24 publication-title: Algorithmica doi: 10.1007/s00453-024-01270-z – volume: 49 start-page: 2626 issue: 4 year: 2024 ident: 1333_CR1 publication-title: Math. Oper. Res. doi: 10.1287/moor.2022.0225 – volume: 42 start-page: 971 issue: 5 year: 1995 ident: 1333_CR35 publication-title: J. ACM doi: 10.1145/210118.210128 – ident: 1333_CR30 doi: 10.1145/3490486.3538296 – ident: 1333_CR44 doi: 10.1145/62212.62243 – ident: 1333_CR15 doi: 10.1109/FOCS54457.2022.00036 – ident: 1333_CR25 doi: 10.1145/3313276.3316370 – volume: 11 start-page: 208 issue: 2 year: 1990 ident: 1333_CR45 publication-title: J. Algorithms doi: 10.1016/0196-6774(90)90003-W – ident: 1333_CR3 – volume: 28 start-page: 202 issue: 2 year: 1985 ident: 1333_CR51 publication-title: Commun. ACM doi: 10.1145/2786.2793 – ident: 1333_CR14 doi: 10.1137/1.9781611977912.126 – ident: 1333_CR8 doi: 10.4230/LIPIcs.ESA.2023.12 – volume: 16 start-page: 264 issue: 2 year: 1971 ident: 1333_CR53 publication-title: Theory Probab. Appl. doi: 10.1137/1116025 |
| SSID | ssj0012796 |
| Score | 2.4268305 |
| Snippet | We study the online
k
-server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request... We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request... We study the online k-server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about the request... Abstract We study the online k -server problem in a learning-augmented setting. While in the traditional online model, an algorithm has no information about... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1477 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Lower bounds Machine learning Mathematics of Computing Theory of Computation |
| Title | Boosting Double Coverage for k-Server via Imperfect Predictions |
| URI | https://link.springer.com/article/10.1007/s00453-025-01333-9 https://www.proquest.com/docview/3252627799 https://hal.science/hal-05193496 |
| Volume | 87 |
| WOSCitedRecordID | wos001527693100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWK1yiLedCHZTbPZk9RiqVBK8UVvYV_BorSS1P5-d7ZJfaAHvSbLbDKzs_PBzHyD0FkmaGaojkmms5hEIVUk0cYSJkMZGy4SbT3PbJ8PBsloJIZlU1hRVbtXKUl_Uy-b3QB9QM4Ris0YY0SsojUX7hJwx9u7x2XugHI_lQvmzpPIBeiyVeZnGV_C0eoTFEN-QprfkqM-5nTr__vaLbRZYkzcXhyKbbRiJzuoXs1vwKU776LLq-m0gLJn7GC0erG4A_Wc7oLBDsniZwL3iFs_H0t849B1DpUfeJhDasef1j300L2-7_RIOVCBaNYKZiRUQNcuAmUSGzkjAJ2ZiGSsAiqptZoaqZkJQpsIyQx1_m2Y5EA5b23GXXTfR7XJdGIPEFYsTiLJjZQii0IRKRsKHSTun1nLZipsoPNKr-nrgjcjXTIke92kTjep100qGujUqX65ECive-1-Cs88xIxEPHcim5Vl0tLRipTRFo0p58LJuKgs8fH69y0P_7b8CG1QMKbvQmyi2ix_s8doXc9n4yI_8QfwHXSs0uk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-QC-uT3ysGsSbBtok2zYnWUVZcV0WX3gLaZLiouxKu-7vNxPb-kAPem1D0s4kmQ_mm28QOsgEzQzVEcl0FhEe0pQk2ljCVKgiE4tEW68z2417veThQfTLorCiYrtXKUl_U9fFboA-IOcIZDPGGBHTaJa7iAVEvuub-zp3QGPflQv6zhPuAnRZKvPzHF_C0fQjkCE_Ic1vyVEfc84b__vaJbRYYkzcft8Uy2jKDldQo-rfgMvjvIqOT0ajAmjP2MHo9NniU-BzugsGOySLnwjcI278ZKDwhUPXOTA_cD-H1I7frWvo7vzs9rRDyoYKRLNWMCZhCnLtIkhNYrlzAsiZCa6iNKCKWqupUZqZILSJUMxQd74NUzFIzlubxS66r6OZ4WhoNxBOWZRwFRulRMZDwVMbCh0k7p9Zy2ZpuIkOK7vKl3fdDFkrJHvbSGcb6W0jxSbad6avB4LkdafdlfDMQ0wuoombsll5RpYHrZCMtmhE41i4OY4qT3y8_n3Jrb8N30Pzndurruxe9C630QIFx_qKxCaaGeevdgfN6cl4UOS7fjO-AWEN1c0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIMSF8RSPARHiBhFtkrXNCfGahpimSTzELUqTVEygDXVjv584a8tDcEBcWytt7Tj-KtufETrMBM0M1RHJdBYRHtKUJNpYwlSoIhOLRFvPM9uJu93k8VH0PnXx-2r3MiU57WkAlqbB-OTVZCdV4xsgEcg_QuEZY4yIWTTHYWgQ_K_fPlR5BBr7CV0wg55wF6yLtpmf1_gSmmafoDDyE-r8lij18adV__-bL6OlAnvis-lmWUEzdrCK6uVcB1y4-Ro6PR8OR1AOjR28Tl8svoA6T3fwYIdw8TOB88XJT_oKXzvUnUNFCO7lkPLxu3gd3beu7i7apBi0QDRrBmMSpkDjLoLUJJY74wDNmeAqSgOqqLWaGqWZCUKbCMUMdX5vmIqBit7aLHZRfwPVBsOB3UQ4ZVHCVWyUEhkPBU9tKHSQuG9mTZul4RY6KnUsX6d8GrJiTva6kU430utGii104MxQCQIVdvusI-Gah55cRBO3ZKO0kiwccCQZbdKIxrFwaxyXVvm4_fsjt_8mvo8Wepct2bnu3uygRQp29Y2KDVQb5292F83rybg_yvf8vnwH63LesQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Double+Coverage+for+k-Server+via+Imperfect+Predictions&rft.jtitle=Algorithmica&rft.au=Lindermayr+Alexander&rft.au=Megow%2C+Nicole&rft.au=Bertrand%2C+Simon&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=87&rft.issue=11&rft.spage=1477&rft.epage=1517&rft_id=info:doi/10.1007%2Fs00453-025-01333-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |