An Integrated 3D Hydrophilicity/Hydrophobicity Design for Artificial Sweating Skin (i‐TRANS) Mimicking Human Body Perspiration
Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal art...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 34; no. 44; pp. e2204168 - n/a |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
01.11.2022
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i‐TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i‐TRANS is able to transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration‐relevant research, greatly avoiding unwanted interference from the “skin” layer. In addition, the facile, fast, and cost‐effective fabrication approach and versatile usage of i‐TRANS can further facilitate its application.
A facile surface modification method for fibrous materials is developed to fabricate artificial sweating skin, based on an integrated 3D hydrophilicity/hydrophobicity design. With the hydrophilicity/hydrophobicity contrast in both the lateral and vertical directions, the constructed “skin” can transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top, decently mimicking human skin perspiration situation. |
|---|---|
| AbstractList | Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i-TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i-TRANS is able to transport "sweat" directionally without trapping undesired excess water and attain uniform "secretion" of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration-relevant research, greatly avoiding unwanted interference from the "skin" layer. In addition, the facile, fast, and cost-effective fabrication approach and versatile usage of i-TRANS can further facilitate its application.Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i-TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i-TRANS is able to transport "sweat" directionally without trapping undesired excess water and attain uniform "secretion" of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration-relevant research, greatly avoiding unwanted interference from the "skin" layer. In addition, the facile, fast, and cost-effective fabrication approach and versatile usage of i-TRANS can further facilitate its application. Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i‐TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i‐TRANS is able to transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration‐relevant research, greatly avoiding unwanted interference from the “skin” layer. In addition, the facile, fast, and cost‐effective fabrication approach and versatile usage of i‐TRANS can further facilitate its application. Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i‐TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i‐TRANS is able to transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration‐relevant research, greatly avoiding unwanted interference from the “skin” layer. In addition, the facile, fast, and cost‐effective fabrication approach and versatile usage of i‐TRANS can further facilitate its application. A facile surface modification method for fibrous materials is developed to fabricate artificial sweating skin, based on an integrated 3D hydrophilicity/hydrophobicity design. With the hydrophilicity/hydrophobicity contrast in both the lateral and vertical directions, the constructed “skin” can transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top, decently mimicking human skin perspiration situation. |
| Author | Yang, Yufei Lai, Jian‐Cheng Zhou, Jiawei Ye, Yusheng Peng, Yucan Cui, Yi |
| Author_xml | – sequence: 1 givenname: Yucan orcidid: 0000-0001-7852-1541 surname: Peng fullname: Peng, Yucan organization: Stanford University – sequence: 2 givenname: Jiawei surname: Zhou fullname: Zhou, Jiawei organization: Stanford University – sequence: 3 givenname: Yufei surname: Yang fullname: Yang, Yufei organization: Stanford University – sequence: 4 givenname: Jian‐Cheng orcidid: 0000-0001-9290-678X surname: Lai fullname: Lai, Jian‐Cheng organization: Stanford University – sequence: 5 givenname: Yusheng surname: Ye fullname: Ye, Yusheng organization: Stanford University – sequence: 6 givenname: Yi orcidid: 0000-0002-9354-5952 surname: Cui fullname: Cui, Yi email: yicui@stanford.edu organization: SLAC National Accelerator Laboratory |
| BookMark | eNqFkc9O3DAQxq2KSl0oV86WeqGHLOM_8SbHlG27SNBWLJwjN55sDYm92Fmh3HiEPiNPgpdFrYRU9TSa8e-b8cy3T_acd0jIEYMpA-An2vR6yoFzkEwVb8iE5ZxlEsp8j0ygFHlWKlm8I_sx3gBAqUBNyEPl6JkbcBX0gIaKOV2MJvj1L9vZxg7jyUvqfz6ndI7RrhxtfaBVGGybqrqjy3vUg3Urury1jh7bx4ffV5fVt-VHemF729xunxabXjv6yZuR_sAQ1zZNtN69J29b3UU8fIkH5PrL56vTRXb-_evZaXWeNSKHIms5U9ightK0M9OyXJZGpi1UoUEY1cx4qwqhmwJ1btSskYIJBImKQamVQnFAjnd918HfbTAOdW9jg12nHfpNrPkMhEwXU5DQD6_QG78JLv0uUalvwRkvEiV3VBN8jAHbOh3oeaUhaNvVDOqtLfXWlvqPLUk2fSVbB9vrMP5bUO4E97bD8T90Xc0vqr_aJwJQovM |
| CitedBy_id | crossref_primary_10_1021_acs_nanolett_5c03730 crossref_primary_10_1002_smll_202311272 crossref_primary_10_1039_D3MH00174A crossref_primary_10_1002_adfm_202513685 crossref_primary_10_1021_acsapm_5c00576 crossref_primary_10_1021_acsnano_5c10988 crossref_primary_10_1002_adma_202209215 crossref_primary_10_1016_j_nantod_2022_101723 crossref_primary_10_1016_j_ijfatigue_2023_107932 crossref_primary_10_1039_D4EE03646H crossref_primary_10_1038_s41467_025_62049_6 crossref_primary_10_1016_j_cej_2025_167553 crossref_primary_10_1073_pnas_2317440121 crossref_primary_10_1002_admt_202402196 crossref_primary_10_1016_j_cej_2023_148204 crossref_primary_10_1002_adma_202305606 crossref_primary_10_1007_s11431_023_2374_0 crossref_primary_10_1016_j_cej_2023_147972 crossref_primary_10_1016_j_cej_2024_151771 crossref_primary_10_1002_smll_202404137 crossref_primary_10_1016_j_bioactmat_2024_06_015 crossref_primary_10_1007_s12274_024_6820_1 crossref_primary_10_1039_D4BM01482K crossref_primary_10_1038_s41467_024_45926_4 crossref_primary_10_1002_advs_202305228 crossref_primary_10_1002_smtd_202500839 crossref_primary_10_1093_nsr_nwae295 crossref_primary_10_1002_adfm_202517882 crossref_primary_10_1002_adma_202311633 crossref_primary_10_1002_adma_202403316 crossref_primary_10_1002_advs_202309006 crossref_primary_10_1016_j_colsurfb_2023_113677 crossref_primary_10_1007_s40820_023_01126_1 crossref_primary_10_1002_adfm_202410955 |
| Cites_doi | 10.1152/jappl.1971.31.1.80 10.1039/c3lc41231h 10.1038/s41467-021-26384-8 10.1016/j.joule.2019.03.015 10.1063/1.4921039 10.1002/adfm.201504755 10.1016/j.apsusc.2012.08.097 10.1021/cr400083y 10.1007/s00484-017-1331-3 10.1126/science.aba5132 10.3390/membranes11020150 10.1177/0040517507078027 10.1039/b612140c 10.1126/science.1182383 10.1038/nmat3711 10.1038/s41893-018-0023-2 10.1021/acsapm.9b01214 10.1111/j.1600-0846.2007.00229.x 10.3390/pharmaceutics12020152 10.1021/acsami.9b03421 10.1111/srt.12235 10.1126/sciadv.aaz0013 10.1073/pnas.23.12.631 10.1021/acsami.8b12116 10.1021/acsnano.8b08242 10.1525/9780520954816 10.5650/jos.ess17152 10.1063/1.4979701 10.1002/adfm.201800269 10.1021/ac9013989 10.1126/science.aaf5471 10.1016/j.porgcoat.2021.106311 10.1016/S0190-9622(89)70063-3 10.1557/mrs.2017.92 10.1126/scitranslmed.aaf2593 10.1002/adma.202003014 10.1016/j.aca.2018.10.039 10.1038/nature25494 10.1177/0040517519835767 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202204168 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adma_202204168 ADMA202204168 |
| Genre | article |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3508-f216ecea09df7df1549d400068a03d6c72f683ac8ea5d67c4313e04e6109a66e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863033400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 11:25:37 EDT 2025 Mon Jul 14 09:18:09 EDT 2025 Tue Nov 18 21:00:19 EST 2025 Sat Nov 29 07:24:08 EST 2025 Wed Jan 22 16:31:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 44 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3508-f216ecea09df7df1549d400068a03d6c72f683ac8ea5d67c4313e04e6109a66e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9354-5952 0000-0001-9290-678X 0000-0001-7852-1541 |
| PQID | 2731382128 |
| PQPubID | 2045203 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2703415260 proquest_journals_2731382128 crossref_citationtrail_10_1002_adma_202204168 crossref_primary_10_1002_adma_202204168 wiley_primary_10_1002_adma_202204168_ADMA202204168 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 61 2012; 261 2017; 42 2018; 28 2019; 3 1989; 20 2010; 327 2019; 11 1996 2006; 6 1937; 23 2005 2020; 12 2018; 67 2015; 9 2007; 77 2007; 13 2019; 1049 2010; 82 1971; 31 2020; 6 2020; 2 2021; 12 2021; 33 2021; 11 2015; 115 2021; 157 2018; 1 2013; 13 2013; 12 2019; 89 2018; 555 2020; 370 2016; 353 2014 2013 2018; 10 2016; 26 2016; 8 2016; 22 2019; 110 2018; 13 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_1_1 e_1_2_11_21_1 e_1_2_11_20_1 Mack G. W. (e_1_2_11_19_1) 1996 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 |
| References_xml | – volume: 1049 start-page: 170 year: 2019 publication-title: Anal. Chim. Acta – volume: 13 start-page: 1060 year: 2018 publication-title: ACS Nano – volume: 13 start-page: 1868 year: 2013 publication-title: Lab Chip – volume: 3 start-page: 1478 year: 2019 publication-title: Joule – year: 2005 – volume: 12 start-page: 6122 year: 2021 publication-title: Nat. Commun. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 22 start-page: 3 year: 2016 publication-title: Skin Res. Technol. – volume: 370 start-page: 961 year: 2020 publication-title: Science – year: 2014 – volume: 11 start-page: 150 year: 2021 publication-title: Membranes – volume: 77 start-page: 227 year: 2007 publication-title: Text. Res. J. – volume: 9 year: 2015 publication-title: Biomicrofluidics – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 353 start-page: 1019 year: 2016 publication-title: Science – volume: 115 start-page: 8230 year: 2015 publication-title: Chem. Rev. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2016 publication-title: Sci. Transl. Med. – volume: 67 start-page: 47 year: 2018 publication-title: J. Oleo Sci. – volume: 89 start-page: 4537 year: 2019 publication-title: Text. Res. J. – volume: 42 start-page: 356 year: 2017 publication-title: MRS Bull. – start-page: 187 year: 1996 end-page: 214 – volume: 23 start-page: 631 year: 1937 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 899 year: 2013 publication-title: Nat. Mater. – volume: 157 year: 2021 publication-title: Prog. Org. Coat. – volume: 1 start-page: 105 year: 2018 publication-title: Nat. Sustainability – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 152 year: 2020 publication-title: Pharmaceutics – volume: 6 start-page: 1484 year: 2006 publication-title: Lab Chip – volume: 20 start-page: 537 year: 1989 publication-title: J. Am. Acad. Dermatol. – volume: 13 start-page: 299 year: 2007 publication-title: Skin Res. Technol. – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 31 start-page: 80 year: 1971 publication-title: J. Appl. Physiol. – volume: 2 start-page: 1535 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 261 start-page: 764 year: 2012 publication-title: Appl. Surf. Sci. – volume: 61 start-page: 1519 year: 2017 publication-title: Int. J. Biometeorol. – year: 2013 – volume: 82 start-page: 3 year: 2010 publication-title: Anal. Chem. – volume: 110 year: 2019 publication-title: Appl. Phys. Lett. – ident: e_1_2_11_17_1 doi: 10.1152/jappl.1971.31.1.80 – ident: e_1_2_11_21_1 doi: 10.1039/c3lc41231h – ident: e_1_2_11_41_1 doi: 10.1038/s41467-021-26384-8 – ident: e_1_2_11_9_1 doi: 10.1016/j.joule.2019.03.015 – ident: e_1_2_11_20_1 doi: 10.1063/1.4921039 – ident: e_1_2_11_3_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_11_34_1 doi: 10.1016/j.apsusc.2012.08.097 – ident: e_1_2_11_32_1 doi: 10.1021/cr400083y – ident: e_1_2_11_13_1 doi: 10.1007/s00484-017-1331-3 – ident: e_1_2_11_12_1 doi: 10.1126/science.aba5132 – ident: e_1_2_11_24_1 doi: 10.3390/membranes11020150 – ident: e_1_2_11_27_1 doi: 10.1177/0040517507078027 – ident: e_1_2_11_42_1 doi: 10.1039/b612140c – ident: e_1_2_11_10_1 doi: 10.1126/science.1182383 – ident: e_1_2_11_15_1 doi: 10.1038/nmat3711 – ident: e_1_2_11_8_1 doi: 10.1038/s41893-018-0023-2 – ident: e_1_2_11_23_1 doi: 10.1021/acsapm.9b01214 – ident: e_1_2_11_5_1 doi: 10.1111/j.1600-0846.2007.00229.x – ident: e_1_2_11_14_1 doi: 10.3390/pharmaceutics12020152 – ident: e_1_2_11_36_1 doi: 10.1021/acsami.9b03421 – ident: e_1_2_11_6_1 doi: 10.1111/srt.12235 – ident: e_1_2_11_38_1 doi: 10.1126/sciadv.aaz0013 – ident: e_1_2_11_16_1 doi: 10.1073/pnas.23.12.631 – ident: e_1_2_11_30_1 doi: 10.1021/acsami.8b12116 – ident: e_1_2_11_39_1 doi: 10.1021/acsnano.8b08242 – ident: e_1_2_11_1_1 doi: 10.1525/9780520954816 – ident: e_1_2_11_4_1 doi: 10.5650/jos.ess17152 – ident: e_1_2_11_37_1 doi: 10.1063/1.4979701 – ident: e_1_2_11_40_1 doi: 10.1002/adfm.201800269 – ident: e_1_2_11_26_1 – start-page: 187 volume-title: Handbook of Physiology, Sect 4: Environmental Physiology year: 1996 ident: e_1_2_11_19_1 – ident: e_1_2_11_31_1 doi: 10.1021/ac9013989 – ident: e_1_2_11_7_1 doi: 10.1126/science.aaf5471 – ident: e_1_2_11_33_1 doi: 10.1016/j.porgcoat.2021.106311 – ident: e_1_2_11_18_1 doi: 10.1016/S0190-9622(89)70063-3 – ident: e_1_2_11_25_1 – ident: e_1_2_11_29_1 doi: 10.1557/mrs.2017.92 – ident: e_1_2_11_22_1 doi: 10.1126/scitranslmed.aaf2593 – ident: e_1_2_11_2_1 doi: 10.1002/adma.202003014 – ident: e_1_2_11_35_1 doi: 10.1016/j.aca.2018.10.039 – ident: e_1_2_11_11_1 doi: 10.1038/nature25494 – ident: e_1_2_11_28_1 doi: 10.1177/0040517519835767 |
| SSID | ssj0009606 |
| Score | 2.5871146 |
| Snippet | Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2204168 |
| SubjectTerms | artificial skin Automation Hydrophilicity Hydrophobicity In vitro methods and tests Manufacturing engineering Materials science Nanofibers Nylon 6 Perspiration perspiration mimicking Polydimethylsiloxane Robotics Selective surfaces Skin surface hydrophilicity/hydrophobicity surface modification Sweat Sweating Textiles Thermoregulation |
| Title | An Integrated 3D Hydrophilicity/Hydrophobicity Design for Artificial Sweating Skin (i‐TRANS) Mimicking Human Body Perspiration |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204168 https://www.proquest.com/docview/2731382128 https://www.proquest.com/docview/2703415260 |
| Volume | 34 |
| WOSCitedRecordID | wos000863033400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5B6AEOLbQgwkuLhER7sGLWZm0fTUMEEkSIh5SbtS-jSK2NEh7ixk_ob-wv6czaccIBIZWbVx6vrd15fN7Z_QZgzyIGjyxXHpcJ90KLNpckWng2Qm-pc5WoPHTFJqJ-Px4MkouZU_wVP0Sz4EaW4fw1GbhU486UNFQaxxvEuY-YIp6HBY7KG7ZgoXvZuzmbEu8KV1-T8n1eIsJ4Qtzo887rHl4HpinanMWsLuj0vnz8c5fhcw04WVppyArM2eIrLM3QEH6Dl7RgpxPaCMOCLjt5NqPyjtZaNKL0Tt0slWuyrtv1wRDuum4rDgp29UTws7hlVM-LfR_-fflzfZn2r36w8-HvoaYleeZSBuyoNM-Mtt67JD8qxirc9I6vf554dWUGTweI6LycHwirrfQTk0cmJ5o3E1Lki6UfGKEjnos4kDq28tCISCNKCawfWuJ2l0LYYA1aRVnYdWCcK_xFRy-bR0QWFyujFfoM30jESsJXbfAm05Lpmracqmf8yirCZZ7RyGbNyLZhv5G_qwg73pTcmsxyVhvuOEM0R6yMGLXbsNvcRpOjPIosbPlAMqhoiHuE3wbu5vydN2Vp9zxtWhv_89AmLNJ1dQpyC1r3owe7DZ_04_1wPNqB-WgQ79Sq_w8XcAOm |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED5tBWnwwMZgooMNIyEBD1E9JzjJY7auKlpbISgSb5FjO1OlkaACm3jjJ-w38ku4c9IUHiakiUcnFyeyfXdf7uzvAHYtYvDQiswTKhZeYFHn4lhLz4ZoLXWexVkeuGIT4WgUnZ_Hx_VuQjoLU_FDNAE30gxnr0nBKSDdmbOGKuOIg4TgCCqi17AQ4Fo6bMFC96R3Npgz70pXYJMSfl4sg2jG3MhF52kPTz3THG4-Bq3O6_TevsD3voOVGnKypFojq_DKFu9h-RER4RrcJQU7mhFHGOZ3Wf_WTMtLirZoxOmdullmrsm6bt8HQ8Druq1YKNjpHwKgxU9GFb3Y_uT-7u_4JBmdHrDh5GKiKSjPXNKAfS3NLaPN9y7Nj0tjHc5638ff-l5dm8HTPmI6LxdfpNVW8djkocmJ6M0E5PsixX0jdShyGflKR1YdGhlqxCm-5YEldnclpfU_QKsoC7sBTIgMf9LRzuYh0cVFmdEZWg1uFKIlybM2eLN5SXVNXE71M36lFeWySGlk02Zk27DXyF9WlB3_lNyaTXNaq-5ViniOeBnRb7dhp7mNSkeZFFXY8oZkuE_IR_I2CDfpz7wpTbrDpGl9_J-HtuFNfzwcpIOj0Y9NWKLr1ZnILWhdT2_sJ1jUv68nV9PPtQY8AIsIBq4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3RBVX0wEcLYltajFSp7SFa1wlOcgwNKxCwQnxI3CLHdtBKJVkt0Gpv-xP6G_tLOuNks3CoKqEenThOZPvNvHjsNwAfLXLw0IrcEyoWXmARc3GspWdDtJa6yOO8CFyyiXAwiK6v47NmNyGdhan1IdoFN0KGs9cEcDsyRW-uGqqMEw4SgiOpiF7AYrAXS8TmYnrevzqZK-9Kl2CTAn5eLINoptzIRe9pC08905xuPiatzuv0V__D967BSkM5WVLPkXVYsOVrePVIiPANTJOSHc2EIwzzU3Y4MeNqRKstGnl6rylWuSuy1O37YEh4XbO1CgW7-EkEtLxhlNGLfR7-nv66PE8GF1_Y6fB2qGlRnrmgAduvzITR5nsX5sepsQFX_YPLb4dek5vB0z5yOq8QX6XVVvHYFKEpSOjNBOT7IsV9I3UoChn5SkdW7RkZauQpvuWBJXV3JaX1N6FTVqXdAiZEjj_paGeLkOTiotzoHK0GNwrZkuR5F7zZuGS6ES6n_Bnfs1pyWWTUs1nbs1341NYf1ZIdf625PRvmrIHuXYZ8jnQZ0W93Ybe9jaCjSIoqbfVAdbhPzEfyLgg36P94U5akp0lbevuch3bg5Vnaz06OBsfvYJku10cit6FzP36w72FJ_7gf3o0_NAD4AwrdBik |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+3D+Hydrophilicity%2FHydrophobicity+Design+for+Artificial+Sweating+Skin+%28i-TRANS%29+Mimicking+Human+Body+Perspiration&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Peng%2C+Yucan&rft.au=Zhou%2C+Jiawei&rft.au=Yang%2C+Yufei&rft.au=Lai%2C+Jian-Cheng&rft.date=2022-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=44&rft.spage=e2204168&rft_id=info:doi/10.1002%2Fadma.202204168&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |