An Integrated 3D Hydrophilicity/Hydrophobicity Design for Artificial Sweating Skin (i‐TRANS) Mimicking Human Body Perspiration

Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal art...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 34; no. 44; pp. e2204168 - n/a
Main Authors: Peng, Yucan, Zhou, Jiawei, Yang, Yufei, Lai, Jian‐Cheng, Ye, Yusheng, Cui, Yi
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.11.2022
Subjects:
ISSN:0935-9648, 1521-4095, 1521-4095
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i‐TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i‐TRANS is able to transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration‐relevant research, greatly avoiding unwanted interference from the “skin” layer. In addition, the facile, fast, and cost‐effective fabrication approach and versatile usage of i‐TRANS can further facilitate its application. A facile surface modification method for fibrous materials is developed to fabricate artificial sweating skin, based on an integrated 3D hydrophilicity/hydrophobicity design. With the hydrophilicity/hydrophobicity contrast in both the lateral and vertical directions, the constructed “skin” can transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top, decently mimicking human skin perspiration situation.
AbstractList Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i-TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i-TRANS is able to transport "sweat" directionally without trapping undesired excess water and attain uniform "secretion" of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration-relevant research, greatly avoiding unwanted interference from the "skin" layer. In addition, the facile, fast, and cost-effective fabrication approach and versatile usage of i-TRANS can further facilitate its application.Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i-TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i-TRANS is able to transport "sweat" directionally without trapping undesired excess water and attain uniform "secretion" of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration-relevant research, greatly avoiding unwanted interference from the "skin" layer. In addition, the facile, fast, and cost-effective fabrication approach and versatile usage of i-TRANS can further facilitate its application.
Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i‐TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i‐TRANS is able to transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration‐relevant research, greatly avoiding unwanted interference from the “skin” layer. In addition, the facile, fast, and cost‐effective fabrication approach and versatile usage of i‐TRANS can further facilitate its application.
Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i‐TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i‐TRANS is able to transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration‐relevant research, greatly avoiding unwanted interference from the “skin” layer. In addition, the facile, fast, and cost‐effective fabrication approach and versatile usage of i‐TRANS can further facilitate its application. A facile surface modification method for fibrous materials is developed to fabricate artificial sweating skin, based on an integrated 3D hydrophilicity/hydrophobicity design. With the hydrophilicity/hydrophobicity contrast in both the lateral and vertical directions, the constructed “skin” can transport “sweat” directionally without trapping undesired excess water and attain uniform “secretion” of sweat droplets on the top, decently mimicking human skin perspiration situation.
Author Yang, Yufei
Lai, Jian‐Cheng
Zhou, Jiawei
Ye, Yusheng
Peng, Yucan
Cui, Yi
Author_xml – sequence: 1
  givenname: Yucan
  orcidid: 0000-0001-7852-1541
  surname: Peng
  fullname: Peng, Yucan
  organization: Stanford University
– sequence: 2
  givenname: Jiawei
  surname: Zhou
  fullname: Zhou, Jiawei
  organization: Stanford University
– sequence: 3
  givenname: Yufei
  surname: Yang
  fullname: Yang, Yufei
  organization: Stanford University
– sequence: 4
  givenname: Jian‐Cheng
  orcidid: 0000-0001-9290-678X
  surname: Lai
  fullname: Lai, Jian‐Cheng
  organization: Stanford University
– sequence: 5
  givenname: Yusheng
  surname: Ye
  fullname: Ye, Yusheng
  organization: Stanford University
– sequence: 6
  givenname: Yi
  orcidid: 0000-0002-9354-5952
  surname: Cui
  fullname: Cui, Yi
  email: yicui@stanford.edu
  organization: SLAC National Accelerator Laboratory
BookMark eNqFkc9O3DAQxq2KSl0oV86WeqGHLOM_8SbHlG27SNBWLJwjN55sDYm92Fmh3HiEPiNPgpdFrYRU9TSa8e-b8cy3T_acd0jIEYMpA-An2vR6yoFzkEwVb8iE5ZxlEsp8j0ygFHlWKlm8I_sx3gBAqUBNyEPl6JkbcBX0gIaKOV2MJvj1L9vZxg7jyUvqfz6ndI7RrhxtfaBVGGybqrqjy3vUg3Urury1jh7bx4ffV5fVt-VHemF729xunxabXjv6yZuR_sAQ1zZNtN69J29b3UU8fIkH5PrL56vTRXb-_evZaXWeNSKHIms5U9ightK0M9OyXJZGpi1UoUEY1cx4qwqhmwJ1btSskYIJBImKQamVQnFAjnd918HfbTAOdW9jg12nHfpNrPkMhEwXU5DQD6_QG78JLv0uUalvwRkvEiV3VBN8jAHbOh3oeaUhaNvVDOqtLfXWlvqPLUk2fSVbB9vrMP5bUO4E97bD8T90Xc0vqr_aJwJQovM
CitedBy_id crossref_primary_10_1021_acs_nanolett_5c03730
crossref_primary_10_1002_smll_202311272
crossref_primary_10_1039_D3MH00174A
crossref_primary_10_1002_adfm_202513685
crossref_primary_10_1021_acsapm_5c00576
crossref_primary_10_1021_acsnano_5c10988
crossref_primary_10_1002_adma_202209215
crossref_primary_10_1016_j_nantod_2022_101723
crossref_primary_10_1016_j_ijfatigue_2023_107932
crossref_primary_10_1039_D4EE03646H
crossref_primary_10_1038_s41467_025_62049_6
crossref_primary_10_1016_j_cej_2025_167553
crossref_primary_10_1073_pnas_2317440121
crossref_primary_10_1002_admt_202402196
crossref_primary_10_1016_j_cej_2023_148204
crossref_primary_10_1002_adma_202305606
crossref_primary_10_1007_s11431_023_2374_0
crossref_primary_10_1016_j_cej_2023_147972
crossref_primary_10_1016_j_cej_2024_151771
crossref_primary_10_1002_smll_202404137
crossref_primary_10_1016_j_bioactmat_2024_06_015
crossref_primary_10_1007_s12274_024_6820_1
crossref_primary_10_1039_D4BM01482K
crossref_primary_10_1038_s41467_024_45926_4
crossref_primary_10_1002_advs_202305228
crossref_primary_10_1002_smtd_202500839
crossref_primary_10_1093_nsr_nwae295
crossref_primary_10_1002_adfm_202517882
crossref_primary_10_1002_adma_202311633
crossref_primary_10_1002_adma_202403316
crossref_primary_10_1002_advs_202309006
crossref_primary_10_1016_j_colsurfb_2023_113677
crossref_primary_10_1007_s40820_023_01126_1
crossref_primary_10_1002_adfm_202410955
Cites_doi 10.1152/jappl.1971.31.1.80
10.1039/c3lc41231h
10.1038/s41467-021-26384-8
10.1016/j.joule.2019.03.015
10.1063/1.4921039
10.1002/adfm.201504755
10.1016/j.apsusc.2012.08.097
10.1021/cr400083y
10.1007/s00484-017-1331-3
10.1126/science.aba5132
10.3390/membranes11020150
10.1177/0040517507078027
10.1039/b612140c
10.1126/science.1182383
10.1038/nmat3711
10.1038/s41893-018-0023-2
10.1021/acsapm.9b01214
10.1111/j.1600-0846.2007.00229.x
10.3390/pharmaceutics12020152
10.1021/acsami.9b03421
10.1111/srt.12235
10.1126/sciadv.aaz0013
10.1073/pnas.23.12.631
10.1021/acsami.8b12116
10.1021/acsnano.8b08242
10.1525/9780520954816
10.5650/jos.ess17152
10.1063/1.4979701
10.1002/adfm.201800269
10.1021/ac9013989
10.1126/science.aaf5471
10.1016/j.porgcoat.2021.106311
10.1016/S0190-9622(89)70063-3
10.1557/mrs.2017.92
10.1126/scitranslmed.aaf2593
10.1002/adma.202003014
10.1016/j.aca.2018.10.039
10.1038/nature25494
10.1177/0040517519835767
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202204168
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202204168
ADMA202204168
Genre article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3508-f216ecea09df7df1549d400068a03d6c72f683ac8ea5d67c4313e04e6109a66e3
IEDL.DBID DRFUL
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863033400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:25:37 EDT 2025
Mon Jul 14 09:18:09 EDT 2025
Tue Nov 18 21:00:19 EST 2025
Sat Nov 29 07:24:08 EST 2025
Wed Jan 22 16:31:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3508-f216ecea09df7df1549d400068a03d6c72f683ac8ea5d67c4313e04e6109a66e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9354-5952
0000-0001-9290-678X
0000-0001-7852-1541
PQID 2731382128
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2703415260
proquest_journals_2731382128
crossref_citationtrail_10_1002_adma_202204168
crossref_primary_10_1002_adma_202204168
wiley_primary_10_1002_adma_202204168_ADMA202204168
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 61
2012; 261
2017; 42
2018; 28
2019; 3
1989; 20
2010; 327
2019; 11
1996
2006; 6
1937; 23
2005
2020; 12
2018; 67
2015; 9
2007; 77
2007; 13
2019; 1049
2010; 82
1971; 31
2020; 6
2020; 2
2021; 12
2021; 33
2021; 11
2015; 115
2021; 157
2018; 1
2013; 13
2013; 12
2019; 89
2018; 555
2020; 370
2016; 353
2014
2013
2018; 10
2016; 26
2016; 8
2016; 22
2019; 110
2018; 13
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_1_1
e_1_2_11_21_1
e_1_2_11_20_1
Mack G. W. (e_1_2_11_19_1) 1996
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
References_xml – volume: 1049
  start-page: 170
  year: 2019
  publication-title: Anal. Chim. Acta
– volume: 13
  start-page: 1060
  year: 2018
  publication-title: ACS Nano
– volume: 13
  start-page: 1868
  year: 2013
  publication-title: Lab Chip
– volume: 3
  start-page: 1478
  year: 2019
  publication-title: Joule
– year: 2005
– volume: 12
  start-page: 6122
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 22
  start-page: 3
  year: 2016
  publication-title: Skin Res. Technol.
– volume: 370
  start-page: 961
  year: 2020
  publication-title: Science
– year: 2014
– volume: 11
  start-page: 150
  year: 2021
  publication-title: Membranes
– volume: 77
  start-page: 227
  year: 2007
  publication-title: Text. Res. J.
– volume: 9
  year: 2015
  publication-title: Biomicrofluidics
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 353
  start-page: 1019
  year: 2016
  publication-title: Science
– volume: 115
  start-page: 8230
  year: 2015
  publication-title: Chem. Rev.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: Sci. Transl. Med.
– volume: 67
  start-page: 47
  year: 2018
  publication-title: J. Oleo Sci.
– volume: 89
  start-page: 4537
  year: 2019
  publication-title: Text. Res. J.
– volume: 42
  start-page: 356
  year: 2017
  publication-title: MRS Bull.
– start-page: 187
  year: 1996
  end-page: 214
– volume: 23
  start-page: 631
  year: 1937
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 899
  year: 2013
  publication-title: Nat. Mater.
– volume: 157
  year: 2021
  publication-title: Prog. Org. Coat.
– volume: 1
  start-page: 105
  year: 2018
  publication-title: Nat. Sustainability
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 152
  year: 2020
  publication-title: Pharmaceutics
– volume: 6
  start-page: 1484
  year: 2006
  publication-title: Lab Chip
– volume: 20
  start-page: 537
  year: 1989
  publication-title: J. Am. Acad. Dermatol.
– volume: 13
  start-page: 299
  year: 2007
  publication-title: Skin Res. Technol.
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 31
  start-page: 80
  year: 1971
  publication-title: J. Appl. Physiol.
– volume: 2
  start-page: 1535
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 261
  start-page: 764
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 61
  start-page: 1519
  year: 2017
  publication-title: Int. J. Biometeorol.
– year: 2013
– volume: 82
  start-page: 3
  year: 2010
  publication-title: Anal. Chem.
– volume: 110
  year: 2019
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_11_17_1
  doi: 10.1152/jappl.1971.31.1.80
– ident: e_1_2_11_21_1
  doi: 10.1039/c3lc41231h
– ident: e_1_2_11_41_1
  doi: 10.1038/s41467-021-26384-8
– ident: e_1_2_11_9_1
  doi: 10.1016/j.joule.2019.03.015
– ident: e_1_2_11_20_1
  doi: 10.1063/1.4921039
– ident: e_1_2_11_3_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_11_34_1
  doi: 10.1016/j.apsusc.2012.08.097
– ident: e_1_2_11_32_1
  doi: 10.1021/cr400083y
– ident: e_1_2_11_13_1
  doi: 10.1007/s00484-017-1331-3
– ident: e_1_2_11_12_1
  doi: 10.1126/science.aba5132
– ident: e_1_2_11_24_1
  doi: 10.3390/membranes11020150
– ident: e_1_2_11_27_1
  doi: 10.1177/0040517507078027
– ident: e_1_2_11_42_1
  doi: 10.1039/b612140c
– ident: e_1_2_11_10_1
  doi: 10.1126/science.1182383
– ident: e_1_2_11_15_1
  doi: 10.1038/nmat3711
– ident: e_1_2_11_8_1
  doi: 10.1038/s41893-018-0023-2
– ident: e_1_2_11_23_1
  doi: 10.1021/acsapm.9b01214
– ident: e_1_2_11_5_1
  doi: 10.1111/j.1600-0846.2007.00229.x
– ident: e_1_2_11_14_1
  doi: 10.3390/pharmaceutics12020152
– ident: e_1_2_11_36_1
  doi: 10.1021/acsami.9b03421
– ident: e_1_2_11_6_1
  doi: 10.1111/srt.12235
– ident: e_1_2_11_38_1
  doi: 10.1126/sciadv.aaz0013
– ident: e_1_2_11_16_1
  doi: 10.1073/pnas.23.12.631
– ident: e_1_2_11_30_1
  doi: 10.1021/acsami.8b12116
– ident: e_1_2_11_39_1
  doi: 10.1021/acsnano.8b08242
– ident: e_1_2_11_1_1
  doi: 10.1525/9780520954816
– ident: e_1_2_11_4_1
  doi: 10.5650/jos.ess17152
– ident: e_1_2_11_37_1
  doi: 10.1063/1.4979701
– ident: e_1_2_11_40_1
  doi: 10.1002/adfm.201800269
– ident: e_1_2_11_26_1
– start-page: 187
  volume-title: Handbook of Physiology, Sect 4: Environmental Physiology
  year: 1996
  ident: e_1_2_11_19_1
– ident: e_1_2_11_31_1
  doi: 10.1021/ac9013989
– ident: e_1_2_11_7_1
  doi: 10.1126/science.aaf5471
– ident: e_1_2_11_33_1
  doi: 10.1016/j.porgcoat.2021.106311
– ident: e_1_2_11_18_1
  doi: 10.1016/S0190-9622(89)70063-3
– ident: e_1_2_11_25_1
– ident: e_1_2_11_29_1
  doi: 10.1557/mrs.2017.92
– ident: e_1_2_11_22_1
  doi: 10.1126/scitranslmed.aaf2593
– ident: e_1_2_11_2_1
  doi: 10.1002/adma.202003014
– ident: e_1_2_11_35_1
  doi: 10.1016/j.aca.2018.10.039
– ident: e_1_2_11_11_1
  doi: 10.1038/nature25494
– ident: e_1_2_11_28_1
  doi: 10.1177/0040517519835767
SSID ssj0009606
Score 2.5871146
Snippet Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2204168
SubjectTerms artificial skin
Automation
Hydrophilicity
Hydrophobicity
In vitro methods and tests
Manufacturing engineering
Materials science
Nanofibers
Nylon 6
Perspiration
perspiration mimicking
Polydimethylsiloxane
Robotics
Selective surfaces
Skin
surface hydrophilicity/hydrophobicity
surface modification
Sweat
Sweating
Textiles
Thermoregulation
Title An Integrated 3D Hydrophilicity/Hydrophobicity Design for Artificial Sweating Skin (i‐TRANS) Mimicking Human Body Perspiration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204168
https://www.proquest.com/docview/2731382128
https://www.proquest.com/docview/2703415260
Volume 34
WOSCitedRecordID wos000863033400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMePRtkDe9gN0LoBMtKkbQ9WUzt17MdspQIJqomL1LfItR1UiSVVC5t44yPsM-6TzMdJ0_KAkOAtVhwnso9z_r79DsBnpZOe5XFEc8sERc4kHVvFqHd92voBhx91mRBsIhkO5Wikfq6c4q_4EM2EG_aM8L_GDq7H884SGqpt4AYxFnlNIddgnXnjjVuw3j8dXBwvwbsixNfE9T6qRCwX4MaIde6XcN8xLdXmqmYNTmfw5vmf-xZe14KTpJWFvIMXrngPr1YwhJtwlxbkaIGNsIT3yeGtnZVTnGsxXqV36mQ5DknSD7s-iJe7odiKQUHO_qD8LC4JxvMiXyf_7v6en6bDs2_kZPJrYnBKnoQlA_K9tLcEt96HRX5vGFtwMTg4_3FI68gM1HCv6GjOusIZpyNl88TmiHmzMXo-qSNuhUlYLiTXRjrdsyIxXqVwF8UO2e5aCMe3oVWUhfsAZKyU6WqrVSTzmGuhHOKFHO_leVcKG7eBLpolMzW2HKNnXGUVcJllWLNZU7Nt-NLkn1bAjgdz7ixaOas77jzzag6pjN5rt2G_ue27HK6j6MKVN5jHG5rXPSJqAwtt_sibsrR_kjapj0956BNs4HV1CnIHWtezG7cLL83v68l8tgdryUju1ab_H11qAzY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bb9MwFMePoEMCHnbhIso28CQk4MGqa6dO_JitVJ3WVmjrpL1Fru2gSpBM3Qba2z4Cn3GfZD5Omm4PCAnx6MRxItsn5-_b7wB8UDruWRExmlsuKXIm6cwqTr3r09YPOPyoy4RgE_Fkkpydqa_1bkI8C1PxIZoJN7SM8L9GA8cJ6c6KGqptAAdxzryoSB7DWuT7Uq8Fa_3jweloRd6VIcAmLvhRJaNkSW5kvPOwhIeeaSU374vW4HUGG__hezdhvZacJK36yBY8csULeH4PRPgSbtKCHC7BEZaIPhle20V5jrMtxuv0Tp0sZyFJ-mHfB_GCNxRbUSjIyS8UoMU3ghG9yKf57c3v6XE6OflMxvMfc4OT8iQsGpD90l4T3Hwflvl913gFp4Mv04MhrWMzUCO8pqM570pnnGbK5rHNEfRmI_R9iWbCShPzXCZCm8TpnpWx8TpFOBY5pLtrKZ14Da2iLNwbIDOlTFdbrViSR0JL5RAw5EQvz7uJtFEb6LJdMlODyzF-xvesQi7zDGs2a2q2DR-b_OcVsuOPOXeWzZzVpnuReT2HXEbvt9uw19z2RocrKbpw5RXmYQKVj2Rt4KHR__KmLO2P0yb19l8eeg9Ph9PxKBsdTo624Rler85E7kDrcnHlduGJ-Xk5v1i8qy3gDs1EBj4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LbtQwFIaPoEWILrgWMW0BIyEBC2s8dsaJl4EwakU7qnqRuos8vqCRIBlNb-quj8Az8iT1cTKZdoGQEEsnjhPZPjm_b98BeK90OrQiYdRbLilyJunEKk6D69M2DDjCqMvEYBPpeJydnKj9djchnoVp-BDdhBtaRvxfo4G7mfX9JTVU2wgO4pwFUZHdh9VkqGSwzdXiYHS8uyTvyhhgExf8qJJJtiA3Mt6_W8Jdz7SUm7dFa_Q6oyf_4XufwuNWcpK86SPP4J6rnsPaLRDhC7jOK7KzAEdYIgqyfWXn9QxnW0zQ6f02WU9ikhRx3wcJgjcW21AoyOElCtDqO8GIXuTj9Pf1r6ODfHz4iexNf04NTsqTuGhAPtf2iuDm-7jMH7rGOhyPvh592aZtbAZqRNB01POBdMZppqxPrUfQm03Q92WaCStNyr3MhDaZ00MrUxN0inAscUh311I68RJWqrpyr4BMlDIDbbVimU-ElsohYMiJofeDTNqkB3TRLqVpweUYP-NH2SCXeYk1W3Y124MPXf5Zg-z4Y86tRTOXremelkHPIZcx-O0evOtuB6PDlRRdufoc8zCBykeyHvDY6H95U5kXe3mX2viXh97Cw_1iVO7ujL9twiO83ByJ3IKVs_m5ew0PzMXZ9HT-pjWAG02JBbk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+3D+Hydrophilicity%2FHydrophobicity+Design+for+Artificial+Sweating+Skin+%28i%E2%80%90TRANS%29+Mimicking+Human+Body+Perspiration&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Peng%2C+Yucan&rft.au=Zhou%2C+Jiawei&rft.au=Yang%2C+Yufei&rft.au=Lai%2C+Jian%E2%80%90Cheng&rft.date=2022-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202204168&rft.externalDBID=10.1002%252Fadma.202204168&rft.externalDocID=ADMA202204168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon