In‐Memory Computing with Memristor Content Addressable Memories for Pattern Matching

The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CM...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 32; no. 37; pp. e2003437 - n/a
Main Authors: Graves, Catherine E., Li, Can, Sheng, Xia, Miller, Darrin, Ignowski, Jim, Kiyama, Lennie, Strachan, John Paul
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.09.2020
Subjects:
ISSN:0935-9648, 1521-4095, 1521-4095
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in‐memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. Memristor content addressable memory (CAM) arrays with nanoscale memristor devices are developed experimentally and used to demonstrate two novel computing applications on‐chip—network security intrusion detection using a finite state machine and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. This work demonstrates the promise of in‐memory compute circuits using emerging devices to accelerate broad computing applications.
AbstractList The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in‐memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing.
The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in‐memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. Memristor content addressable memory (CAM) arrays with nanoscale memristor devices are developed experimentally and used to demonstrate two novel computing applications on‐chip—network security intrusion detection using a finite state machine and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. This work demonstrates the promise of in‐memory compute circuits using emerging devices to accelerate broad computing applications.
The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing "in-memory computation". However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive-content addressable memory (CAM)-shows great promise for mapping a diverse range of computational models for in-memory computation, with recent ReRAM-CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing.The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing "in-memory computation". However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive-content addressable memory (CAM)-shows great promise for mapping a diverse range of computational models for in-memory computation, with recent ReRAM-CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing.
Author Sheng, Xia
Graves, Catherine E.
Strachan, John Paul
Miller, Darrin
Kiyama, Lennie
Ignowski, Jim
Li, Can
Author_xml – sequence: 1
  givenname: Catherine E.
  orcidid: 0000-0002-0907-583X
  surname: Graves
  fullname: Graves, Catherine E.
  email: catherine.graves@hpe.com
  organization: Hewlett Packard Enterprise
– sequence: 2
  givenname: Can
  surname: Li
  fullname: Li, Can
  organization: Hewlett Packard Enterprise
– sequence: 3
  givenname: Xia
  surname: Sheng
  fullname: Sheng, Xia
  organization: Hewlett Packard Enterprise
– sequence: 4
  givenname: Darrin
  surname: Miller
  fullname: Miller, Darrin
  organization: Hewlett Packard Enterprise
– sequence: 5
  givenname: Jim
  surname: Ignowski
  fullname: Ignowski, Jim
  organization: Hewlett Packard Enterprise
– sequence: 6
  givenname: Lennie
  surname: Kiyama
  fullname: Kiyama, Lennie
  organization: Hewlett Packard Enterprise
– sequence: 7
  givenname: John Paul
  surname: Strachan
  fullname: Strachan, John Paul
  organization: Hewlett Packard Enterprise
BookMark eNqFkMtqGzEUhkVJoLbTbdcD3WQz7tHVo6VxLjXEJIsk20HWnGkUZjSuJBO86yP0GfMkVeqQgiFkJTj6vnP5x-TIDx4J-UphSgHYd9P0ZsqAAXDBZ5_IiEpGSwFaHpERaC5LrUT1mYxjfAQArUCNyP3SP__-s8J-CLtiMfSbbXL-Z_Hk0kORq8HFNIT84RP6VMybJmCMZt1h8c9xGIs2AzcmJQy-WJlkH3KDE3Lcmi7il9d3Qu4uzm8XP8qr68vlYn5VWi5hVtJGUKsFV6xpLUNU2mptW64A0Co-k8I2Sqzz8lUrNRom801SzHjTCLZmhk_I6b7vJgy_thhT3btoseuMx2EbayY4rWiltM7otwP0cdgGn7fLlGCyqoDyTE33lA1DjAHbehNcb8KuplC_xFy_xFy_xZwFcSBYl0xyObFgXPe-pvfak-tw98GQen62mv93_wKMeZRK
CitedBy_id crossref_primary_10_3390_s22207781
crossref_primary_10_5194_jsss_11_233_2022
crossref_primary_10_1109_TED_2022_3188582
crossref_primary_10_1016_j_nanoen_2022_108072
crossref_primary_10_1002_smll_202310943
crossref_primary_10_1002_aisy_202200268
crossref_primary_10_1039_D1NR05502J
crossref_primary_10_1002_aelm_202101198
crossref_primary_10_1002_inf2_12416
crossref_primary_10_1002_aelm_202200702
crossref_primary_10_1063_5_0191005
crossref_primary_10_1088_1361_6528_ac4dc2
crossref_primary_10_1002_aelm_202200908
crossref_primary_10_3390_met10111410
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1109_ACCESS_2023_3263259
crossref_primary_10_1002_aelm_202001258
crossref_primary_10_1063_5_0167743
crossref_primary_10_1109_TCDS_2024_3388152
crossref_primary_10_1016_j_chaos_2022_111999
crossref_primary_10_1109_LED_2023_3345412
crossref_primary_10_3390_mi12070791
crossref_primary_10_1109_JXCDC_2024_3495634
crossref_primary_10_1002_adma_202104023
crossref_primary_10_1109_TCSI_2025_3527309
crossref_primary_10_1007_s12200_022_00025_4
crossref_primary_10_1088_2634_4386_ac7a5a
crossref_primary_10_1002_adfm_202300343
crossref_primary_10_1109_TCSI_2023_3301020
crossref_primary_10_1126_science_abj9979
crossref_primary_10_1007_s40820_025_01891_1
crossref_primary_10_1039_D2NH00568A
crossref_primary_10_1021_acsaelm_5c01026
crossref_primary_10_1103_PhysRevApplied_23_054010
crossref_primary_10_1016_j_cossms_2025_101226
crossref_primary_10_1038_s41467_023_44620_1
crossref_primary_10_1103_h5l5_ltnk
crossref_primary_10_3390_nano10122462
crossref_primary_10_1002_adma_202107811
crossref_primary_10_1038_s41467_021_25873_0
crossref_primary_10_3390_met11030440
crossref_primary_10_1002_adma_202307218
crossref_primary_10_1039_D2RA02456J
crossref_primary_10_1109_TC_2023_3315829
crossref_primary_10_3390_electronics10091063
crossref_primary_10_1007_s42247_023_00576_y
crossref_primary_10_1021_acsphotonics_4c02583
crossref_primary_10_1038_s41467_025_62563_7
crossref_primary_10_1109_TCSI_2023_3259940
crossref_primary_10_1002_smll_202408618
crossref_primary_10_1109_TCSI_2024_3451707
crossref_primary_10_1016_j_neunet_2024_106474
crossref_primary_10_1145_3450769
crossref_primary_10_1021_acs_chemrev_4c00845
crossref_primary_10_3389_felec_2025_1568377
crossref_primary_10_1016_j_sse_2022_108495
crossref_primary_10_1039_D5RA02473K
crossref_primary_10_3390_s23063118
crossref_primary_10_1063_5_0136403
crossref_primary_10_1007_s10825_023_02104_x
crossref_primary_10_1016_j_rineng_2025_106143
crossref_primary_10_1002_advs_202004216
crossref_primary_10_1063_5_0237386
crossref_primary_10_1039_D3MH02218H
crossref_primary_10_1103_PhysRevApplied_22_034028
Cites_doi 10.1109/SP.2008.14
10.1109/ANCS.2013.6665178
10.1109/ISSCC.2016.7417944
10.1109/2.330039
10.1186/s12859-015-0626-9
10.1093/bioinformatics/btp698
10.1109/TED.2018.2849872
10.1038/s41928-017-0002-z
10.1145/1807167.1807209
10.1038/s41467-020-15254-4
10.1109/VLSIC.2012.6243781
10.1145/1402958.1402983
10.1038/nature14441
10.1038/s41928-019-0321-3
10.1093/bioinformatics/btu856
10.1109/JPROC.2015.2434888
10.1038/s41586-018-0180-5
10.1002/aelm.201800876
10.1002/adma.201705914
10.1109/TNANO.2019.2936239
10.1073/pnas.1815682116
10.1093/bioinformatics/bts505
10.1186/s13073-015-0221-8
10.1093/bioinformatics/btx342
10.1038/nnano.2017.83
10.1038/nmeth.1923
10.1109/ISCAS.2014.6865619
10.1109/MCSE.2017.31
10.1109/JSSC.2017.2681458
10.1145/2746539.2746612
10.1093/bib/bby017
10.1109/VLSIC.2015.7231286
10.1088/0022-3727/42/13/135417
10.1038/ncomms15199
10.1063/1.5129101
10.1007/s10032-002-0082-8
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202003437
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202003437
ADMA202003437
Genre article
GrantInformation_xml – fundername: Office of the Director of National Intelligence
– fundername: Army Research Office
  funderid: W911NF‐19‐1‐0494
– fundername: Intelligence Advanced Research Projects Activity
  funderid: 2017–17013000002
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3507-1d41c94362dfc2ee69c99cf3600ec63754cd64b0938f59ea251525473dd42b2a3
IEDL.DBID DRFUL
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000555849300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:17:51 EDT 2025
Sun Jul 13 03:56:54 EDT 2025
Tue Nov 18 22:39:54 EST 2025
Sat Nov 29 07:18:55 EST 2025
Wed Jan 22 16:32:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3507-1d41c94362dfc2ee69c99cf3600ec63754cd64b0938f59ea251525473dd42b2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0907-583X
PQID 2442588013
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2431818699
proquest_journals_2442588013
crossref_primary_10_1002_adma_202003437
crossref_citationtrail_10_1002_adma_202003437
wiley_primary_10_1002_adma_202003437_ADMA202003437
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 8
2015; 16
2019; 5
2009; 42
2012
2011
2015; 521
2010
2019; 2
2015; 103
2002; 5
2015; 31
2008
2007
2019; 18
1994; 27
2020; 11
2004; 20–21
2018; 65
2016; 59
2015; 7
2014; 22
2017; 52
2014; 4
2010; 26
2019; 20
2018; 1
2019; 66
2020
2018; 558
2017; 33
2017; 12
2019; 116
2018
2017; 19
2016
2018; 30
2015
2012; 28
2014
2013
2012; 9
e_1_2_5_27_1
e_1_2_5_48_1
Meiners C. R. (e_1_2_5_18_1) 2014
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
Kumar S. (e_1_2_5_42_1) 2007
Junsangsri P. (e_1_2_5_29_1) 2014
Graves C. E. (e_1_2_5_32_1) 2018
Liu S. (e_1_2_5_2_1) 2016
Yin X. (e_1_2_5_25_1) 2019
Huang L. Y. (e_1_2_5_30_1) 2014
Zheng L. (e_1_2_5_31_1) 2014
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_5_1
e_1_2_5_1_1
Chen Y. (e_1_2_5_3_1) 2014
Smith R. (e_1_2_5_39_1) 2008
e_1_2_5_51_1
Matsunaga S. (e_1_2_5_22_1) 2011
Melo L. L. (e_1_2_5_35_1) 2004; 20
Guo Q. (e_1_2_5_15_1) 2013
e_1_2_5_49_1
e_1_2_5_47_1
Guo Q. (e_1_2_5_13_1) 2011
e_1_2_5_45_1
Tsukamoto Y. (e_1_2_5_38_1) 2015
Bhunia S. (e_1_2_5_14_1) 2008
e_1_2_5_20_1
Lin C. C. (e_1_2_5_28_1) 2016
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_12_1
Shinde R. (e_1_2_5_19_1) 2010
e_1_2_5_33_1
Yu S. (e_1_2_5_4_1) 2020
Bayram I. (e_1_2_5_24_1) 2014
Meiners C. R. (e_1_2_5_41_1) 2010
Li J. (e_1_2_5_26_1) 2013
Matsunaga S. (e_1_2_5_23_1) 2012
Backurs A. (e_1_2_5_53_1) 2015
e_1_2_5_52_1
Smith R. (e_1_2_5_43_1) 2008
e_1_2_5_50_1
Huang K. (e_1_2_5_40_1) 2013
References_xml – start-page: 786
  year: 2008
  end-page: 791
– volume: 66
  start-page: 1577
  year: 2019
  end-page: 1581
– volume: 558
  start-page: 60
  year: 2018
  publication-title: Nature
– volume: 7
  start-page: 100
  year: 2015
  publication-title: Genome Med.
– start-page: 187
  year: 2008
  end-page: 201
– volume: 19
  start-page: 7
  year: 2017
  publication-title: Comput. Sci. Eng.
– start-page: 207
  year: 2008
  end-page: 218
– start-page: 51
  year: 2015
  end-page: 58
– volume: 5
  start-page: 67
  year: 2002
  publication-title: Int. J. Doc. Anal. Recog.
– volume: 103
  start-page: 1311
  year: 2015
  publication-title: Proc. IEEE
– start-page: 44
  year: 2012
  end-page: 45
– start-page: 99
  year: 2011
  end-page: 104
– start-page: 155
  year: 2007
  end-page: 164
– year: 2018
– year: 2014
– volume: 26
  start-page: 589
  year: 2010
  publication-title: Bioinformatics
– volume: 20
  start-page: 1542
  year: 2019
  publication-title: Briefings Bioinf.
– volume: 20–21
  start-page: 623
  year: 2004
  publication-title: J. Metastable Nanocryst. Mater.
– volume: 18
  start-page: 963
  year: 2019
  publication-title: IEEE Trans. Nanotechnol.
– volume: 33
  start-page: 3355
  year: 2017
  publication-title: Bioinformatics
– start-page: 393
  year: 2016
  end-page: 405
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– start-page: 339
  year: 2011
  end-page: 350
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 116
  start-page: 4123
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 189
  year: 2013
  end-page: 200
– volume: 65
  start-page: 3229
  year: 2018
  publication-title: IEEE Trans. Electron Devices
– volume: 11
  start-page: 1638
  year: 2020
  publication-title: Nat. Commun.
– volume: 52
  start-page: 1664
  year: 2017
  publication-title: IEEE J. Solid‐State Circuits
– volume: 27
  start-page: 19
  year: 1994
  publication-title: Computer
– volume: 31
  start-page: 1553
  year: 2015
  publication-title: Bioinformatics
– volume: 59
  start-page: 136
  year: 2016
– volume: 4
  year: 2014
– start-page: 2253
  year: 2014
  end-page: 2256
– volume: 42
  year: 2009
  publication-title: J. Phys. D: Appl. Phys.
– volume: 9
  start-page: 357
  year: 2012
  publication-title: Nat. Methods
– volume: 28
  start-page: 2592
  year: 2012
  publication-title: Bioinformatics
– start-page: 8
  year: 2010
– volume: 16
  start-page: 192
  year: 2015
  publication-title: BMC Bioinformatics
– volume: 12
  start-page: 784
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2019
  publication-title: APL Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 521
  start-page: 61
  year: 2015
  publication-title: Nature
– start-page: 375
  year: 2010
  end-page: 386
– start-page: C104
  year: 2013
  end-page: C105
– start-page: 83
  year: 2013
  end-page: 93
– year: 2020
– volume: 2
  start-page: 521
  year: 2019
  publication-title: Nat. Electron.
– volume: 1
  start-page: 52
  year: 2018
  publication-title: Nat. Electron.
– start-page: 609
  year: 2014
  end-page: 622
– volume: 22
  start-page: 94
  year: 2014
  end-page: 109
– start-page: 274
  year: 2015
– start-page: 187
  volume-title: 2008 IEEE Symp. on Security and Privacy
  year: 2008
  ident: e_1_2_5_39_1
  doi: 10.1109/SP.2008.14
– volume-title: 2014 Symp. on VLSI Circuits Digest of Technical Papers
  year: 2014
  ident: e_1_2_5_30_1
– start-page: 83
  volume-title: Architectures for Networking and Communications Systems (ANCS)
  year: 2013
  ident: e_1_2_5_40_1
  doi: 10.1109/ANCS.2013.6665178
– start-page: 136
  volume-title: 2016 IEEE Int. Solid‐State Circuits Conf. (ISSCC)
  year: 2016
  ident: e_1_2_5_28_1
  doi: 10.1109/ISSCC.2016.7417944
– ident: e_1_2_5_16_1
  doi: 10.1109/2.330039
– ident: e_1_2_5_47_1
  doi: 10.1186/s12859-015-0626-9
– ident: e_1_2_5_45_1
  doi: 10.1093/bioinformatics/btp698
– volume-title: 2014 IEEE Non‐Volatile Memory Systems and Applications Symposium (NVMSA)
  year: 2014
  ident: e_1_2_5_24_1
– volume-title: 2014 IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH)
  year: 2014
  ident: e_1_2_5_29_1
– ident: e_1_2_5_37_1
  doi: 10.1109/TED.2018.2849872
– start-page: 155
  volume-title: Proc. 3rd ACM/IEEE Symp. on Architecture for Networking and Communications Systems (ANCS)
  year: 2007
  ident: e_1_2_5_42_1
– ident: e_1_2_5_11_1
  doi: 10.1038/s41928-017-0002-z
– start-page: 375
  volume-title: Proc. 2010 ACM SIGMOD Int. Conf. on Management of data (SIGMOD)
  year: 2010
  ident: e_1_2_5_19_1
  doi: 10.1145/1807167.1807209
– ident: e_1_2_5_21_1
  doi: 10.1038/s41467-020-15254-4
– volume-title: 2018 IEEE International Conference on Rebooting Computing (ICRC)
  year: 2018
  ident: e_1_2_5_32_1
– start-page: 44
  volume-title: 2012 Symp. VLSI Circuits (VLSIC)
  year: 2012
  ident: e_1_2_5_23_1
  doi: 10.1109/VLSIC.2012.6243781
– start-page: 207
  volume-title: Proc. ACM SIGCOMM 2008 Conf. on Data communication (SIGCOMM '08)
  year: 2008
  ident: e_1_2_5_43_1
  doi: 10.1145/1402958.1402983
– start-page: 8
  volume-title: Proc. 19th USENIX Conf. on Security (USENIX Security)
  year: 2010
  ident: e_1_2_5_41_1
– ident: e_1_2_5_8_1
  doi: 10.1038/nature14441
– ident: e_1_2_5_20_1
  doi: 10.1038/s41928-019-0321-3
– ident: e_1_2_5_52_1
  doi: 10.1093/bioinformatics/btu856
– ident: e_1_2_5_17_1
  doi: 10.1109/JPROC.2015.2434888
– ident: e_1_2_5_7_1
  doi: 10.1038/s41586-018-0180-5
– ident: e_1_2_5_33_1
  doi: 10.1002/aelm.201800876
– start-page: 393
  volume-title: Proc. 43rd Int. Symp. on Computer Architecture (ISCA)
  year: 2016
  ident: e_1_2_5_2_1
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201705914
– ident: e_1_2_5_34_1
  doi: 10.1109/TNANO.2019.2936239
– ident: e_1_2_5_10_1
  doi: 10.1073/pnas.1815682116
– volume: 20
  start-page: 623
  year: 2004
  ident: e_1_2_5_35_1
  publication-title: J. Metastable Nanocryst. Mater.
– ident: e_1_2_5_48_1
  doi: 10.1093/bioinformatics/bts505
– start-page: C104
  volume-title: 2013 Symp. VLSI (VLSI)
  year: 2013
  ident: e_1_2_5_26_1
– ident: e_1_2_5_44_1
  doi: 10.1186/s13073-015-0221-8
– start-page: 94
  volume-title: IEEE/ACM Transactions On Networking
  year: 2014
  ident: e_1_2_5_18_1
– ident: e_1_2_5_49_1
  doi: 10.1093/bioinformatics/btx342
– ident: e_1_2_5_12_1
  doi: 10.1038/nnano.2017.83
– volume-title: 2020 IEEE Custom Integrated Circuits Conference (CICC)
  year: 2020
  ident: e_1_2_5_4_1
– ident: e_1_2_5_46_1
  doi: 10.1038/nmeth.1923
– start-page: 2253
  volume-title: 2014 IEEE Int. Symp. Circuits Syst. (ISCAS)
  year: 2014
  ident: e_1_2_5_31_1
  doi: 10.1109/ISCAS.2014.6865619
– start-page: 99
  volume-title: Proc. 41st IEEE Int. Symp. Mult. Logic (ISMVL)
  year: 2011
  ident: e_1_2_5_22_1
– start-page: 339
  volume-title: Proc. 44th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO)
  year: 2011
  ident: e_1_2_5_13_1
– ident: e_1_2_5_1_1
  doi: 10.1109/MCSE.2017.31
– start-page: 1577
  volume-title: IEEE Trans. on Circuits and Systems II: Express Briefs
  year: 2019
  ident: e_1_2_5_25_1
– ident: e_1_2_5_27_1
  doi: 10.1109/JSSC.2017.2681458
– start-page: 51
  volume-title: Proc. Forty‐Seventh Annu. ACM Symp. on Theory of Computing (STOC)
  year: 2015
  ident: e_1_2_5_53_1
  doi: 10.1145/2746539.2746612
– ident: e_1_2_5_50_1
  doi: 10.1093/bib/bby017
– start-page: 274
  volume-title: 2015 Symposium on VLSI Circuits
  year: 2015
  ident: e_1_2_5_38_1
  doi: 10.1109/VLSIC.2015.7231286
– ident: e_1_2_5_36_1
  doi: 10.1088/0022-3727/42/13/135417
– start-page: 609
  volume-title: Proc. 47th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO)
  year: 2014
  ident: e_1_2_5_3_1
– start-page: 189
  volume-title: Proc. 40th Int. Symp. on Computer Architecture (ISCA)
  year: 2013
  ident: e_1_2_5_15_1
– ident: e_1_2_5_9_1
  doi: 10.1038/ncomms15199
– ident: e_1_2_5_5_1
  doi: 10.1063/1.5129101
– ident: e_1_2_5_51_1
  doi: 10.1007/s10032-002-0082-8
– start-page: 786
  volume-title: Proc. 45th Annu. Des. Autom. Conf. (DAC)
  year: 2008
  ident: e_1_2_5_14_1
SSID ssj0009606
Score 2.610083
Snippet The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently...
The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2003437
SubjectTerms Arrays
Associative memory
Automata theory
Circuit design
CMOS
Computation
content addressable memory
Finite state machines
in‐memory computing
Mapping
Materials science
Memristors
Pattern matching
Power efficiency
Power management
Random access memory
Resistance
Title In‐Memory Computing with Memristor Content Addressable Memories for Pattern Matching
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202003437
https://www.proquest.com/docview/2442588013
https://www.proquest.com/docview/2431818699
Volume 32
WOSCitedRecordID wos000555849300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IoLgqeimSdscF3VRcEVEZW8lTVIQliq7q-DNn-Bv9Jc4k3a760EEvbVp0pSZzCOPfh_AYR4lhsJkILW2gZDcBEoqGchYi5Mwk8JYr-mr-Po66fXUzdRf_CU-RL3gRpbh_TUZuM6GxxPQUG09bhAdrhJhPAtzHAevaMDc2W3n_moCvBt5fk3a7wtUJJIxcOMJP_7-hu-BaZJtTuesPuh0lv__uSuwVCWcrF2OkFWYccUaLE7BEK7Dw2Xx-f7RpTO3b6ykecByRku0DEs9-sCAeRyrYsTa1nrelKzvmG-Dc22GqS-78VCdBeuid6d1rQ2475zfnV4EFd9CYEJJWJFWtIwSGNJsbrhzkTJKmTzEnMiZiLhyUXEiQ1EmuVROY2okOXEXWyt4xnW4CY3iqXBbwDKTxdZooyzqHKeE2tnQ5TyzkWyFLWGbEIyFnZoKjJw4MfppCaPMU5JXWsurCUd1_ecShuPHmrtj3aWVOQ5TzGG4RE_VCptwUD9GQ6LdEV24pxeqg-6NCLpUE7jX5C89pe2zbru-2_5Lox1YoOvyzNouNEaDF7cH8-Z19Dgc7MNs3Ev2qwH9BVJ69Ww
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqgP3sV5jSD4VNzSpFseh3MobkNExbeSJikIUmVOwTd_gr_RX-I5adfpgwjiY9OkLTk5l5ycfh_AQRq1DLnJQGptAyG5CZRUMpBNLephIoWxXtK95mDQur1VF0U1If0Lk-NDlAk30gxvr0nBKSF9NEEN1dYDB1F1lQib01AVuJZkBaqdy-51b4K8G3mCTTrwC1QkWmPkxjo_-v6E755pEm5-DVq91-ku_sP3LsFCEXKydr5GlmHKZSsw_wWIcBVuzrKPt_c-Vd2-spzoAdsZJWkZtnr8gSHzSFbZiLWt9cwpyb1jfgzuthkGv-zCg3VmrI_2nTJba3DdPbk6Pg0KxoXAhJLQIq1oGCXQqdnUcOciZZQyaYhRkTMRseWi6ESCc9lKpXIagyPJib3YWsETrsN1qGQPmdsAlpikaY02yqLUcVOonQ1dyhMbyUbYELYGwXi2Y1PAkRMrxn2cAynzmOYrLuerBodl_8cciOPHnttj4cWFQj7FGMVwibaqEdZgv7yNqkTnIzpzD8_UBw0cUXSpGnAvyl_eFLc7_XZ5tfmXQXswe3rV78W9s8H5FsxRe17Btg2V0fDZ7cCMeRndPQ13i3X9CUUM-HQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFNEH7-K8RhB8Kro06ZbH4RyK2xii4ltJkxQEqTKn4Js_wd_oL_GctOvmgwjiY9OkLefkXJKcfh_AYRo1DIXJQGptAyG5CZRUMpB1LU7CRApjvaY79V6vcXen-kU1If0Lk-NDlBtuZBneX5OBuyebHo9RQ7X1wEFUXSXC-jTMCKkitM2Z1lX7pjNG3o08wSYd-AUqEo0RcuMJP_7-hO-RaZxuTiatPuq0l_7he5dhsUg5WTOfIysw5bJVWJgAIlyD24vs8_2jS1W3bywnesB2Rpu0DFs9_sCAeSSrbMia1nrmlOTBMT8GV9sMk1_W92CdGeuif6edrXW4aZ9dn54HBeNCYEJJaJFW1IwSGNRsarhzkTJKmTTErMiZiNhyUXUiQVk2UqmcxuRIcmIvtlbwhOtwAyrZY-Y2gSUmqVujjbKodVwUamdDl_LERrIW1oStQjCSdmwKOHJixXiIcyBlHpO84lJeVTgq-z_lQBw_9twZKS8uDPI5xiyGS_RVtbAKB-VtNCU6H9GZe3yhPujgiKJLVYF7Vf7yprjZ6jbLq62_DNqHuX6rHXcuepfbME_NeQHbDlSGgxe3C7PmdXj_PNgrpvUX2bz37w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%E2%80%90Memory+Computing+with+Memristor+Content+Addressable+Memories+for+Pattern+Matching&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Graves%2C+Catherine+E.&rft.au=Li%2C+Can&rft.au=Sheng%2C+Xia&rft.au=Miller%2C+Darrin&rft.date=2020-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=37&rft_id=info:doi/10.1002%2Fadma.202003437&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202003437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon