In‐Memory Computing with Memristor Content Addressable Memories for Pattern Matching
The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CM...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 32; no. 37; pp. e2003437 - n/a |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
01.09.2020
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in‐memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing.
Memristor content addressable memory (CAM) arrays with nanoscale memristor devices are developed experimentally and used to demonstrate two novel computing applications on‐chip—network security intrusion detection using a finite state machine and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. This work demonstrates the promise of in‐memory compute circuits using emerging devices to accelerate broad computing applications. |
|---|---|
| AbstractList | The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in‐memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in‐memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. Memristor content addressable memory (CAM) arrays with nanoscale memristor devices are developed experimentally and used to demonstrate two novel computing applications on‐chip—network security intrusion detection using a finite state machine and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. This work demonstrates the promise of in‐memory compute circuits using emerging devices to accelerate broad computing applications. The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing "in-memory computation". However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive-content addressable memory (CAM)-shows great promise for mapping a diverse range of computational models for in-memory computation, with recent ReRAM-CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing.The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing "in-memory computation". However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive-content addressable memory (CAM)-shows great promise for mapping a diverse range of computational models for in-memory computation, with recent ReRAM-CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. |
| Author | Sheng, Xia Graves, Catherine E. Strachan, John Paul Miller, Darrin Kiyama, Lennie Ignowski, Jim Li, Can |
| Author_xml | – sequence: 1 givenname: Catherine E. orcidid: 0000-0002-0907-583X surname: Graves fullname: Graves, Catherine E. email: catherine.graves@hpe.com organization: Hewlett Packard Enterprise – sequence: 2 givenname: Can surname: Li fullname: Li, Can organization: Hewlett Packard Enterprise – sequence: 3 givenname: Xia surname: Sheng fullname: Sheng, Xia organization: Hewlett Packard Enterprise – sequence: 4 givenname: Darrin surname: Miller fullname: Miller, Darrin organization: Hewlett Packard Enterprise – sequence: 5 givenname: Jim surname: Ignowski fullname: Ignowski, Jim organization: Hewlett Packard Enterprise – sequence: 6 givenname: Lennie surname: Kiyama fullname: Kiyama, Lennie organization: Hewlett Packard Enterprise – sequence: 7 givenname: John Paul surname: Strachan fullname: Strachan, John Paul organization: Hewlett Packard Enterprise |
| BookMark | eNqFkMtqGzEUhkVJoLbTbdcD3WQz7tHVo6VxLjXEJIsk20HWnGkUZjSuJBO86yP0GfMkVeqQgiFkJTj6vnP5x-TIDx4J-UphSgHYd9P0ZsqAAXDBZ5_IiEpGSwFaHpERaC5LrUT1mYxjfAQArUCNyP3SP__-s8J-CLtiMfSbbXL-Z_Hk0kORq8HFNIT84RP6VMybJmCMZt1h8c9xGIs2AzcmJQy-WJlkH3KDE3Lcmi7il9d3Qu4uzm8XP8qr68vlYn5VWi5hVtJGUKsFV6xpLUNU2mptW64A0Co-k8I2Sqzz8lUrNRom801SzHjTCLZmhk_I6b7vJgy_thhT3btoseuMx2EbayY4rWiltM7otwP0cdgGn7fLlGCyqoDyTE33lA1DjAHbehNcb8KuplC_xFy_xFy_xZwFcSBYl0xyObFgXPe-pvfak-tw98GQen62mv93_wKMeZRK |
| CitedBy_id | crossref_primary_10_3390_s22207781 crossref_primary_10_5194_jsss_11_233_2022 crossref_primary_10_1109_TED_2022_3188582 crossref_primary_10_1016_j_nanoen_2022_108072 crossref_primary_10_1002_smll_202310943 crossref_primary_10_1002_aisy_202200268 crossref_primary_10_1039_D1NR05502J crossref_primary_10_1002_aelm_202101198 crossref_primary_10_1002_inf2_12416 crossref_primary_10_1002_aelm_202200702 crossref_primary_10_1063_5_0191005 crossref_primary_10_1088_1361_6528_ac4dc2 crossref_primary_10_1002_aelm_202200908 crossref_primary_10_3390_met10111410 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1109_ACCESS_2023_3263259 crossref_primary_10_1002_aelm_202001258 crossref_primary_10_1063_5_0167743 crossref_primary_10_1109_TCDS_2024_3388152 crossref_primary_10_1016_j_chaos_2022_111999 crossref_primary_10_1109_LED_2023_3345412 crossref_primary_10_3390_mi12070791 crossref_primary_10_1109_JXCDC_2024_3495634 crossref_primary_10_1002_adma_202104023 crossref_primary_10_1109_TCSI_2025_3527309 crossref_primary_10_1007_s12200_022_00025_4 crossref_primary_10_1088_2634_4386_ac7a5a crossref_primary_10_1002_adfm_202300343 crossref_primary_10_1109_TCSI_2023_3301020 crossref_primary_10_1126_science_abj9979 crossref_primary_10_1007_s40820_025_01891_1 crossref_primary_10_1039_D2NH00568A crossref_primary_10_1021_acsaelm_5c01026 crossref_primary_10_1103_PhysRevApplied_23_054010 crossref_primary_10_1016_j_cossms_2025_101226 crossref_primary_10_1038_s41467_023_44620_1 crossref_primary_10_1103_h5l5_ltnk crossref_primary_10_3390_nano10122462 crossref_primary_10_1002_adma_202107811 crossref_primary_10_1038_s41467_021_25873_0 crossref_primary_10_3390_met11030440 crossref_primary_10_1002_adma_202307218 crossref_primary_10_1039_D2RA02456J crossref_primary_10_1109_TC_2023_3315829 crossref_primary_10_3390_electronics10091063 crossref_primary_10_1007_s42247_023_00576_y crossref_primary_10_1021_acsphotonics_4c02583 crossref_primary_10_1038_s41467_025_62563_7 crossref_primary_10_1109_TCSI_2023_3259940 crossref_primary_10_1002_smll_202408618 crossref_primary_10_1109_TCSI_2024_3451707 crossref_primary_10_1016_j_neunet_2024_106474 crossref_primary_10_1145_3450769 crossref_primary_10_1021_acs_chemrev_4c00845 crossref_primary_10_3389_felec_2025_1568377 crossref_primary_10_1016_j_sse_2022_108495 crossref_primary_10_1039_D5RA02473K crossref_primary_10_3390_s23063118 crossref_primary_10_1063_5_0136403 crossref_primary_10_1007_s10825_023_02104_x crossref_primary_10_1016_j_rineng_2025_106143 crossref_primary_10_1002_advs_202004216 crossref_primary_10_1063_5_0237386 crossref_primary_10_1039_D3MH02218H crossref_primary_10_1103_PhysRevApplied_22_034028 |
| Cites_doi | 10.1109/SP.2008.14 10.1109/ANCS.2013.6665178 10.1109/ISSCC.2016.7417944 10.1109/2.330039 10.1186/s12859-015-0626-9 10.1093/bioinformatics/btp698 10.1109/TED.2018.2849872 10.1038/s41928-017-0002-z 10.1145/1807167.1807209 10.1038/s41467-020-15254-4 10.1109/VLSIC.2012.6243781 10.1145/1402958.1402983 10.1038/nature14441 10.1038/s41928-019-0321-3 10.1093/bioinformatics/btu856 10.1109/JPROC.2015.2434888 10.1038/s41586-018-0180-5 10.1002/aelm.201800876 10.1002/adma.201705914 10.1109/TNANO.2019.2936239 10.1073/pnas.1815682116 10.1093/bioinformatics/bts505 10.1186/s13073-015-0221-8 10.1093/bioinformatics/btx342 10.1038/nnano.2017.83 10.1038/nmeth.1923 10.1109/ISCAS.2014.6865619 10.1109/MCSE.2017.31 10.1109/JSSC.2017.2681458 10.1145/2746539.2746612 10.1093/bib/bby017 10.1109/VLSIC.2015.7231286 10.1088/0022-3727/42/13/135417 10.1038/ncomms15199 10.1063/1.5129101 10.1007/s10032-002-0082-8 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202003437 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adma_202003437 ADMA202003437 |
| Genre | article |
| GrantInformation_xml | – fundername: Office of the Director of National Intelligence – fundername: Army Research Office funderid: W911NF‐19‐1‐0494 – fundername: Intelligence Advanced Research Projects Activity funderid: 2017–17013000002 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3507-1d41c94362dfc2ee69c99cf3600ec63754cd64b0938f59ea251525473dd42b2a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000555849300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 22:17:51 EDT 2025 Sun Jul 13 03:56:54 EDT 2025 Tue Nov 18 22:39:54 EST 2025 Sat Nov 29 07:18:55 EST 2025 Wed Jan 22 16:32:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3507-1d41c94362dfc2ee69c99cf3600ec63754cd64b0938f59ea251525473dd42b2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0907-583X |
| PQID | 2442588013 |
| PQPubID | 2045203 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2431818699 proquest_journals_2442588013 crossref_primary_10_1002_adma_202003437 crossref_citationtrail_10_1002_adma_202003437 wiley_primary_10_1002_adma_202003437_ADMA202003437 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 7 2017; 8 2015; 16 2019; 5 2009; 42 2012 2011 2015; 521 2010 2019; 2 2015; 103 2002; 5 2015; 31 2008 2007 2019; 18 1994; 27 2020; 11 2004; 20–21 2018; 65 2016; 59 2015; 7 2014; 22 2017; 52 2014; 4 2010; 26 2019; 20 2018; 1 2019; 66 2020 2018; 558 2017; 33 2017; 12 2019; 116 2018 2017; 19 2016 2018; 30 2015 2012; 28 2014 2013 2012; 9 e_1_2_5_27_1 e_1_2_5_48_1 Meiners C. R. (e_1_2_5_18_1) 2014 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 Kumar S. (e_1_2_5_42_1) 2007 Junsangsri P. (e_1_2_5_29_1) 2014 Graves C. E. (e_1_2_5_32_1) 2018 Liu S. (e_1_2_5_2_1) 2016 Yin X. (e_1_2_5_25_1) 2019 Huang L. Y. (e_1_2_5_30_1) 2014 Zheng L. (e_1_2_5_31_1) 2014 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_5_1 e_1_2_5_1_1 Chen Y. (e_1_2_5_3_1) 2014 Smith R. (e_1_2_5_39_1) 2008 e_1_2_5_51_1 Matsunaga S. (e_1_2_5_22_1) 2011 Melo L. L. (e_1_2_5_35_1) 2004; 20 Guo Q. (e_1_2_5_15_1) 2013 e_1_2_5_49_1 e_1_2_5_47_1 Guo Q. (e_1_2_5_13_1) 2011 e_1_2_5_45_1 Tsukamoto Y. (e_1_2_5_38_1) 2015 Bhunia S. (e_1_2_5_14_1) 2008 e_1_2_5_20_1 Lin C. C. (e_1_2_5_28_1) 2016 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_12_1 Shinde R. (e_1_2_5_19_1) 2010 e_1_2_5_33_1 Yu S. (e_1_2_5_4_1) 2020 Bayram I. (e_1_2_5_24_1) 2014 Meiners C. R. (e_1_2_5_41_1) 2010 Li J. (e_1_2_5_26_1) 2013 Matsunaga S. (e_1_2_5_23_1) 2012 Backurs A. (e_1_2_5_53_1) 2015 e_1_2_5_52_1 Smith R. (e_1_2_5_43_1) 2008 e_1_2_5_50_1 Huang K. (e_1_2_5_40_1) 2013 |
| References_xml | – start-page: 786 year: 2008 end-page: 791 – volume: 66 start-page: 1577 year: 2019 end-page: 1581 – volume: 558 start-page: 60 year: 2018 publication-title: Nature – volume: 7 start-page: 100 year: 2015 publication-title: Genome Med. – start-page: 187 year: 2008 end-page: 201 – volume: 19 start-page: 7 year: 2017 publication-title: Comput. Sci. Eng. – start-page: 207 year: 2008 end-page: 218 – start-page: 51 year: 2015 end-page: 58 – volume: 5 start-page: 67 year: 2002 publication-title: Int. J. Doc. Anal. Recog. – volume: 103 start-page: 1311 year: 2015 publication-title: Proc. IEEE – start-page: 44 year: 2012 end-page: 45 – start-page: 99 year: 2011 end-page: 104 – start-page: 155 year: 2007 end-page: 164 – year: 2018 – year: 2014 – volume: 26 start-page: 589 year: 2010 publication-title: Bioinformatics – volume: 20 start-page: 1542 year: 2019 publication-title: Briefings Bioinf. – volume: 20–21 start-page: 623 year: 2004 publication-title: J. Metastable Nanocryst. Mater. – volume: 18 start-page: 963 year: 2019 publication-title: IEEE Trans. Nanotechnol. – volume: 33 start-page: 3355 year: 2017 publication-title: Bioinformatics – start-page: 393 year: 2016 end-page: 405 – volume: 8 year: 2017 publication-title: Nat. Commun. – start-page: 339 year: 2011 end-page: 350 – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 116 start-page: 4123 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – start-page: 189 year: 2013 end-page: 200 – volume: 65 start-page: 3229 year: 2018 publication-title: IEEE Trans. Electron Devices – volume: 11 start-page: 1638 year: 2020 publication-title: Nat. Commun. – volume: 52 start-page: 1664 year: 2017 publication-title: IEEE J. Solid‐State Circuits – volume: 27 start-page: 19 year: 1994 publication-title: Computer – volume: 31 start-page: 1553 year: 2015 publication-title: Bioinformatics – volume: 59 start-page: 136 year: 2016 – volume: 4 year: 2014 – start-page: 2253 year: 2014 end-page: 2256 – volume: 42 year: 2009 publication-title: J. Phys. D: Appl. Phys. – volume: 9 start-page: 357 year: 2012 publication-title: Nat. Methods – volume: 28 start-page: 2592 year: 2012 publication-title: Bioinformatics – start-page: 8 year: 2010 – volume: 16 start-page: 192 year: 2015 publication-title: BMC Bioinformatics – volume: 12 start-page: 784 year: 2017 publication-title: Nat. Nanotechnol. – volume: 7 year: 2019 publication-title: APL Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 521 start-page: 61 year: 2015 publication-title: Nature – start-page: 375 year: 2010 end-page: 386 – start-page: C104 year: 2013 end-page: C105 – start-page: 83 year: 2013 end-page: 93 – year: 2020 – volume: 2 start-page: 521 year: 2019 publication-title: Nat. Electron. – volume: 1 start-page: 52 year: 2018 publication-title: Nat. Electron. – start-page: 609 year: 2014 end-page: 622 – volume: 22 start-page: 94 year: 2014 end-page: 109 – start-page: 274 year: 2015 – start-page: 187 volume-title: 2008 IEEE Symp. on Security and Privacy year: 2008 ident: e_1_2_5_39_1 doi: 10.1109/SP.2008.14 – volume-title: 2014 Symp. on VLSI Circuits Digest of Technical Papers year: 2014 ident: e_1_2_5_30_1 – start-page: 83 volume-title: Architectures for Networking and Communications Systems (ANCS) year: 2013 ident: e_1_2_5_40_1 doi: 10.1109/ANCS.2013.6665178 – start-page: 136 volume-title: 2016 IEEE Int. Solid‐State Circuits Conf. (ISSCC) year: 2016 ident: e_1_2_5_28_1 doi: 10.1109/ISSCC.2016.7417944 – ident: e_1_2_5_16_1 doi: 10.1109/2.330039 – ident: e_1_2_5_47_1 doi: 10.1186/s12859-015-0626-9 – ident: e_1_2_5_45_1 doi: 10.1093/bioinformatics/btp698 – volume-title: 2014 IEEE Non‐Volatile Memory Systems and Applications Symposium (NVMSA) year: 2014 ident: e_1_2_5_24_1 – volume-title: 2014 IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH) year: 2014 ident: e_1_2_5_29_1 – ident: e_1_2_5_37_1 doi: 10.1109/TED.2018.2849872 – start-page: 155 volume-title: Proc. 3rd ACM/IEEE Symp. on Architecture for Networking and Communications Systems (ANCS) year: 2007 ident: e_1_2_5_42_1 – ident: e_1_2_5_11_1 doi: 10.1038/s41928-017-0002-z – start-page: 375 volume-title: Proc. 2010 ACM SIGMOD Int. Conf. on Management of data (SIGMOD) year: 2010 ident: e_1_2_5_19_1 doi: 10.1145/1807167.1807209 – ident: e_1_2_5_21_1 doi: 10.1038/s41467-020-15254-4 – volume-title: 2018 IEEE International Conference on Rebooting Computing (ICRC) year: 2018 ident: e_1_2_5_32_1 – start-page: 44 volume-title: 2012 Symp. VLSI Circuits (VLSIC) year: 2012 ident: e_1_2_5_23_1 doi: 10.1109/VLSIC.2012.6243781 – start-page: 207 volume-title: Proc. ACM SIGCOMM 2008 Conf. on Data communication (SIGCOMM '08) year: 2008 ident: e_1_2_5_43_1 doi: 10.1145/1402958.1402983 – start-page: 8 volume-title: Proc. 19th USENIX Conf. on Security (USENIX Security) year: 2010 ident: e_1_2_5_41_1 – ident: e_1_2_5_8_1 doi: 10.1038/nature14441 – ident: e_1_2_5_20_1 doi: 10.1038/s41928-019-0321-3 – ident: e_1_2_5_52_1 doi: 10.1093/bioinformatics/btu856 – ident: e_1_2_5_17_1 doi: 10.1109/JPROC.2015.2434888 – ident: e_1_2_5_7_1 doi: 10.1038/s41586-018-0180-5 – ident: e_1_2_5_33_1 doi: 10.1002/aelm.201800876 – start-page: 393 volume-title: Proc. 43rd Int. Symp. on Computer Architecture (ISCA) year: 2016 ident: e_1_2_5_2_1 – ident: e_1_2_5_6_1 doi: 10.1002/adma.201705914 – ident: e_1_2_5_34_1 doi: 10.1109/TNANO.2019.2936239 – ident: e_1_2_5_10_1 doi: 10.1073/pnas.1815682116 – volume: 20 start-page: 623 year: 2004 ident: e_1_2_5_35_1 publication-title: J. Metastable Nanocryst. Mater. – ident: e_1_2_5_48_1 doi: 10.1093/bioinformatics/bts505 – start-page: C104 volume-title: 2013 Symp. VLSI (VLSI) year: 2013 ident: e_1_2_5_26_1 – ident: e_1_2_5_44_1 doi: 10.1186/s13073-015-0221-8 – start-page: 94 volume-title: IEEE/ACM Transactions On Networking year: 2014 ident: e_1_2_5_18_1 – ident: e_1_2_5_49_1 doi: 10.1093/bioinformatics/btx342 – ident: e_1_2_5_12_1 doi: 10.1038/nnano.2017.83 – volume-title: 2020 IEEE Custom Integrated Circuits Conference (CICC) year: 2020 ident: e_1_2_5_4_1 – ident: e_1_2_5_46_1 doi: 10.1038/nmeth.1923 – start-page: 2253 volume-title: 2014 IEEE Int. Symp. Circuits Syst. (ISCAS) year: 2014 ident: e_1_2_5_31_1 doi: 10.1109/ISCAS.2014.6865619 – start-page: 99 volume-title: Proc. 41st IEEE Int. Symp. Mult. Logic (ISMVL) year: 2011 ident: e_1_2_5_22_1 – start-page: 339 volume-title: Proc. 44th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO) year: 2011 ident: e_1_2_5_13_1 – ident: e_1_2_5_1_1 doi: 10.1109/MCSE.2017.31 – start-page: 1577 volume-title: IEEE Trans. on Circuits and Systems II: Express Briefs year: 2019 ident: e_1_2_5_25_1 – ident: e_1_2_5_27_1 doi: 10.1109/JSSC.2017.2681458 – start-page: 51 volume-title: Proc. Forty‐Seventh Annu. ACM Symp. on Theory of Computing (STOC) year: 2015 ident: e_1_2_5_53_1 doi: 10.1145/2746539.2746612 – ident: e_1_2_5_50_1 doi: 10.1093/bib/bby017 – start-page: 274 volume-title: 2015 Symposium on VLSI Circuits year: 2015 ident: e_1_2_5_38_1 doi: 10.1109/VLSIC.2015.7231286 – ident: e_1_2_5_36_1 doi: 10.1088/0022-3727/42/13/135417 – start-page: 609 volume-title: Proc. 47th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO) year: 2014 ident: e_1_2_5_3_1 – start-page: 189 volume-title: Proc. 40th Int. Symp. on Computer Architecture (ISCA) year: 2013 ident: e_1_2_5_15_1 – ident: e_1_2_5_9_1 doi: 10.1038/ncomms15199 – ident: e_1_2_5_5_1 doi: 10.1063/1.5129101 – ident: e_1_2_5_51_1 doi: 10.1007/s10032-002-0082-8 – start-page: 786 volume-title: Proc. 45th Annu. Des. Autom. Conf. (DAC) year: 2008 ident: e_1_2_5_14_1 |
| SSID | ssj0009606 |
| Score | 2.610083 |
| Snippet | The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently... The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2003437 |
| SubjectTerms | Arrays Associative memory Automata theory Circuit design CMOS Computation content addressable memory Finite state machines in‐memory computing Mapping Materials science Memristors Pattern matching Power efficiency Power management Random access memory Resistance |
| Title | In‐Memory Computing with Memristor Content Addressable Memories for Pattern Matching |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202003437 https://www.proquest.com/docview/2442588013 https://www.proquest.com/docview/2431818699 |
| Volume | 32 |
| WOSCitedRecordID | wos000555849300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IoLgqeimSdscF3VRcEVEZW8lTVIQliq7q-DNn-Bv9Jc4k3a760EEvbVp0pSZzCOPfh_AYR4lhsJkILW2gZDcBEoqGchYi5Mwk8JYr-mr-Po66fXUzdRf_CU-RL3gRpbh_TUZuM6GxxPQUG09bhAdrhJhPAtzHAevaMDc2W3n_moCvBt5fk3a7wtUJJIxcOMJP_7-hu-BaZJtTuesPuh0lv__uSuwVCWcrF2OkFWYccUaLE7BEK7Dw2Xx-f7RpTO3b6ykecByRku0DEs9-sCAeRyrYsTa1nrelKzvmG-Dc22GqS-78VCdBeuid6d1rQ2475zfnV4EFd9CYEJJWJFWtIwSGNJsbrhzkTJKmTzEnMiZiLhyUXEiQ1EmuVROY2okOXEXWyt4xnW4CY3iqXBbwDKTxdZooyzqHKeE2tnQ5TyzkWyFLWGbEIyFnZoKjJw4MfppCaPMU5JXWsurCUd1_ecShuPHmrtj3aWVOQ5TzGG4RE_VCptwUD9GQ6LdEV24pxeqg-6NCLpUE7jX5C89pe2zbru-2_5Lox1YoOvyzNouNEaDF7cH8-Z19Dgc7MNs3Ev2qwH9BVJ69Ww |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqgP3sV5jSD4VNzSpFseh3MobkNExbeSJikIUmVOwTd_gr_RX-I5adfpgwjiY9OkLTk5l5ycfh_AQRq1DLnJQGptAyG5CZRUMpBNLephIoWxXtK95mDQur1VF0U1If0Lk-NDlAk30gxvr0nBKSF9NEEN1dYDB1F1lQib01AVuJZkBaqdy-51b4K8G3mCTTrwC1QkWmPkxjo_-v6E755pEm5-DVq91-ku_sP3LsFCEXKydr5GlmHKZSsw_wWIcBVuzrKPt_c-Vd2-spzoAdsZJWkZtnr8gSHzSFbZiLWt9cwpyb1jfgzuthkGv-zCg3VmrI_2nTJba3DdPbk6Pg0KxoXAhJLQIq1oGCXQqdnUcOciZZQyaYhRkTMRseWi6ESCc9lKpXIagyPJib3YWsETrsN1qGQPmdsAlpikaY02yqLUcVOonQ1dyhMbyUbYELYGwXi2Y1PAkRMrxn2cAynzmOYrLuerBodl_8cciOPHnttj4cWFQj7FGMVwibaqEdZgv7yNqkTnIzpzD8_UBw0cUXSpGnAvyl_eFLc7_XZ5tfmXQXswe3rV78W9s8H5FsxRe17Btg2V0fDZ7cCMeRndPQ13i3X9CUUM-HQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFNEH7-K8RhB8Kro06ZbH4RyK2xii4ltJkxQEqTKn4Js_wd_oL_GctOvmgwjiY9OkLefkXJKcfh_AYRo1DIXJQGptAyG5CZRUMpB1LU7CRApjvaY79V6vcXen-kU1If0Lk-NDlBtuZBneX5OBuyebHo9RQ7X1wEFUXSXC-jTMCKkitM2Z1lX7pjNG3o08wSYd-AUqEo0RcuMJP_7-hO-RaZxuTiatPuq0l_7he5dhsUg5WTOfIysw5bJVWJgAIlyD24vs8_2jS1W3bywnesB2Rpu0DFs9_sCAeSSrbMia1nrmlOTBMT8GV9sMk1_W92CdGeuif6edrXW4aZ9dn54HBeNCYEJJaJFW1IwSGNRsarhzkTJKmTTErMiZiNhyUXUiQVk2UqmcxuRIcmIvtlbwhOtwAyrZY-Y2gSUmqVujjbKodVwUamdDl_LERrIW1oStQjCSdmwKOHJixXiIcyBlHpO84lJeVTgq-z_lQBw_9twZKS8uDPI5xiyGS_RVtbAKB-VtNCU6H9GZe3yhPujgiKJLVYF7Vf7yprjZ6jbLq62_DNqHuX6rHXcuepfbME_NeQHbDlSGgxe3C7PmdXj_PNgrpvUX2bz37w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%E2%80%90Memory+Computing+with+Memristor+Content+Addressable+Memories+for+Pattern+Matching&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Graves%2C+Catherine+E.&rft.au=Li%2C+Can&rft.au=Sheng%2C+Xia&rft.au=Miller%2C+Darrin&rft.date=2020-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=37&rft_id=info:doi/10.1002%2Fadma.202003437&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202003437 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |