Hypsochromic Shift of Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation

Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather t...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 60; no. 33; pp. 17910 - 17914
Main Authors: Tanaka, Hiroyuki, Oda, Susumu, Ricci, Gaetano, Gotoh, Hajime, Tabata, Keita, Kawasumi, Ryosuke, Beljonne, David, Olivier, Yoann, Hatakeyama, Takuji
Format: Journal Article
Language:English
Published: WEINHEIM Wiley 09.08.2021
Wiley Subscription Services, Inc
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material (ν‐DABNA). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy. A multiple‐resonance‐induced thermally activated delayed fluorescence material that comprised oxygen, nitrogen, and boron atoms (ν‐DABNA‐O‐Me) was synthesized via one‐shot double borylation. An OLED device employing the fabricated ν‐DABNA‐O‐Me exhibits deep‐blue electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off.
AbstractList Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material (ν‐DABNA). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.
Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material (ν‐DABNA). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy. A multiple‐resonance‐induced thermally activated delayed fluorescence material that comprised oxygen, nitrogen, and boron atoms (ν‐DABNA‐O‐Me) was synthesized via one‐shot double borylation. An OLED device employing the fabricated ν‐DABNA‐O‐Me exhibits deep‐blue electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off.
Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material ( ν‐DABNA‐O‐Me ) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material ( ν‐DABNA ). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA , which demonstrates significant potential of the oxygen atom incorporation strategy.
Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.
Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (nu-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted pi-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, nu-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (nu-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, nu-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to nu-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.
Author Olivier, Yoann
Kawasumi, Ryosuke
Hatakeyama, Takuji
Tanaka, Hiroyuki
Oda, Susumu
Ricci, Gaetano
Gotoh, Hajime
Beljonne, David
Tabata, Keita
Author_xml – sequence: 1
  givenname: Hiroyuki
  surname: Tanaka
  fullname: Tanaka, Hiroyuki
  organization: JNC Petrochemical Corporation
– sequence: 2
  givenname: Susumu
  orcidid: 0000-0003-1088-1932
  surname: Oda
  fullname: Oda, Susumu
  organization: Kwansei Gakuin University
– sequence: 3
  givenname: Gaetano
  surname: Ricci
  fullname: Ricci, Gaetano
  organization: Université de Namur
– sequence: 4
  givenname: Hajime
  surname: Gotoh
  fullname: Gotoh, Hajime
  organization: Kwansei Gakuin University
– sequence: 5
  givenname: Keita
  surname: Tabata
  fullname: Tabata, Keita
  organization: JNC Petrochemical Corporation
– sequence: 6
  givenname: Ryosuke
  surname: Kawasumi
  fullname: Kawasumi, Ryosuke
  organization: JNC Petrochemical Corporation
– sequence: 7
  givenname: David
  surname: Beljonne
  fullname: Beljonne, David
  organization: Université de Mons
– sequence: 8
  givenname: Yoann
  orcidid: 0000-0003-2193-1536
  surname: Olivier
  fullname: Olivier, Yoann
  organization: Université de Namur
– sequence: 9
  givenname: Takuji
  orcidid: 0000-0002-7483-9525
  surname: Hatakeyama
  fullname: Hatakeyama, Takuji
  email: hatake@kwansei.ac.jp
  organization: Kwansei Gakuin University
BookMark eNqNks1u1DAQgCNURH_gyjkSFySUxT9x4hxX25auVKgEe7cc75h15bWD7QDpqY_AM_IkeNkFpEoITjOyvm88M5rT4sh5B0XxHKMZRoi8ls7AjCCCEUOUPCpOMCO4om1Lj3JeU1q1nOHj4jTG28xzjponxTGtEeUN5ifF3dU0RK82wW-NKj9sjE6l1-Xb0SYzWPh-_-09RO-kU7t86dajgnW52kDYSmuncq6S-SxTfjsHK6ccL-3oA0QFWSn7qbz5On0EV86T35ZLp3wYfJDJePe0eKyljfDsEM-K1eXFanFVXd-8WS7m15WiDJGKtXXTI1QzTSRghRmjeo2JhkYpjrBCpFVd1_dk3THNUAO805oiyqABzYGeFS_3ZYfgP40Qk9ia3J210oEfoyCMUorbBrOMvniA3voxuNxcplhL67qjbab4nvoCvddRmd2kYghmK8MkEEJNw3nees4QXpj0c9iFH13K6qv_VzNd72kVfIwBtFCHailIYwVGYncDYncD4vcNZG32QPv1wV-F7tCVsTD9gxbzd8uLP-4PqFPFow
CitedBy_id crossref_primary_10_1002_advs_202302619
crossref_primary_10_1002_anie_202309923
crossref_primary_10_1016_j_cej_2025_164225
crossref_primary_10_1002_ange_202200337
crossref_primary_10_1002_adfm_202402906
crossref_primary_10_1002_adfm_202213461
crossref_primary_10_1002_adom_202201071
crossref_primary_10_1016_j_cej_2022_135221
crossref_primary_10_1016_j_cej_2024_155350
crossref_primary_10_1016_j_dyepig_2022_110799
crossref_primary_10_1039_D4RA03443K
crossref_primary_10_1002_ange_202216473
crossref_primary_10_1002_agt2_182
crossref_primary_10_1002_ange_202217045
crossref_primary_10_1016_j_jorganchem_2022_122564
crossref_primary_10_1002_advs_202200707
crossref_primary_10_1002_anie_202306768
crossref_primary_10_1016_j_dyepig_2023_111371
crossref_primary_10_1002_ange_202302478
crossref_primary_10_1002_anie_202304104
crossref_primary_10_1039_D4NR03955F
crossref_primary_10_1039_D5QO00522A
crossref_primary_10_1002_advs_202401664
crossref_primary_10_1002_anie_202110050
crossref_primary_10_1002_anie_202411464
crossref_primary_10_1002_adom_202501149
crossref_primary_10_59717_j_xinn_mater_2023_100041
crossref_primary_10_1002_anie_202113206
crossref_primary_10_1002_anie_202205684
crossref_primary_10_1002_ange_202116927
crossref_primary_10_1002_ange_202209539
crossref_primary_10_1002_anie_202313084
crossref_primary_10_1002_anie_202300934
crossref_primary_10_1002_anie_202106642
crossref_primary_10_1002_adom_202402214
crossref_primary_10_1039_D2SC06343C
crossref_primary_10_1002_anie_202215522
crossref_primary_10_1016_j_cej_2024_148781
crossref_primary_10_1002_tcr_202300208
crossref_primary_10_1002_adpr_202200201
crossref_primary_10_1021_jacs_2c09543
crossref_primary_10_1039_D4SC04896B
crossref_primary_10_1002_ange_202205684
crossref_primary_10_1016_j_cjsc_2024_100451
crossref_primary_10_1021_jacs_1c11659
crossref_primary_10_1007_s00894_025_06465_x
crossref_primary_10_1002_adfm_202306880
crossref_primary_10_1002_adom_202302987
crossref_primary_10_1021_acs_chemrev_5c00021
crossref_primary_10_1016_j_cej_2021_133221
crossref_primary_10_1002_ange_202215522
crossref_primary_10_1002_anie_202209984
crossref_primary_10_1002_flm2_70002
crossref_primary_10_3390_molecules26206306
crossref_primary_10_1002_fle2_70005
crossref_primary_10_1002_adom_202402960
crossref_primary_10_1002_anie_202206916
crossref_primary_10_3788_AOSOL240464
crossref_primary_10_1021_jacs_2c10946
crossref_primary_10_1021_jacs_3c02873
crossref_primary_10_1016_j_cej_2025_165947
crossref_primary_10_1039_D2QM01304E
crossref_primary_10_1016_j_cej_2021_134381
crossref_primary_10_1039_D1QM01588E
crossref_primary_10_1002_anie_202201588
crossref_primary_10_1002_cphc_202500201
crossref_primary_10_1063_5_0206023
crossref_primary_10_1002_adma_202210413
crossref_primary_10_1002_anie_202210210
crossref_primary_10_1002_ange_202411464
crossref_primary_10_1002_sdtp_18670
crossref_primary_10_1002_adfm_202204352
crossref_primary_10_1002_adma_202107951
crossref_primary_10_1002_adom_202200504
crossref_primary_10_1002_adom_202201714
crossref_primary_10_1002_sdtp_15662
crossref_primary_10_1002_adom_202102513
crossref_primary_10_1002_adom_202101789
crossref_primary_10_1002_ange_202209984
crossref_primary_10_1002_anie_202116927
crossref_primary_10_1002_ange_202206916
crossref_primary_10_1016_j_cej_2022_138498
crossref_primary_10_1002_anie_202408522
crossref_primary_10_1002_ange_202201588
crossref_primary_10_1002_anie_202218947
crossref_primary_10_1039_D4SC02351J
crossref_primary_10_1002_ange_202210210
crossref_primary_10_1038_s41467_024_49069_4
crossref_primary_10_1002_ange_202109335
crossref_primary_10_1002_ange_202300934
crossref_primary_10_1039_D5SC01439E
crossref_primary_10_1002_adfm_202201032
crossref_primary_10_1038_s41467_024_46619_8
crossref_primary_10_1038_s42004_022_00668_6
crossref_primary_10_1039_D5CC01299F
crossref_primary_10_1002_anie_202416154
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1002_anie_202217470
crossref_primary_10_1002_adma_202503839
crossref_primary_10_1002_adma_202201778
crossref_primary_10_1038_s42004_022_00766_5
crossref_primary_10_1002_anie_202213392
crossref_primary_10_1002_adom_202200290
crossref_primary_10_1002_adfm_202211893
crossref_primary_10_1002_sdtp_16627
crossref_primary_10_1039_D2SC02478K
crossref_primary_10_1002_smll_202107574
crossref_primary_10_1002_adom_202303214
crossref_primary_10_1016_j_cej_2022_138545
crossref_primary_10_1038_s41563_024_01812_4
crossref_primary_10_1002_adom_202200688
crossref_primary_10_1002_advs_202303504
crossref_primary_10_1002_adom_202303295
crossref_primary_10_1016_j_tet_2025_134522
crossref_primary_10_1002_ange_202306768
crossref_primary_10_1002_anie_202302478
crossref_primary_10_1002_advs_202205070
crossref_primary_10_1002_anie_202414383
crossref_primary_10_1002_ange_202304104
crossref_primary_10_1002_adom_202402653
crossref_primary_10_1002_ange_202416154
crossref_primary_10_1002_anie_202305580
crossref_primary_10_1002_adma_202200537
crossref_primary_10_1002_anie_202216473
crossref_primary_10_1002_anie_202217045
crossref_primary_10_1002_anie_202209539
crossref_primary_10_1039_D3QM00100H
crossref_primary_10_1002_ange_202217470
crossref_primary_10_1002_ange_202517695
crossref_primary_10_1002_ange_202213392
crossref_primary_10_1016_j_dyepig_2022_110931
crossref_primary_10_1002_adom_202403295
crossref_primary_10_1002_ange_202408522
crossref_primary_10_1002_ange_202510891
crossref_primary_10_1016_j_cej_2024_157676
crossref_primary_10_1002_chem_202104214
crossref_primary_10_1039_D5TC01861G
crossref_primary_10_1002_ange_202106642
crossref_primary_10_1002_ange_202313084
crossref_primary_10_1080_00268976_2025_2486732
crossref_primary_10_1002_ange_202309923
crossref_primary_10_1002_chem_202404078
crossref_primary_10_1002_adma_202106954
crossref_primary_10_1002_ange_202305580
crossref_primary_10_1002_ange_202414383
crossref_primary_10_1002_chem_202201605
crossref_primary_10_1038_s41467_023_41440_1
crossref_primary_10_1038_s41566_024_01508_w
crossref_primary_10_1002_anie_202200337
crossref_primary_10_1002_anie_202517695
crossref_primary_10_1039_D4SC07503J
crossref_primary_10_1002_chem_202301931
crossref_primary_10_1039_D3QM00498H
crossref_primary_10_1002_adom_202302811
crossref_primary_10_1016_j_saa_2024_125493
crossref_primary_10_1002_cphc_202400955
crossref_primary_10_1038_s41586_024_07149_x
crossref_primary_10_1039_D3MH00881A
crossref_primary_10_1002_adma_202402905
crossref_primary_10_1002_ange_202113206
crossref_primary_10_1002_anie_202510891
crossref_primary_10_1002_anie_202109335
crossref_primary_10_3390_ma18092040
crossref_primary_10_1002_ange_202110050
crossref_primary_10_1002_ange_202218947
crossref_primary_10_1016_j_cej_2024_154839
crossref_primary_10_1016_j_jiec_2024_05_017
crossref_primary_10_1016_j_cplett_2022_139895
Cites_doi 10.1002/ange.201508270
10.1002/ange.202007210
10.1002/adma.201601675
10.1021/jacs.7b03848
10.1002/ange.202008264
10.1002/adma.201300753
10.1007/978-3-642-03432-9_5
10.1016/j.chemphys.2018.06.011
10.1002/anie.202012891
10.1021/j100012a014
10.1002/anie.201600113
10.1063/1.2929846
10.1002/anie.201609459
10.1002/adma.201401393
10.1021/ja510144h
10.1038/nature11687
10.1002/adfm.201504357
10.1039/c2jm33669c
10.1039/C4CP01428F
10.1016/j.tsf.2016.11.016
10.1002/adma.202004072
10.1021/jacs.0c10081
10.1021/jacs.6b12124
10.1039/C9SC04492B
10.1021/acs.chemmater.6b05324
10.1002/anie.202007210
10.1002/anie.201508270
10.1038/s41467-019-08495-5
10.1038/ncomms5016
10.1038/s41566-020-00745-z
10.1021/jacs.7b10578
10.1021/jacs.7b10257
10.1002/ange.201609459
10.1002/adfm.201802031
10.1038/s41467-020-17777-2
10.1002/adfm.201802558
10.1021/acs.orglett.9b03342
10.1002/ange.201911266
10.1002/advs.201902508
10.1246/bcsj.20200372
10.1002/adma.201503782
10.1021/acsmaterialslett.9b00433
10.1002/adfm.201908677
10.1038/ncomms9476
10.1002/adma.201906614
10.1021/jacs.7b00873
10.1038/s41566-021-00763-5
10.1038/nmat4154
10.1063/1.98799
10.1002/cphc.201600662
10.1038/s41467-020-15558-5
10.1039/C8TC06575F
10.1038/s41563-019-0465-6
10.1021/acs.orglett.9b04483
10.1002/ange.201806323
10.1002/adfm.201602507
10.1002/adma.201505491
10.1002/anie.201911266
10.1002/adma.201705641
10.1002/adma.201605444
10.1002/adma.201908355
10.1002/ange.201506335
10.1002/anie.202008264
10.1002/anie.201806323
10.1002/ange.202012891
10.1038/s41566-019-0476-5
10.1038/ncomms13680
10.1038/nphoton.2014.12
10.1039/C6CS00368K
10.1021/jacs.9b13704
10.1002/ange.201600113
10.1002/anie.201506335
10.1039/c8tc06575f
10.1002/ANGE.202007210
10.1038/NMAT4154
10.1038/s41566-021-00759-1
10.1039/c4cp01428f
10.1002/adfm.201803901
10.1038/NPHOTON.2014.12
10.1038/s41566-018-0112-9
10.1039/c6cs00368k
10.1002/ANGE.202012891
10.1039/c9sc04492b
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
HGBXW
7TM
K9.
7X8
DOI 10.1002/anie.202105032
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2021
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
Web of Science
Database_xml – sequence: 1
  dbid: 1KM
  name: Index Chemicus
  url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 17914
ExternalDocumentID 000668878500001
10_1002_anie_202105032
ANIE202105032
Genre shortCommunication
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 18H02051; 20K15291; 20H05863; 21H02019
– fundername: Nagase Science Technology Foundation
– fundername: Core Research for Evolutional Science and Technology
  funderid: JPMJCR18R3
– fundername: Asahi Glass Foundation
– fundername: JSPS; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science
  grantid: 18H02051; 21H02019; 20K15291; 20H05863
– fundername: Nagase Science and Technology Foundation
– fundername: CREST programs from JST
  grantid: JPMJCR18R3
– fundername: Grants-in-Aid for Scientific Research; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI)
  grantid: 21H02019; 20H05863; 20K15291; 18H02051
– fundername: "Fonds de la Recherche Scientifiques de Belgique" (FRS-FNRS); Fonds de la Recherche Scientifique - FNRS
  grantid: 2.5020.11
– fundername: Tier-1 supercomputer of the Federation Wallonie-Bruxelles
– fundername: "Fonds pour la formation a la Recherche dans l'Industrie et dans l'Agriculture" (FRIA) of the FRS-FNRS; Fonds de la Recherche Scientifique - FNRS
– fundername: FRS-FNRS; Fonds de la Recherche Scientifique - FNRS
  grantid: F.4534.21
– fundername: Walloon Region
  grantid: 1117545
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
7TM
K9.
7X8
ID FETCH-LOGICAL-c3502-5746b0045f2ae1c1553fd12fe6cc801c027c99bb2d95f506e89ff3035e6ef8e3
IEDL.DBID DRFUL
ISICitedReferencesCount 188
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000668878500001
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 10:04:01 EST 2025
Tue Oct 07 07:19:19 EDT 2025
Fri Dec 05 22:59:35 EST 2025
Tue Nov 11 07:15:06 EST 2025
Sat Nov 29 02:36:20 EST 2025
Tue Nov 18 20:56:50 EST 2025
Wed Jan 22 16:28:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords BLUE
OLEDS
EMITTERS
organic light-emitting diodes
SINGLET
LIGHT-EMITTING-DIODES
MOLECULAR DESIGN
thermally activated delayed fluorescence
multiple resonance effect
narrowband emission
deep blue
EMISSION
DERIVATIVES
HIGH-EFFICIENCY
BORYLATION
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3502-5746b0045f2ae1c1553fd12fe6cc801c027c99bb2d95f506e89ff3035e6ef8e3
Notes KAKEN
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1088-1932
0000-0002-7483-9525
0000-0003-2193-1536
0000-0003-0181-2513
PMID 34038618
PQID 2557344937
PQPubID 946352
PageCount 5
ParticipantIDs webofscience_primary_000668878500001CitationCount
wiley_primary_10_1002_anie_202105032_ANIE202105032
proquest_journals_2557344937
crossref_citationtrail_10_1002_anie_202105032
proquest_miscellaneous_2533317615
crossref_primary_10_1002_anie_202105032
webofscience_primary_000668878500001
PublicationCentury 2000
PublicationDate August 9, 2021
PublicationDateYYYYMMDD 2021-08-09
PublicationDate_xml – month: 08
  year: 2021
  text: August 9, 2021
  day: 09
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2019; 7
2015; 14
2018; 28
2015; 6
2013; 25
1987; 51
2018; 140
2020; 142
2019; 10
2019; 13
2017; 46
1995; 99
2009
2020 2020; 59 132
2014; 26
2008; 128
2019; 18
2017; 29
2020; 11
2020; 32
2017 2017; 56 129
2021; 94
2016; 17
2014; 136
2019 2019; 58 131
2017; 139
2012; 492
2020; 7
2016; 7
2021; 15
2014; 5
2016 2016; 55 128
2020; 2
2020; 30
2018; 515
2019; 21
2018 2018; 57 130
2016; 619
2014; 16
2021 2021; 60 133
2015 2015; 54 127
2018; 30
2020; 22
2018; 12
2014; 8
2016; 28
2012; 22
2016; 26
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_1
e_1_2_2_64_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_66_2
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_8_3
e_1_2_2_66_3
Sato T. (e_1_2_2_22_2) 2009
e_1_2_2_60_1
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_57_3
e_1_2_2_51_2
e_1_2_2_74_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_55_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_76_2
e_1_2_2_34_3
e_1_2_2_78_1
e_1_2_2_72_1
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_61_2
Wu T.-L. (e_1_2_2_11_2) 2018; 12
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_67_2
e_1_2_2_35_3
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_12_1
e_1_2_2_37_3
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_39_3
e_1_2_2_75_2
e_1_2_2_73_1
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_18_1
e_1_2_2_56_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_33_3
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_77_2
e_1_2_2_50_1
e_1_2_2_71_2
Hirai, H (WOS:000364395100014) 2015; 54
Togashi, K (WOS:000308658600082) 2012; 22
XU Y (WOS:000668878500001.63) 2020; 132
Shao, SY (WOS:000418204600010) 2017; 139
Oda, S (WOS:000508468200074) 2020; 22
Lin, TA (WOS:000382482500023) 2016; 28
Uejima, M (WOS:000338116700075) 2014; 16
Zhang, YW (WOS:000492218500001) 2019; 58
Li, YC (WOS:000386159300005) 2016; 26
Tsujimoto, H (WOS:000398764000044) 2017; 139
Kondo, Y (WOS:000487333400005) 2019; 13
Wong, MY (WOS:000402963400023) 2017; 29
Aizawa, N (WOS:000561120500008) 2020; 11
LIANG X (WOS:000668878500001.25) 2018; 130
Wang, H (WOS:000340546300019) 2014; 26
Zhang, YW (WOS:000557993900001) 2020; 59
Gibson, J (WOS:000386790100001) 2016; 17
Wu, TL (WOS:000428785500017) 2018; 12
Zhang, DD (WOS:000538819800015) 2020; 32
Liang, X (WOS:000442340000034) 2018; 57
Hatakeyama, T (WOS:000373839600014) 2016; 28
Han, SH (WOS:000461597400027) 2019; 7
Santoro, F (WOS:000256706300020) 2008; 128
Kim, JU (WOS:000528787900001) 2020; 11
KARPOVICH, DS (WOS:A1995QN63200014) 1995; 99
Jeon, SO (WOS:000618183700001) 2021; 15
Samanta, PK (WOS:000397477700022) 2017; 139
Hirata, S (WOS:000350136400022) 2015; 14
Suresh, SM (WOS:000535648400001) 2020; 30
DATA P (WOS:000668878500001.7) 2016; 128
TANG, CW (WOS:A1987J991800015) 1987; 51
Yang, ML (WOS:000592911000007) 2020; 142
Im, Y (WOS:000396639400006) 2017; 29
Matsui, K (WOS:000424313000002) 2018; 140
Rajamalli, P (WOS:000408074800003) 2017; 139
Xu, YC (WOS:000555866800001) 2020; 59
Yang, ZY (WOS:000395629200010) 2017; 46
Uoyama, H (WOS:000312259300038) 2012; 492
Ikeda, N (WOS:000564015100001) 2020; 32
Matsuo, K (WOS:000499471800019) 2019; 10
Park, IS (WOS:000442205200010) 2018; 28
Nguyen, TB (WOS:000508921700001) 2020; 32
Wada, Y (WOS:000425449300027) 2018; 30
Oda, S (WOS:000597678700001) 2021; 60
Xiong, T (WOS:000454412800081) 2018; 515
Zhang, QS (WOS:000347438300030) 2014; 136
Oda, S (WOS:000635201200008) 2021; 94
ODA S (WOS:000668878500001.35) 2021; 133
Oda, S (WOS:000502163300007) 2019; 21
Etherington, MK (WOS:000388801100001) 2016; 7
Sato, T (WOS:000292113400005) 2009; 97
Wang, SQ (WOS:000444072800029) 2018; 28
Seino, Y (WOS:000373292700020) 2016; 28
Tanaka, Y (WOS:000389610900017) 2016; 619
Kaji, H (WOS:000364926700005) 2015; 6
Data, P (WOS:000375118500012) 2016; 55
Suzuki, K (WOS:000368057400044) 2015; 54
Zou, SJ (WOS:000498758900001) 2020; 7
Pershin, A (WOS:000457749000006) 2019; 10
Nakanotani, H (WOS:000337542700001) 2014; 5
Zhang, QS (WOS:000333800000016) 2014; 8
Hirai, H. (000668878500001.13) 2015; 127
Suresh, SM (WOS:000526394200021) 2020; 142
Dias, FB (WOS:000327692200014) 2013; 25
Xiang, CY (WOS:000372179100018) 2016; 26
Agou, T (WOS:000519825900005) 2020; 2
Cui, L. (000668878500001.5) 2017; 129
Cui, LS (WOS:000394998300022) 2017; 56
Chan, CY (WOS:000607337700001) 2021; 15
Suzuki, K. (000668878500001.48) 2015; 127
Noda, H (WOS:000486618800017) 2019; 18
References_xml – volume: 54 127
  start-page: 15231 15446
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 17442 17595
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 3082
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 25
  start-page: 3707
  year: 2013
  publication-title: Adv. Mater.
– volume: 56 129
  start-page: 1571 1593
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 2956
  year: 2016
  publication-title: ChemPhysChem
– volume: 6
  start-page: 8476
  year: 2015
  publication-title: Nat. Commun.
– volume: 26
  start-page: 6904
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 1195
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 3951
  year: 1995
  publication-title: J. Phys. Chem.
– volume: 57 130
  start-page: 11316 11486
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 9311
  year: 2019
  publication-title: Org. Lett.
– volume: 10
  start-page: 10687
  year: 2019
  publication-title: Chem. Sci.
– volume: 26
  start-page: 5198
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1765
  year: 2020
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1463
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 4042
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 6976
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 515
  start-page: 728
  year: 2018
  publication-title: Chem. Phys.
– volume: 94
  start-page: 950
  year: 2021
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 13
  start-page: 678
  year: 2019
  publication-title: Nat. Photonics
– volume: 2
  start-page: 28
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 5
  start-page: 4016
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 326
  year: 2014
  publication-title: Nat. Photonics
– volume: 139
  start-page: 4894
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 18070
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 16912 17068
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 99
  year: 2009
  end-page: 129
– volume: 59 132
  start-page: 17499 17652
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 700
  year: 2020
  publication-title: Org. Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 2638
  year: 2016
  publication-title: Adv. Mater.
– volume: 51
  start-page: 913
  year: 1987
  publication-title: Appl. Phys. Lett.
– volume: 619
  start-page: 120
  year: 2016
  publication-title: Thin Solid Films
– volume: 492
  start-page: 234
  year: 2012
  publication-title: Nature
– volume: 29
  start-page: 1946
  year: 2017
  publication-title: Chem. Mater.
– volume: 12
  start-page: 23
  year: 2018
  publication-title: Nat. Photonics
– volume: 7
  start-page: 13680
  year: 2016
  publication-title: Nat. Commun.
– volume: 54 127
  start-page: 13581 13785
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 14244
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 3909
  year: 2020
  publication-title: Nat. Commun.
– volume: 46
  start-page: 915
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 55 128
  start-page: 5739 5833
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 10948
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 15
  start-page: 203
  year: 2021
  publication-title: Nat. Photonics
– volume: 142
  start-page: 19468
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 17739
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 6588
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 2777
  year: 2016
  publication-title: Adv. Mater.
– volume: 22
  start-page: 20689
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 14
  start-page: 330
  year: 2015
  publication-title: Nat. Mater.
– volume: 128
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 2882 2918
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 597
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  start-page: 208
  year: 2021
  publication-title: Nat. Photonics
– volume: 18
  start-page: 1084
  year: 2019
  publication-title: Nat. Mater.
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201508270
– ident: e_1_2_2_34_3
  doi: 10.1002/ange.202007210
– ident: e_1_2_2_46_1
– ident: e_1_2_2_61_2
  doi: 10.1002/adma.201601675
– ident: e_1_2_2_64_2
  doi: 10.1021/jacs.7b03848
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.202008264
– ident: e_1_2_2_32_1
– ident: e_1_2_2_3_2
  doi: 10.1002/adma.201300753
– start-page: 99
  volume-title: The Jahn–Teller Effect: Fundamentals and Implications for Physics and Chemistry, Springer Series in Chemical Physics, Vol. 97
  year: 2009
  ident: e_1_2_2_22_2
  doi: 10.1007/978-3-642-03432-9_5
– ident: e_1_2_2_24_2
  doi: 10.1016/j.chemphys.2018.06.011
– ident: e_1_2_2_37_2
  doi: 10.1002/anie.202012891
– ident: e_1_2_2_20_2
  doi: 10.1021/j100012a014
– ident: e_1_2_2_38_1
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201600113
– ident: e_1_2_2_21_2
  doi: 10.1063/1.2929846
– ident: e_1_2_2_66_2
  doi: 10.1002/anie.201609459
– ident: e_1_2_2_5_2
  doi: 10.1002/adma.201401393
– ident: e_1_2_2_47_2
  doi: 10.1021/ja510144h
– ident: e_1_2_2_2_2
  doi: 10.1038/nature11687
– ident: e_1_2_2_72_1
  doi: 10.1002/adfm.201504357
– ident: e_1_2_2_58_2
  doi: 10.1039/c2jm33669c
– ident: e_1_2_2_23_2
  doi: 10.1039/C4CP01428F
– ident: e_1_2_2_59_2
  doi: 10.1016/j.tsf.2016.11.016
– ident: e_1_2_2_31_2
  doi: 10.1002/adma.202004072
– ident: e_1_2_2_36_2
  doi: 10.1021/jacs.0c10081
– ident: e_1_2_2_28_1
– ident: e_1_2_2_53_2
  doi: 10.1021/jacs.6b12124
– ident: e_1_2_2_68_2
  doi: 10.1039/C9SC04492B
– ident: e_1_2_2_25_1
– ident: e_1_2_2_14_2
  doi: 10.1021/acs.chemmater.6b05324
– ident: e_1_2_2_34_2
  doi: 10.1002/anie.202007210
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201508270
– ident: e_1_2_2_42_1
  doi: 10.1038/s41467-019-08495-5
– ident: e_1_2_2_74_2
  doi: 10.1038/ncomms5016
– ident: e_1_2_2_76_2
  doi: 10.1038/s41566-020-00745-z
– ident: e_1_2_2_29_2
  doi: 10.1021/jacs.7b10578
– ident: e_1_2_2_65_2
  doi: 10.1021/jacs.7b10257
– ident: e_1_2_2_66_3
  doi: 10.1002/ange.201609459
– ident: e_1_2_2_10_2
  doi: 10.1002/adfm.201802031
– ident: e_1_2_2_55_2
  doi: 10.1038/s41467-020-17777-2
– ident: e_1_2_2_17_2
  doi: 10.1002/adfm.201802558
– ident: e_1_2_2_30_2
  doi: 10.1021/acs.orglett.9b03342
– ident: e_1_2_2_33_3
  doi: 10.1002/ange.201911266
– ident: e_1_2_2_60_1
– ident: e_1_2_2_69_2
  doi: 10.1002/advs.201902508
– ident: e_1_2_2_45_2
  doi: 10.1246/bcsj.20200372
– ident: e_1_2_2_9_2
  doi: 10.1002/adma.201503782
– ident: e_1_2_2_71_2
  doi: 10.1021/acsmaterialslett.9b00433
– ident: e_1_2_2_26_2
  doi: 10.1002/adfm.201908677
– ident: e_1_2_2_49_1
– ident: e_1_2_2_43_1
– ident: e_1_2_2_48_2
  doi: 10.1038/ncomms9476
– ident: e_1_2_2_1_1
– ident: e_1_2_2_78_1
  doi: 10.1002/adma.201906614
– ident: e_1_2_2_63_2
  doi: 10.1021/jacs.7b00873
– ident: e_1_2_2_77_2
  doi: 10.1038/s41566-021-00763-5
– ident: e_1_2_2_6_2
  doi: 10.1038/nmat4154
– ident: e_1_2_2_12_1
  doi: 10.1063/1.98799
– ident: e_1_2_2_51_2
  doi: 10.1002/cphc.201600662
– ident: e_1_2_2_70_2
  doi: 10.1038/s41467-020-15558-5
– ident: e_1_2_2_40_2
  doi: 10.1039/C8TC06575F
– ident: e_1_2_2_54_2
  doi: 10.1038/s41563-019-0465-6
– volume: 12
  start-page: 23
  year: 2018
  ident: e_1_2_2_11_2
  publication-title: Nat. Photonics
– ident: e_1_2_2_44_2
  doi: 10.1021/acs.orglett.9b04483
– ident: e_1_2_2_39_3
  doi: 10.1002/ange.201806323
– ident: e_1_2_2_73_1
– ident: e_1_2_2_62_2
  doi: 10.1002/adfm.201602507
– ident: e_1_2_2_18_1
  doi: 10.1002/adma.201505491
– ident: e_1_2_2_33_2
  doi: 10.1002/anie.201911266
– ident: e_1_2_2_67_2
  doi: 10.1002/adma.201705641
– ident: e_1_2_2_16_2
  doi: 10.1002/adma.201605444
– ident: e_1_2_2_75_2
  doi: 10.1002/adma.201908355
– ident: e_1_2_2_57_3
  doi: 10.1002/ange.201506335
– ident: e_1_2_2_50_1
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.202008264
– ident: e_1_2_2_56_1
– ident: e_1_2_2_39_2
  doi: 10.1002/anie.201806323
– ident: e_1_2_2_37_3
  doi: 10.1002/ange.202012891
– ident: e_1_2_2_41_1
  doi: 10.1038/s41566-019-0476-5
– ident: e_1_2_2_52_2
  doi: 10.1038/ncomms13680
– ident: e_1_2_2_4_2
  doi: 10.1038/nphoton.2014.12
– ident: e_1_2_2_13_1
– ident: e_1_2_2_15_2
  doi: 10.1039/C6CS00368K
– ident: e_1_2_2_19_1
– ident: e_1_2_2_27_2
  doi: 10.1021/jacs.9b13704
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201600113
– ident: e_1_2_2_57_2
  doi: 10.1002/anie.201506335
– volume: 26
  start-page: 1463
  year: 2016
  ident: WOS:000372179100018
  article-title: Efficiency Roll-Off in Blue Emitting Phosphorescent Organic Light Emitting Diodes with Carbazole Host Materials
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201504357
– volume: 32
  start-page: ARTN 1906614
  year: 2020
  ident: WOS:000508921700001
  article-title: The Role of Reverse Intersystem Crossing Using a TADF-Type Acceptor Molecule on the Device Stability of Exciplex-Based Organic Light-Emitting Diodes
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201906614
– volume: 59
  start-page: 17442
  year: 2020
  ident: WOS:000555866800001
  article-title: Constructing Charge-Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202007210
– volume: 127
  start-page: 13785
  year: 2015
  ident: 000668878500001.13
  article-title: One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes
  publication-title: Angew. Chem
– volume: 7
  start-page: 3082
  year: 2019
  ident: WOS:000461597400027
  article-title: Ideal blue thermally activated delayed fluorescence emission assisted by a thermally activated delayed fluorescence assistant dopant through a fast reverse intersystem crossing mediated cascade energy transfer process
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c8tc06575f
– volume: 99
  start-page: 3951
  year: 1995
  ident: WOS:A1995QN63200014
  article-title: RELATING THE POLARITY-DEPENDENT FLUORESCENCE RESPONSE OF PYRENE TO VIBRONIC COUPLING - ACHIEVING A FUNDAMENTAL UNDERSTANDING OF THE PY POLARITY SCALE
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY
– volume: 132
  start-page: 17595
  year: 2020
  ident: WOS:000668878500001.63
  publication-title: ANGEW CHEM
  doi: 10.1002/ANGE.202007210
– volume: 11
  start-page: ARTN 3909
  year: 2020
  ident: WOS:000561120500008
  article-title: Kinetic prediction of reverse intersystem crossing in organic donor-acceptor molecules
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-17777-2
– volume: 142
  start-page: 6588
  year: 2020
  ident: WOS:000526394200021
  article-title: A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet-Triplet Annihilation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b13704
– volume: 7
  start-page: ARTN 13680
  year: 2016
  ident: WOS:000388801100001
  article-title: Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms13680
– volume: 14
  start-page: 330
  year: 2015
  ident: WOS:000350136400022
  article-title: Highly efficient blue electroluminescence based on thermally activated delayed fluorescence
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT4154
– volume: 54
  start-page: 15231
  year: 2015
  ident: WOS:000368057400044
  article-title: Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 %
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201508270
– volume: 58
  start-page: 16912
  year: 2019
  ident: WOS:000492218500001
  article-title: Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911266
– volume: 619
  start-page: 120
  year: 2016
  ident: WOS:000389610900017
  article-title: Application of wide-energy-gap material 3,4-di(9H-carbazol-9-yl)benzonitrile in organic light-emitting diodes
  publication-title: THIN SOLID FILMS
  doi: 10.1016/j.tsf.2016.11.016
– volume: 130
  year: 2018
  ident: WOS:000668878500001.25
  publication-title: ANGEW CHEM
– volume: 59
  start-page: 17499
  year: 2020
  ident: WOS:000557993900001
  article-title: Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Aza-Fused Multi-Resonance Emitter
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202008264
– volume: 15
  start-page: 245
  year: 2021
  ident: WOS:000607337700001
  article-title: Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission (Jan, 10.1038/s41566-020-00745-z, 2021)
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-021-00759-1
– volume: 139
  start-page: 17739
  year: 2017
  ident: WOS:000418204600010
  article-title: Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b10257
– volume: 30
  start-page: ARTN 1908677
  year: 2020
  ident: WOS:000535648400001
  article-title: Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201908677
– volume: 515
  start-page: 728
  year: 2018
  ident: WOS:000454412800081
  article-title: Vibrationally resolved absorption and fluorescence spectra of perylene and N-substituted derivatives from autocorrelation function approaches
  publication-title: CHEMICAL PHYSICS
  doi: 10.1016/j.chemphys.2018.06.011
– volume: 28
  start-page: 2777
  year: 2016
  ident: WOS:000373839600014
  article-title: Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201505491
– volume: 16
  start-page: 14244
  year: 2014
  ident: WOS:000338116700075
  article-title: Quantum yield in blue-emitting anthracene derivatives: vibronic coupling density and transition dipole moment density
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/c4cp01428f
– volume: 6
  start-page: ARTN 8476
  year: 2015
  ident: WOS:000364926700005
  article-title: Purely organic electroluminescent material realizing 100% conversion from electricity to light
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms9476
– volume: 18
  start-page: 1084
  year: 2019
  ident: WOS:000486618800017
  article-title: Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors
  publication-title: NATURE MATERIALS
  doi: 10.1038/s41563-019-0465-6
– volume: 94
  start-page: 950
  year: 2021
  ident: WOS:000635201200008
  article-title: Development of One-Shot/One-Pot Borylation Reactions toward Organoboron-Based Materials
  publication-title: BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN
  doi: 10.1246/bcsj.20200372
– volume: 2
  start-page: 28
  year: 2020
  ident: WOS:000519825900005
  article-title: Pentacyclic Ladder-Heteraborin Emitters Exhibiting High-Efficiency Blue Thermally Activated Delayed Fluorescence with an Ultrashort Emission Lifetime
  publication-title: ACS MATERIALS LETTERS
  doi: 10.1021/acsmaterialslett.9b00433
– volume: 139
  start-page: 4042
  year: 2017
  ident: WOS:000397477700022
  article-title: Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b12124
– volume: 15
  start-page: 208
  year: 2021
  ident: WOS:000618183700001
  article-title: High-efficiency, long-lifetime deep-blue organic light-emitting diodes
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-021-00763-5
– volume: 13
  start-page: 678
  year: 2019
  ident: WOS:000487333400005
  article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-019-0476-5
– volume: 492
  start-page: 234
  year: 2012
  ident: WOS:000312259300038
  article-title: Highly efficient organic light-emitting diodes from delayed fluorescence
  publication-title: NATURE
  doi: 10.1038/nature11687
– volume: 29
  start-page: 1946
  year: 2017
  ident: WOS:000396639400006
  article-title: Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.6b05324
– volume: 22
  start-page: 700
  year: 2020
  ident: WOS:000508468200074
  article-title: Multiple Electrophilic C-H Borylation of Arenes Using Boron Triiodide
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b04483
– volume: 28
  start-page: ARTN 1803901
  year: 2018
  ident: WOS:000444072800029
  article-title: VOx@MoO3 Nanorod Composite for High-Performance Supercapacitors
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201803901
– volume: 140
  start-page: 1195
  year: 2018
  ident: WOS:000424313000002
  article-title: One-Shot Multiple Borylation toward BN-Doped Nanographenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b10578
– volume: 55
  start-page: 5739
  year: 2016
  ident: WOS:000375118500012
  article-title: Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201600113
– volume: 8
  start-page: 326
  year: 2014
  ident: WOS:000333800000016
  article-title: Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence
  publication-title: NATURE PHOTONICS
  doi: 10.1038/NPHOTON.2014.12
– volume: 32
  start-page: ARTN 1908355
  year: 2020
  ident: WOS:000538819800015
  article-title: Efficient and Stable Deep-Blue Fluorescent Organic Light-Emitting Diodes Employing a Sensitizer with Fast Triplet Upconversion
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201908355
– volume: 5
  start-page: ARTN 4016
  year: 2014
  ident: WOS:000337542700001
  article-title: High-efficiency organic light-emitting diodes with fluorescent emitters
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms5016
– volume: 26
  start-page: 6904
  year: 2016
  ident: WOS:000386159300005
  article-title: Design Strategy of Blue and Yellow Thermally Activated Delayed Fluorescence Emitters and Their All-Fluorescence White OLEDs with External Quantum Efficiency beyond 20%
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201602507
– volume: 7
  start-page: ARTN 1902508
  year: 2020
  ident: WOS:000498758900001
  article-title: High-Performance Nondoped Blue Delayed Fluorescence Organic Light-Emitting Diodes Featuring Low Driving Voltage and High Brightness
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.201902508
– volume: 32
  start-page: ARTN 2004072
  year: 2020
  ident: WOS:000564015100001
  article-title: Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202004072
– volume: 12
  start-page: 235
  year: 2018
  ident: WOS:000428785500017
  article-title: Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-018-0112-9
– volume: 56
  start-page: 1571
  year: 2017
  ident: WOS:000394998300022
  article-title: Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201609459
– volume: 28
  start-page: 6976
  year: 2016
  ident: WOS:000382482500023
  article-title: Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201601675
– volume: 21
  start-page: 9311
  year: 2019
  ident: WOS:000502163300007
  article-title: Multiple Resonance Effect-Induced Sky-Blue Thermally Activated Delayed Fluorescence with a Narrow Emission Band
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b03342
– volume: 46
  start-page: 915
  year: 2017
  ident: WOS:000395629200010
  article-title: Recent advances in organic thermally activated delayed fluorescence materials
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c6cs00368k
– volume: 127
  start-page: 15446
  year: 2015
  ident: 000668878500001.48
  article-title: Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20%
  publication-title: Angew. Chem.
– volume: 136
  start-page: 18070
  year: 2014
  ident: WOS:000347438300030
  article-title: Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja510144h
– volume: 22
  start-page: 20689
  year: 2012
  ident: WOS:000308658600082
  article-title: Low driving voltage characteristics of triphenylene derivatives as electron transport materials in organic light-emitting diodes
  publication-title: JOURNAL OF MATERIALS CHEMISTRY
  doi: 10.1039/c2jm33669c
– volume: 28
  start-page: 2638
  year: 2016
  ident: WOS:000373292700020
  article-title: High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W-1
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201503782
– volume: 54
  start-page: 13581
  year: 2015
  ident: WOS:000364395100014
  article-title: One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201506335
– volume: 57
  start-page: 11316
  year: 2018
  ident: WOS:000442340000034
  article-title: Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201806323
– volume: 139
  start-page: 4894
  year: 2017
  ident: WOS:000398764000044
  article-title: Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b00873
– volume: 17
  start-page: 2956
  year: 2016
  ident: WOS:000386790100001
  article-title: The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules
  publication-title: CHEMPHYSCHEM
  doi: 10.1002/cphc.201600662
– volume: 128
  start-page: ARTN 224311
  year: 2008
  ident: WOS:000256706300020
  article-title: Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect:: The Qx band of porphyrin as a case study
  publication-title: JOURNAL OF CHEMICAL PHYSICS
  doi: 10.1063/1.2929846
– volume: 60
  start-page: 2882
  year: 2021
  ident: WOS:000597678700001
  article-title: Carbazole-Based DABNA Analogues as Highly Efficient Thermally Activated Delayed Fluorescence Materials for Narrowband Organic Light-Emitting Diodes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202012891
– volume: 129
  start-page: 1593
  year: 2017
  ident: 000668878500001.5
  article-title: Controlling Singlet Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters
  publication-title: Angew. Chem
– volume: 29
  start-page: ARTN 1605444
  year: 2017
  ident: WOS:000402963400023
  article-title: Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201605444
– volume: 97
  start-page: 99
  year: 2009
  ident: WOS:000292113400005
  article-title: Vibronic Coupling Constant and Vibronic Coupling Density
  publication-title: JAHN-TELLER EFFECT: FUNDAMENTALS AND IMPLICATIONS FOR PHYSICS AND CHEMISTRY
– volume: 133
  start-page: 2918
  year: 2021
  ident: WOS:000668878500001.35
  publication-title: ANGEW CHEM
  doi: 10.1002/ANGE.202012891
– volume: 128
  start-page: 5833
  year: 2016
  ident: WOS:000668878500001.7
  publication-title: ANGEW CHEM
– volume: 10
  start-page: ARTN 597
  year: 2019
  ident: WOS:000457749000006
  article-title: Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-08495-5
– volume: 25
  start-page: 3707
  year: 2013
  ident: WOS:000327692200014
  article-title: Triplet Harvesting with 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge Transfer OLED Emitters
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201300753
– volume: 51
  start-page: 913
  year: 1987
  ident: WOS:A1987J991800015
  article-title: ORGANIC ELECTROLUMINESCENT DIODES
  publication-title: APPLIED PHYSICS LETTERS
– volume: 139
  start-page: 10948
  year: 2017
  ident: WOS:000408074800003
  article-title: New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b03848
– volume: 142
  start-page: 19468
  year: 2020
  ident: WOS:000592911000007
  article-title: Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c10081
– volume: 10
  start-page: 10687
  year: 2019
  ident: WOS:000499471800019
  article-title: Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c9sc04492b
– volume: 28
  start-page: ARTN 1802031
  year: 2018
  ident: WOS:000442205200010
  article-title: High-Performance Dibenzoheteraborin-Based Thermally Activated Delayed Fluorescence Emitters: Molecular Architectonics for Concurrently Achieving Narrowband Emission and Efficient Triplet-Singlet Spin Conversion
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201802031
– volume: 11
  year: 2020
  ident: WOS:000528787900001
  article-title: Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-15558-5
– volume: 30
  start-page: ARTN 1705641
  year: 2018
  ident: WOS:000425449300027
  article-title: Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201705641
– volume: 26
  start-page: 5198
  year: 2014
  ident: WOS:000340546300019
  article-title: Novel Thermally Activated Delayed Fluorescence Materials-Thioxanthone Derivatives and Their Applications for Highly Efficient OLEDs
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201401393
SSID ssj0028806
Score 2.6795332
Snippet Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high...
Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material ( ν‐DABNA‐O‐Me ) with a high...
Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (nu-DABNA-O-Me) with a high...
Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high...
Source Web of Science
SourceID proquest
webofscience
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17910
SubjectTerms Chemistry
Chemistry, Multidisciplinary
Conjugation
deep blue
Fluorescence
Incorporation
Molecular orbitals
multiple resonance effect
narrowband emission
organic light-emitting diodes
Oxygen
Photoluminescence
Photons
Physical Sciences
Quantum efficiency
Resonance
Science & Technology
Service life assessment
thermally activated delayed fluorescence
Title Hypsochromic Shift of Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202105032
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000668878500001
https://www.proquest.com/docview/2557344937
https://www.proquest.com/docview/2533317615
Volume 60
WOS 000668878500001
WOSCitedRecordID wos000668878500001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFgkuvBGBUhmpEqeoiR3ncVxtu2qlsiAo0t6i2LHVSmGz2s0iwomfwG_klzDjZNPuAYHglNfkZc_jmzj-BuBQWakEL4SP8UX5UcGVn0al9gWiaxuWaZYUjmf2PJnN0vk8e39jFn_HDzF8cCPLcP6aDLxQ66Nr0lCagY35HaYsMhDohPc4Kq8cwd7xh-mn8yHpQv3sZhgJ4VMh-i1xY8CPdq-wG5iu0eZOPNqFsC4GTR_8_9M_hPs9_mTjTmEewS2zeAx3J9uyb0_g22m7xB67XNF0Zfbx8so2rLbsbf_j4c_vP-iLP9F00DpV_tCmZKht6OGrqmVj7Qqm4b5jUxUtLqfVpl451ihtmGrZu68tai0bN_VndkY0msteDZ_CxfTkYnLq9wUafC0kelKZRDGZvbS8MKGmEkS2DLk1sdYY-TSmvDrLlOJlJq0MYpNm1mLMlCY2NjXiGYwW9cI8BxaHGnFdqTLDdYQCaWx0WOJGoEITBsoDf9s5ue7Jy6mGRpV3tMs8pwbNhwb14M0gv-xoO34rub_t67w333WOeVYiogihmwevh8PYETSaUixMvSEZIRB8ISL04PCmjgw3dHgOnXgq3RiKB-HfiE361yNOgsYD7rToDy-Rj2dnJ8PWi3856SXco3X3b2O2D6NmtTGv4I7-0lytVwdwO5mnB71t_QIbqSWN
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hFqlceKMaCixSJU5W7V2vYx-jtFEi0oAgSL1Z3vWuWsnEUeogzImfwG_klzBjb1xyQCDEya_xc-fxzXr3G4BjZaUSPBc-xhflRzlXfhIV2heIrm1YJOkgb3lmZ4P5PLm4SN-50YQ0F6bjh-g73MgyWn9NBk4d0ic3rKE0BRsTPMxZZCDQC-9HqEuo5Pun78cfZ33WhQraTTESwqdK9FvmxoCf7F5hNzLdwM2dgLSLYdsgNL73Hx7_Ptx1CJQNO5V5ALfM8iEcjLaF3x7B10mzwja7XNOEZfbh8srWrLLs3A09_PHtO_X5E1EHrVPtD20KhvqGPr4sGzbUbck03HdqyrzB5bjcVOuWN0obphr29kuDesuGdfWJTYlIc-UU8TEsxmeL0cR3JRp8LST6UjmIYjJ8aXluQk1FiGwRcmtirTH2aUx6dZoqxYtUWhnEJkmtxagpTWxsYsQT2FtWS3MILA41IrtCpYbrCAWS2OiwwI1AhSYMlAf-tnUy7ejLqYpGmXXEyzyjD5r1H9SD1738qiPu-K3k0baxM2fA1xlmWgMRRQjePHjVH8aGoP8p-dJUG5IRAuEXYkIPjn9Vkv6GLaJDN57I9i-KB-HfiI3c6xErQe0Bb9XoDy-RDefTs37r6b-c9BIOJovzWTabzt88gzu0vx3pmB7BXr3emOdwW3-ur67XL5yJ_QS65iiV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hFAEXyqvC0MIiVeJk1d61HfsYJbUaEUIFRerN8q531UomjlIHYU78BH4jv6Qz9sZtDgiEONlej587j2_s3W8ADqUJpeC5cDG-SDfIuXTjoFCuQHRt_CJOhnnLMzsbzufx-XlyakcT0lyYjh-i_-BGltH6azJwvSzM0Q1rKE3BxgQPc5bQE-iFdwKqJDOAncnH9POsz7pQQbspRkK4VIl-w9zo8aPtM2xHphu4uRWQtjFsG4TS3f9w-4_goUWgbNSpzGO4oxdP4P54U_jtKXw_aZbYZxcrmrDMPl1cmppVhr23Qw9__fhJ3_yJqIPWqfaH0gVDfUMfX5YNG6m2ZBq2TXSZN7hMy3W1anmjlGayYR--Nai3bFRXX9iUiDSXVhGfwVl6fDY-cW2JBleJEH1pOAwiMvzQ8Fz7iooQmcLnRkdKYexTmPSqJJGSF0loQi_ScWIMRs1QR9rEWuzBYFEt9HNgka8Q2RUy0VwFKBBHWvkFbnjS174nHXA3vZMpS19OVTTKrCNe5hm90Kx_oQ687eWXHXHHbyX3N52dWQO-yjDTGoogQPDmwJt-N3YE_U_JF7pak4wQCL8QEzpweFtJ-gu2iA7deBy2f1Ec8P9GbGwfj1gJagd4q0Z_eIhsNJ8e91sv_uWg13DvdJJms-n83Ut4QM3tQMdkHwb1aq0P4K76Wl9erV5ZC7sGCoQoEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypsochromic+Shift+of+Multiple-Resonance-Induced+Thermally+Activated+Delayed+Fluorescence+by+Oxygen+Atom+Incorporation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tanaka%2C+Hiroyuki&rft.au=Oda%2C+Susumu&rft.au=Ricci%2C+Gaetano&rft.au=Gotoh%2C+Hajime&rft.date=2021-08-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=33&rft.spage=17910&rft_id=info:doi/10.1002%2Fanie.202105032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon