Hypsochromic Shift of Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation
Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather t...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 60; no. 33; pp. 17910 - 17914 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
WEINHEIM
Wiley
09.08.2021
Wiley Subscription Services, Inc |
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material (ν‐DABNA). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.
A multiple‐resonance‐induced thermally activated delayed fluorescence material that comprised oxygen, nitrogen, and boron atoms (ν‐DABNA‐O‐Me) was synthesized via one‐shot double borylation. An OLED device employing the fabricated ν‐DABNA‐O‐Me exhibits deep‐blue electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off. |
|---|---|
| AbstractList | Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material (ν‐DABNA). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy. Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material (ν‐DABNA). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy. A multiple‐resonance‐induced thermally activated delayed fluorescence material that comprised oxygen, nitrogen, and boron atoms (ν‐DABNA‐O‐Me) was synthesized via one‐shot double borylation. An OLED device employing the fabricated ν‐DABNA‐O‐Me exhibits deep‐blue electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off. Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material ( ν‐DABNA‐O‐Me ) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π‐conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν‐DABNA‐O‐Me shows a hypsochromic shift compared to the parent MR‐TADF material ( ν‐DABNA ). An organic light‐emitting diode based on this material exhibits an emission at 465 nm, with a small full‐width at half‐maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν‐DABNA‐O‐Me facilitates a drastically improved efficiency roll‐off and a device lifetime compared to ν‐DABNA , which demonstrates significant potential of the oxygen atom incorporation strategy. Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy. Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (nu-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted pi-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, nu-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (nu-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, nu-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to nu-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy. |
| Author | Olivier, Yoann Kawasumi, Ryosuke Hatakeyama, Takuji Tanaka, Hiroyuki Oda, Susumu Ricci, Gaetano Gotoh, Hajime Beljonne, David Tabata, Keita |
| Author_xml | – sequence: 1 givenname: Hiroyuki surname: Tanaka fullname: Tanaka, Hiroyuki organization: JNC Petrochemical Corporation – sequence: 2 givenname: Susumu orcidid: 0000-0003-1088-1932 surname: Oda fullname: Oda, Susumu organization: Kwansei Gakuin University – sequence: 3 givenname: Gaetano surname: Ricci fullname: Ricci, Gaetano organization: Université de Namur – sequence: 4 givenname: Hajime surname: Gotoh fullname: Gotoh, Hajime organization: Kwansei Gakuin University – sequence: 5 givenname: Keita surname: Tabata fullname: Tabata, Keita organization: JNC Petrochemical Corporation – sequence: 6 givenname: Ryosuke surname: Kawasumi fullname: Kawasumi, Ryosuke organization: JNC Petrochemical Corporation – sequence: 7 givenname: David surname: Beljonne fullname: Beljonne, David organization: Université de Mons – sequence: 8 givenname: Yoann orcidid: 0000-0003-2193-1536 surname: Olivier fullname: Olivier, Yoann organization: Université de Namur – sequence: 9 givenname: Takuji orcidid: 0000-0002-7483-9525 surname: Hatakeyama fullname: Hatakeyama, Takuji email: hatake@kwansei.ac.jp organization: Kwansei Gakuin University |
| BookMark | eNqNks1u1DAQgCNURH_gyjkSFySUxT9x4hxX25auVKgEe7cc75h15bWD7QDpqY_AM_IkeNkFpEoITjOyvm88M5rT4sh5B0XxHKMZRoi8ls7AjCCCEUOUPCpOMCO4om1Lj3JeU1q1nOHj4jTG28xzjponxTGtEeUN5ifF3dU0RK82wW-NKj9sjE6l1-Xb0SYzWPh-_-09RO-kU7t86dajgnW52kDYSmuncq6S-SxTfjsHK6ccL-3oA0QFWSn7qbz5On0EV86T35ZLp3wYfJDJePe0eKyljfDsEM-K1eXFanFVXd-8WS7m15WiDJGKtXXTI1QzTSRghRmjeo2JhkYpjrBCpFVd1_dk3THNUAO805oiyqABzYGeFS_3ZYfgP40Qk9ia3J210oEfoyCMUorbBrOMvniA3voxuNxcplhL67qjbab4nvoCvddRmd2kYghmK8MkEEJNw3nees4QXpj0c9iFH13K6qv_VzNd72kVfIwBtFCHailIYwVGYncDYncD4vcNZG32QPv1wV-F7tCVsTD9gxbzd8uLP-4PqFPFow |
| CitedBy_id | crossref_primary_10_1002_advs_202302619 crossref_primary_10_1002_anie_202309923 crossref_primary_10_1016_j_cej_2025_164225 crossref_primary_10_1002_ange_202200337 crossref_primary_10_1002_adfm_202402906 crossref_primary_10_1002_adfm_202213461 crossref_primary_10_1002_adom_202201071 crossref_primary_10_1016_j_cej_2022_135221 crossref_primary_10_1016_j_cej_2024_155350 crossref_primary_10_1016_j_dyepig_2022_110799 crossref_primary_10_1039_D4RA03443K crossref_primary_10_1002_ange_202216473 crossref_primary_10_1002_agt2_182 crossref_primary_10_1002_ange_202217045 crossref_primary_10_1016_j_jorganchem_2022_122564 crossref_primary_10_1002_advs_202200707 crossref_primary_10_1002_anie_202306768 crossref_primary_10_1016_j_dyepig_2023_111371 crossref_primary_10_1002_ange_202302478 crossref_primary_10_1002_anie_202304104 crossref_primary_10_1039_D4NR03955F crossref_primary_10_1039_D5QO00522A crossref_primary_10_1002_advs_202401664 crossref_primary_10_1002_anie_202110050 crossref_primary_10_1002_anie_202411464 crossref_primary_10_1002_adom_202501149 crossref_primary_10_59717_j_xinn_mater_2023_100041 crossref_primary_10_1002_anie_202113206 crossref_primary_10_1002_anie_202205684 crossref_primary_10_1002_ange_202116927 crossref_primary_10_1002_ange_202209539 crossref_primary_10_1002_anie_202313084 crossref_primary_10_1002_anie_202300934 crossref_primary_10_1002_anie_202106642 crossref_primary_10_1002_adom_202402214 crossref_primary_10_1039_D2SC06343C crossref_primary_10_1002_anie_202215522 crossref_primary_10_1016_j_cej_2024_148781 crossref_primary_10_1002_tcr_202300208 crossref_primary_10_1002_adpr_202200201 crossref_primary_10_1021_jacs_2c09543 crossref_primary_10_1039_D4SC04896B crossref_primary_10_1002_ange_202205684 crossref_primary_10_1016_j_cjsc_2024_100451 crossref_primary_10_1021_jacs_1c11659 crossref_primary_10_1007_s00894_025_06465_x crossref_primary_10_1002_adfm_202306880 crossref_primary_10_1002_adom_202302987 crossref_primary_10_1021_acs_chemrev_5c00021 crossref_primary_10_1016_j_cej_2021_133221 crossref_primary_10_1002_ange_202215522 crossref_primary_10_1002_anie_202209984 crossref_primary_10_1002_flm2_70002 crossref_primary_10_3390_molecules26206306 crossref_primary_10_1002_fle2_70005 crossref_primary_10_1002_adom_202402960 crossref_primary_10_1002_anie_202206916 crossref_primary_10_3788_AOSOL240464 crossref_primary_10_1021_jacs_2c10946 crossref_primary_10_1021_jacs_3c02873 crossref_primary_10_1016_j_cej_2025_165947 crossref_primary_10_1039_D2QM01304E crossref_primary_10_1016_j_cej_2021_134381 crossref_primary_10_1039_D1QM01588E crossref_primary_10_1002_anie_202201588 crossref_primary_10_1002_cphc_202500201 crossref_primary_10_1063_5_0206023 crossref_primary_10_1002_adma_202210413 crossref_primary_10_1002_anie_202210210 crossref_primary_10_1002_ange_202411464 crossref_primary_10_1002_sdtp_18670 crossref_primary_10_1002_adfm_202204352 crossref_primary_10_1002_adma_202107951 crossref_primary_10_1002_adom_202200504 crossref_primary_10_1002_adom_202201714 crossref_primary_10_1002_sdtp_15662 crossref_primary_10_1002_adom_202102513 crossref_primary_10_1002_adom_202101789 crossref_primary_10_1002_ange_202209984 crossref_primary_10_1002_anie_202116927 crossref_primary_10_1002_ange_202206916 crossref_primary_10_1016_j_cej_2022_138498 crossref_primary_10_1002_anie_202408522 crossref_primary_10_1002_ange_202201588 crossref_primary_10_1002_anie_202218947 crossref_primary_10_1039_D4SC02351J crossref_primary_10_1002_ange_202210210 crossref_primary_10_1038_s41467_024_49069_4 crossref_primary_10_1002_ange_202109335 crossref_primary_10_1002_ange_202300934 crossref_primary_10_1039_D5SC01439E crossref_primary_10_1002_adfm_202201032 crossref_primary_10_1038_s41467_024_46619_8 crossref_primary_10_1038_s42004_022_00668_6 crossref_primary_10_1039_D5CC01299F crossref_primary_10_1002_anie_202416154 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1002_anie_202217470 crossref_primary_10_1002_adma_202503839 crossref_primary_10_1002_adma_202201778 crossref_primary_10_1038_s42004_022_00766_5 crossref_primary_10_1002_anie_202213392 crossref_primary_10_1002_adom_202200290 crossref_primary_10_1002_adfm_202211893 crossref_primary_10_1002_sdtp_16627 crossref_primary_10_1039_D2SC02478K crossref_primary_10_1002_smll_202107574 crossref_primary_10_1002_adom_202303214 crossref_primary_10_1016_j_cej_2022_138545 crossref_primary_10_1038_s41563_024_01812_4 crossref_primary_10_1002_adom_202200688 crossref_primary_10_1002_advs_202303504 crossref_primary_10_1002_adom_202303295 crossref_primary_10_1016_j_tet_2025_134522 crossref_primary_10_1002_ange_202306768 crossref_primary_10_1002_anie_202302478 crossref_primary_10_1002_advs_202205070 crossref_primary_10_1002_anie_202414383 crossref_primary_10_1002_ange_202304104 crossref_primary_10_1002_adom_202402653 crossref_primary_10_1002_ange_202416154 crossref_primary_10_1002_anie_202305580 crossref_primary_10_1002_adma_202200537 crossref_primary_10_1002_anie_202216473 crossref_primary_10_1002_anie_202217045 crossref_primary_10_1002_anie_202209539 crossref_primary_10_1039_D3QM00100H crossref_primary_10_1002_ange_202217470 crossref_primary_10_1002_ange_202517695 crossref_primary_10_1002_ange_202213392 crossref_primary_10_1016_j_dyepig_2022_110931 crossref_primary_10_1002_adom_202403295 crossref_primary_10_1002_ange_202408522 crossref_primary_10_1002_ange_202510891 crossref_primary_10_1016_j_cej_2024_157676 crossref_primary_10_1002_chem_202104214 crossref_primary_10_1039_D5TC01861G crossref_primary_10_1002_ange_202106642 crossref_primary_10_1002_ange_202313084 crossref_primary_10_1080_00268976_2025_2486732 crossref_primary_10_1002_ange_202309923 crossref_primary_10_1002_chem_202404078 crossref_primary_10_1002_adma_202106954 crossref_primary_10_1002_ange_202305580 crossref_primary_10_1002_ange_202414383 crossref_primary_10_1002_chem_202201605 crossref_primary_10_1038_s41467_023_41440_1 crossref_primary_10_1038_s41566_024_01508_w crossref_primary_10_1002_anie_202200337 crossref_primary_10_1002_anie_202517695 crossref_primary_10_1039_D4SC07503J crossref_primary_10_1002_chem_202301931 crossref_primary_10_1039_D3QM00498H crossref_primary_10_1002_adom_202302811 crossref_primary_10_1016_j_saa_2024_125493 crossref_primary_10_1002_cphc_202400955 crossref_primary_10_1038_s41586_024_07149_x crossref_primary_10_1039_D3MH00881A crossref_primary_10_1002_adma_202402905 crossref_primary_10_1002_ange_202113206 crossref_primary_10_1002_anie_202510891 crossref_primary_10_1002_anie_202109335 crossref_primary_10_3390_ma18092040 crossref_primary_10_1002_ange_202110050 crossref_primary_10_1002_ange_202218947 crossref_primary_10_1016_j_cej_2024_154839 crossref_primary_10_1016_j_jiec_2024_05_017 crossref_primary_10_1016_j_cplett_2022_139895 |
| Cites_doi | 10.1002/ange.201508270 10.1002/ange.202007210 10.1002/adma.201601675 10.1021/jacs.7b03848 10.1002/ange.202008264 10.1002/adma.201300753 10.1007/978-3-642-03432-9_5 10.1016/j.chemphys.2018.06.011 10.1002/anie.202012891 10.1021/j100012a014 10.1002/anie.201600113 10.1063/1.2929846 10.1002/anie.201609459 10.1002/adma.201401393 10.1021/ja510144h 10.1038/nature11687 10.1002/adfm.201504357 10.1039/c2jm33669c 10.1039/C4CP01428F 10.1016/j.tsf.2016.11.016 10.1002/adma.202004072 10.1021/jacs.0c10081 10.1021/jacs.6b12124 10.1039/C9SC04492B 10.1021/acs.chemmater.6b05324 10.1002/anie.202007210 10.1002/anie.201508270 10.1038/s41467-019-08495-5 10.1038/ncomms5016 10.1038/s41566-020-00745-z 10.1021/jacs.7b10578 10.1021/jacs.7b10257 10.1002/ange.201609459 10.1002/adfm.201802031 10.1038/s41467-020-17777-2 10.1002/adfm.201802558 10.1021/acs.orglett.9b03342 10.1002/ange.201911266 10.1002/advs.201902508 10.1246/bcsj.20200372 10.1002/adma.201503782 10.1021/acsmaterialslett.9b00433 10.1002/adfm.201908677 10.1038/ncomms9476 10.1002/adma.201906614 10.1021/jacs.7b00873 10.1038/s41566-021-00763-5 10.1038/nmat4154 10.1063/1.98799 10.1002/cphc.201600662 10.1038/s41467-020-15558-5 10.1039/C8TC06575F 10.1038/s41563-019-0465-6 10.1021/acs.orglett.9b04483 10.1002/ange.201806323 10.1002/adfm.201602507 10.1002/adma.201505491 10.1002/anie.201911266 10.1002/adma.201705641 10.1002/adma.201605444 10.1002/adma.201908355 10.1002/ange.201506335 10.1002/anie.202008264 10.1002/anie.201806323 10.1002/ange.202012891 10.1038/s41566-019-0476-5 10.1038/ncomms13680 10.1038/nphoton.2014.12 10.1039/C6CS00368K 10.1021/jacs.9b13704 10.1002/ange.201600113 10.1002/anie.201506335 10.1039/c8tc06575f 10.1002/ANGE.202007210 10.1038/NMAT4154 10.1038/s41566-021-00759-1 10.1039/c4cp01428f 10.1002/adfm.201803901 10.1038/NPHOTON.2014.12 10.1038/s41566-018-0112-9 10.1039/c6cs00368k 10.1002/ANGE.202012891 10.1039/c9sc04492b |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ HGBXW 7TM K9. 7X8 |
| DOI | 10.1002/anie.202105032 |
| DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2021 Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef Web of Science ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic Web of Science |
| Database_xml | – sequence: 1 dbid: 1KM name: Index Chemicus url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 17914 |
| ExternalDocumentID | 000668878500001 10_1002_anie_202105032 ANIE202105032 |
| Genre | shortCommunication |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 18H02051; 20K15291; 20H05863; 21H02019 – fundername: Nagase Science Technology Foundation – fundername: Core Research for Evolutional Science and Technology funderid: JPMJCR18R3 – fundername: Asahi Glass Foundation – fundername: JSPS; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science grantid: 18H02051; 21H02019; 20K15291; 20H05863 – fundername: Nagase Science and Technology Foundation – fundername: CREST programs from JST grantid: JPMJCR18R3 – fundername: Grants-in-Aid for Scientific Research; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI) grantid: 21H02019; 20H05863; 20K15291; 18H02051 – fundername: "Fonds de la Recherche Scientifiques de Belgique" (FRS-FNRS); Fonds de la Recherche Scientifique - FNRS grantid: 2.5020.11 – fundername: Tier-1 supercomputer of the Federation Wallonie-Bruxelles – fundername: "Fonds pour la formation a la Recherche dans l'Industrie et dans l'Agriculture" (FRIA) of the FRS-FNRS; Fonds de la Recherche Scientifique - FNRS – fundername: FRS-FNRS; Fonds de la Recherche Scientifique - FNRS grantid: F.4534.21 – fundername: Walloon Region grantid: 1117545 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c3502-5746b0045f2ae1c1553fd12fe6cc801c027c99bb2d95f506e89ff3035e6ef8e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 188 |
| ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000668878500001 |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Sun Nov 09 10:04:01 EST 2025 Tue Oct 07 07:19:19 EDT 2025 Fri Dec 05 22:59:35 EST 2025 Tue Nov 11 07:15:06 EST 2025 Sat Nov 29 02:36:20 EST 2025 Tue Nov 18 20:56:50 EST 2025 Wed Jan 22 16:28:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 33 |
| Keywords | BLUE OLEDS EMITTERS organic light-emitting diodes SINGLET LIGHT-EMITTING-DIODES MOLECULAR DESIGN thermally activated delayed fluorescence multiple resonance effect narrowband emission deep blue EMISSION DERIVATIVES HIGH-EFFICIENCY BORYLATION |
| Language | English |
| LinkModel | DirectLink |
| LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
| MergedId | FETCHMERGED-LOGICAL-c3502-5746b0045f2ae1c1553fd12fe6cc801c027c99bb2d95f506e89ff3035e6ef8e3 |
| Notes | KAKEN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1088-1932 0000-0002-7483-9525 0000-0003-2193-1536 0000-0003-0181-2513 |
| PMID | 34038618 |
| PQID | 2557344937 |
| PQPubID | 946352 |
| PageCount | 5 |
| ParticipantIDs | webofscience_primary_000668878500001CitationCount wiley_primary_10_1002_anie_202105032_ANIE202105032 proquest_journals_2557344937 crossref_citationtrail_10_1002_anie_202105032 proquest_miscellaneous_2533317615 crossref_primary_10_1002_anie_202105032 webofscience_primary_000668878500001 |
| PublicationCentury | 2000 |
| PublicationDate | August 9, 2021 |
| PublicationDateYYYYMMDD | 2021-08-09 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 9, 2021 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | WEINHEIM |
| PublicationPlace_xml | – name: WEINHEIM – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
| PublicationYear | 2021 |
| Publisher | Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2019; 7 2015; 14 2018; 28 2015; 6 2013; 25 1987; 51 2018; 140 2020; 142 2019; 10 2019; 13 2017; 46 1995; 99 2009 2020 2020; 59 132 2014; 26 2008; 128 2019; 18 2017; 29 2020; 11 2020; 32 2017 2017; 56 129 2021; 94 2016; 17 2014; 136 2019 2019; 58 131 2017; 139 2012; 492 2020; 7 2016; 7 2021; 15 2014; 5 2016 2016; 55 128 2020; 2 2020; 30 2018; 515 2019; 21 2018 2018; 57 130 2016; 619 2014; 16 2021 2021; 60 133 2015 2015; 54 127 2018; 30 2020; 22 2018; 12 2014; 8 2016; 28 2012; 22 2016; 26 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_49_1 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_1 e_1_2_2_64_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_66_2 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_8_3 e_1_2_2_66_3 Sato T. (e_1_2_2_22_2) 2009 e_1_2_2_60_1 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_57_3 e_1_2_2_51_2 e_1_2_2_74_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_55_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_76_2 e_1_2_2_34_3 e_1_2_2_78_1 e_1_2_2_72_1 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_61_2 Wu T.-L. (e_1_2_2_11_2) 2018; 12 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_7_3 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_67_2 e_1_2_2_35_3 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_12_1 e_1_2_2_37_3 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_39_3 e_1_2_2_75_2 e_1_2_2_73_1 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_18_1 e_1_2_2_56_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_33_3 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_77_2 e_1_2_2_50_1 e_1_2_2_71_2 Hirai, H (WOS:000364395100014) 2015; 54 Togashi, K (WOS:000308658600082) 2012; 22 XU Y (WOS:000668878500001.63) 2020; 132 Shao, SY (WOS:000418204600010) 2017; 139 Oda, S (WOS:000508468200074) 2020; 22 Lin, TA (WOS:000382482500023) 2016; 28 Uejima, M (WOS:000338116700075) 2014; 16 Zhang, YW (WOS:000492218500001) 2019; 58 Li, YC (WOS:000386159300005) 2016; 26 Tsujimoto, H (WOS:000398764000044) 2017; 139 Kondo, Y (WOS:000487333400005) 2019; 13 Wong, MY (WOS:000402963400023) 2017; 29 Aizawa, N (WOS:000561120500008) 2020; 11 LIANG X (WOS:000668878500001.25) 2018; 130 Wang, H (WOS:000340546300019) 2014; 26 Zhang, YW (WOS:000557993900001) 2020; 59 Gibson, J (WOS:000386790100001) 2016; 17 Wu, TL (WOS:000428785500017) 2018; 12 Zhang, DD (WOS:000538819800015) 2020; 32 Liang, X (WOS:000442340000034) 2018; 57 Hatakeyama, T (WOS:000373839600014) 2016; 28 Han, SH (WOS:000461597400027) 2019; 7 Santoro, F (WOS:000256706300020) 2008; 128 Kim, JU (WOS:000528787900001) 2020; 11 KARPOVICH, DS (WOS:A1995QN63200014) 1995; 99 Jeon, SO (WOS:000618183700001) 2021; 15 Samanta, PK (WOS:000397477700022) 2017; 139 Hirata, S (WOS:000350136400022) 2015; 14 Suresh, SM (WOS:000535648400001) 2020; 30 DATA P (WOS:000668878500001.7) 2016; 128 TANG, CW (WOS:A1987J991800015) 1987; 51 Yang, ML (WOS:000592911000007) 2020; 142 Im, Y (WOS:000396639400006) 2017; 29 Matsui, K (WOS:000424313000002) 2018; 140 Rajamalli, P (WOS:000408074800003) 2017; 139 Xu, YC (WOS:000555866800001) 2020; 59 Yang, ZY (WOS:000395629200010) 2017; 46 Uoyama, H (WOS:000312259300038) 2012; 492 Ikeda, N (WOS:000564015100001) 2020; 32 Matsuo, K (WOS:000499471800019) 2019; 10 Park, IS (WOS:000442205200010) 2018; 28 Nguyen, TB (WOS:000508921700001) 2020; 32 Wada, Y (WOS:000425449300027) 2018; 30 Oda, S (WOS:000597678700001) 2021; 60 Xiong, T (WOS:000454412800081) 2018; 515 Zhang, QS (WOS:000347438300030) 2014; 136 Oda, S (WOS:000635201200008) 2021; 94 ODA S (WOS:000668878500001.35) 2021; 133 Oda, S (WOS:000502163300007) 2019; 21 Etherington, MK (WOS:000388801100001) 2016; 7 Sato, T (WOS:000292113400005) 2009; 97 Wang, SQ (WOS:000444072800029) 2018; 28 Seino, Y (WOS:000373292700020) 2016; 28 Tanaka, Y (WOS:000389610900017) 2016; 619 Kaji, H (WOS:000364926700005) 2015; 6 Data, P (WOS:000375118500012) 2016; 55 Suzuki, K (WOS:000368057400044) 2015; 54 Zou, SJ (WOS:000498758900001) 2020; 7 Pershin, A (WOS:000457749000006) 2019; 10 Nakanotani, H (WOS:000337542700001) 2014; 5 Zhang, QS (WOS:000333800000016) 2014; 8 Hirai, H. (000668878500001.13) 2015; 127 Suresh, SM (WOS:000526394200021) 2020; 142 Dias, FB (WOS:000327692200014) 2013; 25 Xiang, CY (WOS:000372179100018) 2016; 26 Agou, T (WOS:000519825900005) 2020; 2 Cui, L. (000668878500001.5) 2017; 129 Cui, LS (WOS:000394998300022) 2017; 56 Chan, CY (WOS:000607337700001) 2021; 15 Suzuki, K. (000668878500001.48) 2015; 127 Noda, H (WOS:000486618800017) 2019; 18 |
| References_xml | – volume: 54 127 start-page: 15231 15446 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 17442 17595 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 3082 year: 2019 publication-title: J. Mater. Chem. C – volume: 25 start-page: 3707 year: 2013 publication-title: Adv. Mater. – volume: 56 129 start-page: 1571 1593 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 2956 year: 2016 publication-title: ChemPhysChem – volume: 6 start-page: 8476 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 6904 year: 2016 publication-title: Adv. Funct. Mater. – volume: 140 start-page: 1195 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 3951 year: 1995 publication-title: J. Phys. Chem. – volume: 57 130 start-page: 11316 11486 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 9311 year: 2019 publication-title: Org. Lett. – volume: 10 start-page: 10687 year: 2019 publication-title: Chem. Sci. – volume: 26 start-page: 5198 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 1765 year: 2020 publication-title: Nat. Commun. – volume: 26 start-page: 1463 year: 2016 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 4042 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 6976 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 515 start-page: 728 year: 2018 publication-title: Chem. Phys. – volume: 94 start-page: 950 year: 2021 publication-title: Bull. Chem. Soc. Jpn. – volume: 13 start-page: 678 year: 2019 publication-title: Nat. Photonics – volume: 2 start-page: 28 year: 2020 publication-title: ACS Mater. Lett. – volume: 5 start-page: 4016 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 326 year: 2014 publication-title: Nat. Photonics – volume: 139 start-page: 4894 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 18070 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 16912 17068 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 99 year: 2009 end-page: 129 – volume: 59 132 start-page: 17499 17652 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 700 year: 2020 publication-title: Org. Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 2638 year: 2016 publication-title: Adv. Mater. – volume: 51 start-page: 913 year: 1987 publication-title: Appl. Phys. Lett. – volume: 619 start-page: 120 year: 2016 publication-title: Thin Solid Films – volume: 492 start-page: 234 year: 2012 publication-title: Nature – volume: 29 start-page: 1946 year: 2017 publication-title: Chem. Mater. – volume: 12 start-page: 23 year: 2018 publication-title: Nat. Photonics – volume: 7 start-page: 13680 year: 2016 publication-title: Nat. Commun. – volume: 54 127 start-page: 13581 13785 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 14244 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 3909 year: 2020 publication-title: Nat. Commun. – volume: 46 start-page: 915 year: 2017 publication-title: Chem. Soc. Rev. – volume: 55 128 start-page: 5739 5833 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 10948 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 15 start-page: 203 year: 2021 publication-title: Nat. Photonics – volume: 142 start-page: 19468 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 17739 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 6588 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 2777 year: 2016 publication-title: Adv. Mater. – volume: 22 start-page: 20689 year: 2012 publication-title: J. Mater. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 14 start-page: 330 year: 2015 publication-title: Nat. Mater. – volume: 128 year: 2008 publication-title: J. Chem. Phys. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 60 133 start-page: 2882 2918 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 597 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 208 year: 2021 publication-title: Nat. Photonics – volume: 18 start-page: 1084 year: 2019 publication-title: Nat. Mater. – ident: e_1_2_2_7_3 doi: 10.1002/ange.201508270 – ident: e_1_2_2_34_3 doi: 10.1002/ange.202007210 – ident: e_1_2_2_46_1 – ident: e_1_2_2_61_2 doi: 10.1002/adma.201601675 – ident: e_1_2_2_64_2 doi: 10.1021/jacs.7b03848 – ident: e_1_2_2_35_3 doi: 10.1002/ange.202008264 – ident: e_1_2_2_32_1 – ident: e_1_2_2_3_2 doi: 10.1002/adma.201300753 – start-page: 99 volume-title: The Jahn–Teller Effect: Fundamentals and Implications for Physics and Chemistry, Springer Series in Chemical Physics, Vol. 97 year: 2009 ident: e_1_2_2_22_2 doi: 10.1007/978-3-642-03432-9_5 – ident: e_1_2_2_24_2 doi: 10.1016/j.chemphys.2018.06.011 – ident: e_1_2_2_37_2 doi: 10.1002/anie.202012891 – ident: e_1_2_2_20_2 doi: 10.1021/j100012a014 – ident: e_1_2_2_38_1 – ident: e_1_2_2_8_2 doi: 10.1002/anie.201600113 – ident: e_1_2_2_21_2 doi: 10.1063/1.2929846 – ident: e_1_2_2_66_2 doi: 10.1002/anie.201609459 – ident: e_1_2_2_5_2 doi: 10.1002/adma.201401393 – ident: e_1_2_2_47_2 doi: 10.1021/ja510144h – ident: e_1_2_2_2_2 doi: 10.1038/nature11687 – ident: e_1_2_2_72_1 doi: 10.1002/adfm.201504357 – ident: e_1_2_2_58_2 doi: 10.1039/c2jm33669c – ident: e_1_2_2_23_2 doi: 10.1039/C4CP01428F – ident: e_1_2_2_59_2 doi: 10.1016/j.tsf.2016.11.016 – ident: e_1_2_2_31_2 doi: 10.1002/adma.202004072 – ident: e_1_2_2_36_2 doi: 10.1021/jacs.0c10081 – ident: e_1_2_2_28_1 – ident: e_1_2_2_53_2 doi: 10.1021/jacs.6b12124 – ident: e_1_2_2_68_2 doi: 10.1039/C9SC04492B – ident: e_1_2_2_25_1 – ident: e_1_2_2_14_2 doi: 10.1021/acs.chemmater.6b05324 – ident: e_1_2_2_34_2 doi: 10.1002/anie.202007210 – ident: e_1_2_2_7_2 doi: 10.1002/anie.201508270 – ident: e_1_2_2_42_1 doi: 10.1038/s41467-019-08495-5 – ident: e_1_2_2_74_2 doi: 10.1038/ncomms5016 – ident: e_1_2_2_76_2 doi: 10.1038/s41566-020-00745-z – ident: e_1_2_2_29_2 doi: 10.1021/jacs.7b10578 – ident: e_1_2_2_65_2 doi: 10.1021/jacs.7b10257 – ident: e_1_2_2_66_3 doi: 10.1002/ange.201609459 – ident: e_1_2_2_10_2 doi: 10.1002/adfm.201802031 – ident: e_1_2_2_55_2 doi: 10.1038/s41467-020-17777-2 – ident: e_1_2_2_17_2 doi: 10.1002/adfm.201802558 – ident: e_1_2_2_30_2 doi: 10.1021/acs.orglett.9b03342 – ident: e_1_2_2_33_3 doi: 10.1002/ange.201911266 – ident: e_1_2_2_60_1 – ident: e_1_2_2_69_2 doi: 10.1002/advs.201902508 – ident: e_1_2_2_45_2 doi: 10.1246/bcsj.20200372 – ident: e_1_2_2_9_2 doi: 10.1002/adma.201503782 – ident: e_1_2_2_71_2 doi: 10.1021/acsmaterialslett.9b00433 – ident: e_1_2_2_26_2 doi: 10.1002/adfm.201908677 – ident: e_1_2_2_49_1 – ident: e_1_2_2_43_1 – ident: e_1_2_2_48_2 doi: 10.1038/ncomms9476 – ident: e_1_2_2_1_1 – ident: e_1_2_2_78_1 doi: 10.1002/adma.201906614 – ident: e_1_2_2_63_2 doi: 10.1021/jacs.7b00873 – ident: e_1_2_2_77_2 doi: 10.1038/s41566-021-00763-5 – ident: e_1_2_2_6_2 doi: 10.1038/nmat4154 – ident: e_1_2_2_12_1 doi: 10.1063/1.98799 – ident: e_1_2_2_51_2 doi: 10.1002/cphc.201600662 – ident: e_1_2_2_70_2 doi: 10.1038/s41467-020-15558-5 – ident: e_1_2_2_40_2 doi: 10.1039/C8TC06575F – ident: e_1_2_2_54_2 doi: 10.1038/s41563-019-0465-6 – volume: 12 start-page: 23 year: 2018 ident: e_1_2_2_11_2 publication-title: Nat. Photonics – ident: e_1_2_2_44_2 doi: 10.1021/acs.orglett.9b04483 – ident: e_1_2_2_39_3 doi: 10.1002/ange.201806323 – ident: e_1_2_2_73_1 – ident: e_1_2_2_62_2 doi: 10.1002/adfm.201602507 – ident: e_1_2_2_18_1 doi: 10.1002/adma.201505491 – ident: e_1_2_2_33_2 doi: 10.1002/anie.201911266 – ident: e_1_2_2_67_2 doi: 10.1002/adma.201705641 – ident: e_1_2_2_16_2 doi: 10.1002/adma.201605444 – ident: e_1_2_2_75_2 doi: 10.1002/adma.201908355 – ident: e_1_2_2_57_3 doi: 10.1002/ange.201506335 – ident: e_1_2_2_50_1 – ident: e_1_2_2_35_2 doi: 10.1002/anie.202008264 – ident: e_1_2_2_56_1 – ident: e_1_2_2_39_2 doi: 10.1002/anie.201806323 – ident: e_1_2_2_37_3 doi: 10.1002/ange.202012891 – ident: e_1_2_2_41_1 doi: 10.1038/s41566-019-0476-5 – ident: e_1_2_2_52_2 doi: 10.1038/ncomms13680 – ident: e_1_2_2_4_2 doi: 10.1038/nphoton.2014.12 – ident: e_1_2_2_13_1 – ident: e_1_2_2_15_2 doi: 10.1039/C6CS00368K – ident: e_1_2_2_19_1 – ident: e_1_2_2_27_2 doi: 10.1021/jacs.9b13704 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201600113 – ident: e_1_2_2_57_2 doi: 10.1002/anie.201506335 – volume: 26 start-page: 1463 year: 2016 ident: WOS:000372179100018 article-title: Efficiency Roll-Off in Blue Emitting Phosphorescent Organic Light Emitting Diodes with Carbazole Host Materials publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201504357 – volume: 32 start-page: ARTN 1906614 year: 2020 ident: WOS:000508921700001 article-title: The Role of Reverse Intersystem Crossing Using a TADF-Type Acceptor Molecule on the Device Stability of Exciplex-Based Organic Light-Emitting Diodes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201906614 – volume: 59 start-page: 17442 year: 2020 ident: WOS:000555866800001 article-title: Constructing Charge-Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007210 – volume: 127 start-page: 13785 year: 2015 ident: 000668878500001.13 article-title: One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes publication-title: Angew. Chem – volume: 7 start-page: 3082 year: 2019 ident: WOS:000461597400027 article-title: Ideal blue thermally activated delayed fluorescence emission assisted by a thermally activated delayed fluorescence assistant dopant through a fast reverse intersystem crossing mediated cascade energy transfer process publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c8tc06575f – volume: 99 start-page: 3951 year: 1995 ident: WOS:A1995QN63200014 article-title: RELATING THE POLARITY-DEPENDENT FLUORESCENCE RESPONSE OF PYRENE TO VIBRONIC COUPLING - ACHIEVING A FUNDAMENTAL UNDERSTANDING OF THE PY POLARITY SCALE publication-title: JOURNAL OF PHYSICAL CHEMISTRY – volume: 132 start-page: 17595 year: 2020 ident: WOS:000668878500001.63 publication-title: ANGEW CHEM doi: 10.1002/ANGE.202007210 – volume: 11 start-page: ARTN 3909 year: 2020 ident: WOS:000561120500008 article-title: Kinetic prediction of reverse intersystem crossing in organic donor-acceptor molecules publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-17777-2 – volume: 142 start-page: 6588 year: 2020 ident: WOS:000526394200021 article-title: A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet-Triplet Annihilation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b13704 – volume: 7 start-page: ARTN 13680 year: 2016 ident: WOS:000388801100001 article-title: Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms13680 – volume: 14 start-page: 330 year: 2015 ident: WOS:000350136400022 article-title: Highly efficient blue electroluminescence based on thermally activated delayed fluorescence publication-title: NATURE MATERIALS doi: 10.1038/NMAT4154 – volume: 54 start-page: 15231 year: 2015 ident: WOS:000368057400044 article-title: Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 % publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201508270 – volume: 58 start-page: 16912 year: 2019 ident: WOS:000492218500001 article-title: Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911266 – volume: 619 start-page: 120 year: 2016 ident: WOS:000389610900017 article-title: Application of wide-energy-gap material 3,4-di(9H-carbazol-9-yl)benzonitrile in organic light-emitting diodes publication-title: THIN SOLID FILMS doi: 10.1016/j.tsf.2016.11.016 – volume: 130 year: 2018 ident: WOS:000668878500001.25 publication-title: ANGEW CHEM – volume: 59 start-page: 17499 year: 2020 ident: WOS:000557993900001 article-title: Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Aza-Fused Multi-Resonance Emitter publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202008264 – volume: 15 start-page: 245 year: 2021 ident: WOS:000607337700001 article-title: Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission (Jan, 10.1038/s41566-020-00745-z, 2021) publication-title: NATURE PHOTONICS doi: 10.1038/s41566-021-00759-1 – volume: 139 start-page: 17739 year: 2017 ident: WOS:000418204600010 article-title: Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b10257 – volume: 30 start-page: ARTN 1908677 year: 2020 ident: WOS:000535648400001 article-title: Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201908677 – volume: 515 start-page: 728 year: 2018 ident: WOS:000454412800081 article-title: Vibrationally resolved absorption and fluorescence spectra of perylene and N-substituted derivatives from autocorrelation function approaches publication-title: CHEMICAL PHYSICS doi: 10.1016/j.chemphys.2018.06.011 – volume: 28 start-page: 2777 year: 2016 ident: WOS:000373839600014 article-title: Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201505491 – volume: 16 start-page: 14244 year: 2014 ident: WOS:000338116700075 article-title: Quantum yield in blue-emitting anthracene derivatives: vibronic coupling density and transition dipole moment density publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/c4cp01428f – volume: 6 start-page: ARTN 8476 year: 2015 ident: WOS:000364926700005 article-title: Purely organic electroluminescent material realizing 100% conversion from electricity to light publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms9476 – volume: 18 start-page: 1084 year: 2019 ident: WOS:000486618800017 article-title: Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors publication-title: NATURE MATERIALS doi: 10.1038/s41563-019-0465-6 – volume: 94 start-page: 950 year: 2021 ident: WOS:000635201200008 article-title: Development of One-Shot/One-Pot Borylation Reactions toward Organoboron-Based Materials publication-title: BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN doi: 10.1246/bcsj.20200372 – volume: 2 start-page: 28 year: 2020 ident: WOS:000519825900005 article-title: Pentacyclic Ladder-Heteraborin Emitters Exhibiting High-Efficiency Blue Thermally Activated Delayed Fluorescence with an Ultrashort Emission Lifetime publication-title: ACS MATERIALS LETTERS doi: 10.1021/acsmaterialslett.9b00433 – volume: 139 start-page: 4042 year: 2017 ident: WOS:000397477700022 article-title: Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b12124 – volume: 15 start-page: 208 year: 2021 ident: WOS:000618183700001 article-title: High-efficiency, long-lifetime deep-blue organic light-emitting diodes publication-title: NATURE PHOTONICS doi: 10.1038/s41566-021-00763-5 – volume: 13 start-page: 678 year: 2019 ident: WOS:000487333400005 article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter publication-title: NATURE PHOTONICS doi: 10.1038/s41566-019-0476-5 – volume: 492 start-page: 234 year: 2012 ident: WOS:000312259300038 article-title: Highly efficient organic light-emitting diodes from delayed fluorescence publication-title: NATURE doi: 10.1038/nature11687 – volume: 29 start-page: 1946 year: 2017 ident: WOS:000396639400006 article-title: Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.6b05324 – volume: 22 start-page: 700 year: 2020 ident: WOS:000508468200074 article-title: Multiple Electrophilic C-H Borylation of Arenes Using Boron Triiodide publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b04483 – volume: 28 start-page: ARTN 1803901 year: 2018 ident: WOS:000444072800029 article-title: VOx@MoO3 Nanorod Composite for High-Performance Supercapacitors publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201803901 – volume: 140 start-page: 1195 year: 2018 ident: WOS:000424313000002 article-title: One-Shot Multiple Borylation toward BN-Doped Nanographenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b10578 – volume: 55 start-page: 5739 year: 2016 ident: WOS:000375118500012 article-title: Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201600113 – volume: 8 start-page: 326 year: 2014 ident: WOS:000333800000016 article-title: Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence publication-title: NATURE PHOTONICS doi: 10.1038/NPHOTON.2014.12 – volume: 32 start-page: ARTN 1908355 year: 2020 ident: WOS:000538819800015 article-title: Efficient and Stable Deep-Blue Fluorescent Organic Light-Emitting Diodes Employing a Sensitizer with Fast Triplet Upconversion publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201908355 – volume: 5 start-page: ARTN 4016 year: 2014 ident: WOS:000337542700001 article-title: High-efficiency organic light-emitting diodes with fluorescent emitters publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms5016 – volume: 26 start-page: 6904 year: 2016 ident: WOS:000386159300005 article-title: Design Strategy of Blue and Yellow Thermally Activated Delayed Fluorescence Emitters and Their All-Fluorescence White OLEDs with External Quantum Efficiency beyond 20% publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201602507 – volume: 7 start-page: ARTN 1902508 year: 2020 ident: WOS:000498758900001 article-title: High-Performance Nondoped Blue Delayed Fluorescence Organic Light-Emitting Diodes Featuring Low Driving Voltage and High Brightness publication-title: ADVANCED SCIENCE doi: 10.1002/advs.201902508 – volume: 32 start-page: ARTN 2004072 year: 2020 ident: WOS:000564015100001 article-title: Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202004072 – volume: 12 start-page: 235 year: 2018 ident: WOS:000428785500017 article-title: Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off publication-title: NATURE PHOTONICS doi: 10.1038/s41566-018-0112-9 – volume: 56 start-page: 1571 year: 2017 ident: WOS:000394998300022 article-title: Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201609459 – volume: 28 start-page: 6976 year: 2016 ident: WOS:000382482500023 article-title: Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201601675 – volume: 21 start-page: 9311 year: 2019 ident: WOS:000502163300007 article-title: Multiple Resonance Effect-Induced Sky-Blue Thermally Activated Delayed Fluorescence with a Narrow Emission Band publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b03342 – volume: 46 start-page: 915 year: 2017 ident: WOS:000395629200010 article-title: Recent advances in organic thermally activated delayed fluorescence materials publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00368k – volume: 127 start-page: 15446 year: 2015 ident: 000668878500001.48 article-title: Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20% publication-title: Angew. Chem. – volume: 136 start-page: 18070 year: 2014 ident: WOS:000347438300030 article-title: Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja510144h – volume: 22 start-page: 20689 year: 2012 ident: WOS:000308658600082 article-title: Low driving voltage characteristics of triphenylene derivatives as electron transport materials in organic light-emitting diodes publication-title: JOURNAL OF MATERIALS CHEMISTRY doi: 10.1039/c2jm33669c – volume: 28 start-page: 2638 year: 2016 ident: WOS:000373292700020 article-title: High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W-1 publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201503782 – volume: 54 start-page: 13581 year: 2015 ident: WOS:000364395100014 article-title: One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201506335 – volume: 57 start-page: 11316 year: 2018 ident: WOS:000442340000034 article-title: Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201806323 – volume: 139 start-page: 4894 year: 2017 ident: WOS:000398764000044 article-title: Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b00873 – volume: 17 start-page: 2956 year: 2016 ident: WOS:000386790100001 article-title: The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules publication-title: CHEMPHYSCHEM doi: 10.1002/cphc.201600662 – volume: 128 start-page: ARTN 224311 year: 2008 ident: WOS:000256706300020 article-title: Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect:: The Qx band of porphyrin as a case study publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/1.2929846 – volume: 60 start-page: 2882 year: 2021 ident: WOS:000597678700001 article-title: Carbazole-Based DABNA Analogues as Highly Efficient Thermally Activated Delayed Fluorescence Materials for Narrowband Organic Light-Emitting Diodes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202012891 – volume: 129 start-page: 1593 year: 2017 ident: 000668878500001.5 article-title: Controlling Singlet Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters publication-title: Angew. Chem – volume: 29 start-page: ARTN 1605444 year: 2017 ident: WOS:000402963400023 article-title: Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201605444 – volume: 97 start-page: 99 year: 2009 ident: WOS:000292113400005 article-title: Vibronic Coupling Constant and Vibronic Coupling Density publication-title: JAHN-TELLER EFFECT: FUNDAMENTALS AND IMPLICATIONS FOR PHYSICS AND CHEMISTRY – volume: 133 start-page: 2918 year: 2021 ident: WOS:000668878500001.35 publication-title: ANGEW CHEM doi: 10.1002/ANGE.202012891 – volume: 128 start-page: 5833 year: 2016 ident: WOS:000668878500001.7 publication-title: ANGEW CHEM – volume: 10 start-page: ARTN 597 year: 2019 ident: WOS:000457749000006 article-title: Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-08495-5 – volume: 25 start-page: 3707 year: 2013 ident: WOS:000327692200014 article-title: Triplet Harvesting with 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge Transfer OLED Emitters publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201300753 – volume: 51 start-page: 913 year: 1987 ident: WOS:A1987J991800015 article-title: ORGANIC ELECTROLUMINESCENT DIODES publication-title: APPLIED PHYSICS LETTERS – volume: 139 start-page: 10948 year: 2017 ident: WOS:000408074800003 article-title: New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b03848 – volume: 142 start-page: 19468 year: 2020 ident: WOS:000592911000007 article-title: Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c10081 – volume: 10 start-page: 10687 year: 2019 ident: WOS:000499471800019 article-title: Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs publication-title: CHEMICAL SCIENCE doi: 10.1039/c9sc04492b – volume: 28 start-page: ARTN 1802031 year: 2018 ident: WOS:000442205200010 article-title: High-Performance Dibenzoheteraborin-Based Thermally Activated Delayed Fluorescence Emitters: Molecular Architectonics for Concurrently Achieving Narrowband Emission and Efficient Triplet-Singlet Spin Conversion publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201802031 – volume: 11 year: 2020 ident: WOS:000528787900001 article-title: Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-15558-5 – volume: 30 start-page: ARTN 1705641 year: 2018 ident: WOS:000425449300027 article-title: Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201705641 – volume: 26 start-page: 5198 year: 2014 ident: WOS:000340546300019 article-title: Novel Thermally Activated Delayed Fluorescence Materials-Thioxanthone Derivatives and Their Applications for Highly Efficient OLEDs publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201401393 |
| SSID | ssj0028806 |
| Score | 2.6795332 |
| Snippet | Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material (ν‐DABNA‐O‐Me) with a high... Herein, we reported an ultrapure blue multiple‐resonance‐induced thermally activated delayed fluorescence (MR‐TADF) material ( ν‐DABNA‐O‐Me ) with a high... Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (nu-DABNA-O-Me) with a high... Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high... |
| Source | Web of Science |
| SourceID | proquest webofscience crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17910 |
| SubjectTerms | Chemistry Chemistry, Multidisciplinary Conjugation deep blue Fluorescence Incorporation Molecular orbitals multiple resonance effect narrowband emission organic light-emitting diodes Oxygen Photoluminescence Photons Physical Sciences Quantum efficiency Resonance Science & Technology Service life assessment thermally activated delayed fluorescence |
| Title | Hypsochromic Shift of Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202105032 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000668878500001 https://www.proquest.com/docview/2557344937 https://www.proquest.com/docview/2533317615 |
| Volume | 60 |
| WOS | 000668878500001 |
| WOSCitedRecordID | wos000668878500001 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFgkuvBGBUhmpEqeoiR3ncVxtu2qlsiAo0t6i2LHVSmGz2s0iwomfwG_klzDjZNPuAYHglNfkZc_jmzj-BuBQWakEL4SP8UX5UcGVn0al9gWiaxuWaZYUjmf2PJnN0vk8e39jFn_HDzF8cCPLcP6aDLxQ66Nr0lCagY35HaYsMhDohPc4Kq8cwd7xh-mn8yHpQv3sZhgJ4VMh-i1xY8CPdq-wG5iu0eZOPNqFsC4GTR_8_9M_hPs9_mTjTmEewS2zeAx3J9uyb0_g22m7xB67XNF0Zfbx8so2rLbsbf_j4c_vP-iLP9F00DpV_tCmZKht6OGrqmVj7Qqm4b5jUxUtLqfVpl451ihtmGrZu68tai0bN_VndkY0msteDZ_CxfTkYnLq9wUafC0kelKZRDGZvbS8MKGmEkS2DLk1sdYY-TSmvDrLlOJlJq0MYpNm1mLMlCY2NjXiGYwW9cI8BxaHGnFdqTLDdYQCaWx0WOJGoEITBsoDf9s5ue7Jy6mGRpV3tMs8pwbNhwb14M0gv-xoO34rub_t67w333WOeVYiogihmwevh8PYETSaUixMvSEZIRB8ISL04PCmjgw3dHgOnXgq3RiKB-HfiE361yNOgsYD7rToDy-Rj2dnJ8PWi3856SXco3X3b2O2D6NmtTGv4I7-0lytVwdwO5mnB71t_QIbqSWN |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hFqlceKMaCixSJU5W7V2vYx-jtFEi0oAgSL1Z3vWuWsnEUeogzImfwG_klzBjb1xyQCDEya_xc-fxzXr3G4BjZaUSPBc-xhflRzlXfhIV2heIrm1YJOkgb3lmZ4P5PLm4SN-50YQ0F6bjh-g73MgyWn9NBk4d0ic3rKE0BRsTPMxZZCDQC-9HqEuo5Pun78cfZ33WhQraTTESwqdK9FvmxoCf7F5hNzLdwM2dgLSLYdsgNL73Hx7_Ptx1CJQNO5V5ALfM8iEcjLaF3x7B10mzwja7XNOEZfbh8srWrLLs3A09_PHtO_X5E1EHrVPtD20KhvqGPr4sGzbUbck03HdqyrzB5bjcVOuWN0obphr29kuDesuGdfWJTYlIc-UU8TEsxmeL0cR3JRp8LST6UjmIYjJ8aXluQk1FiGwRcmtirTH2aUx6dZoqxYtUWhnEJkmtxagpTWxsYsQT2FtWS3MILA41IrtCpYbrCAWS2OiwwI1AhSYMlAf-tnUy7ejLqYpGmXXEyzyjD5r1H9SD1738qiPu-K3k0baxM2fA1xlmWgMRRQjePHjVH8aGoP8p-dJUG5IRAuEXYkIPjn9Vkv6GLaJDN57I9i-KB-HfiI3c6xErQe0Bb9XoDy-RDefTs37r6b-c9BIOJovzWTabzt88gzu0vx3pmB7BXr3emOdwW3-ur67XL5yJ_QS65iiV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hFAEXyqvC0MIiVeJk1d61HfsYJbUaEUIFRerN8q531UomjlIHYU78BH4jv6Qz9sZtDgiEONlej587j2_s3W8ADqUJpeC5cDG-SDfIuXTjoFCuQHRt_CJOhnnLMzsbzufx-XlyakcT0lyYjh-i_-BGltH6azJwvSzM0Q1rKE3BxgQPc5bQE-iFdwKqJDOAncnH9POsz7pQQbspRkK4VIl-w9zo8aPtM2xHphu4uRWQtjFsG4TS3f9w-4_goUWgbNSpzGO4oxdP4P54U_jtKXw_aZbYZxcrmrDMPl1cmppVhr23Qw9__fhJ3_yJqIPWqfaH0gVDfUMfX5YNG6m2ZBq2TXSZN7hMy3W1anmjlGayYR--Nai3bFRXX9iUiDSXVhGfwVl6fDY-cW2JBleJEH1pOAwiMvzQ8Fz7iooQmcLnRkdKYexTmPSqJJGSF0loQi_ScWIMRs1QR9rEWuzBYFEt9HNgka8Q2RUy0VwFKBBHWvkFbnjS174nHXA3vZMpS19OVTTKrCNe5hm90Kx_oQ687eWXHXHHbyX3N52dWQO-yjDTGoogQPDmwJt-N3YE_U_JF7pak4wQCL8QEzpweFtJ-gu2iA7deBy2f1Ec8P9GbGwfj1gJagd4q0Z_eIhsNJ8e91sv_uWg13DvdJJms-n83Ut4QM3tQMdkHwb1aq0P4K76Wl9erV5ZC7sGCoQoEA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypsochromic+Shift+of+Multiple-Resonance-Induced+Thermally+Activated+Delayed+Fluorescence+by+Oxygen+Atom+Incorporation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tanaka%2C+Hiroyuki&rft.au=Oda%2C+Susumu&rft.au=Ricci%2C+Gaetano&rft.au=Gotoh%2C+Hajime&rft.date=2021-08-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=33&rft.spage=17910&rft_id=info:doi/10.1002%2Fanie.202105032&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |