Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization

The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 61; číslo 44; s. e202205301 - n/a
Hlavní autoři: Yang, Zhi‐Wen, Chen, Jin‐Mei, Qiu, Li‐Qi, Xie, Wen‐Jun, He, Liang‐Nian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 02.11.2022
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed. This Review focuses on molecular catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR) including metal bipyridines and macrocycle complexes, and summarizes the molecular engineering strategies developed to regulate the intrinsic catalytic efficiency and modify the electrode. Guidelines are provided for the rational design of ECO2RR catalytic systems.
AbstractList The electrocatalytic CO 2 reduction reaction (ECO 2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO 2 RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed.
The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed. This Review focuses on molecular catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR) including metal bipyridines and macrocycle complexes, and summarizes the molecular engineering strategies developed to regulate the intrinsic catalytic efficiency and modify the electrode. Guidelines are provided for the rational design of ECO2RR catalytic systems.
The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed.Dedicated to the 60th anniversary of Institute of Elemento-Organic Chemistry, Nankai University.
The electrocatalytic CO2 reduction reaction (ECO2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2 RR, molecular metal complexes with well-defined structures are convenient for studies of their rational design, structure-reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N-based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed.The electrocatalytic CO2 reduction reaction (ECO2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2 RR, molecular metal complexes with well-defined structures are convenient for studies of their rational design, structure-reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N-based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed.
Author Xie, Wen‐Jun
Chen, Jin‐Mei
He, Liang‐Nian
Yang, Zhi‐Wen
Qiu, Li‐Qi
Author_xml – sequence: 1
  givenname: Zhi‐Wen
  surname: Yang
  fullname: Yang, Zhi‐Wen
  organization: Nankai University
– sequence: 2
  givenname: Jin‐Mei
  surname: Chen
  fullname: Chen, Jin‐Mei
  organization: Nankai University
– sequence: 3
  givenname: Li‐Qi
  surname: Qiu
  fullname: Qiu, Li‐Qi
  organization: Nankai University
– sequence: 4
  givenname: Wen‐Jun
  surname: Xie
  fullname: Xie, Wen‐Jun
  organization: Nankai University
– sequence: 5
  givenname: Liang‐Nian
  orcidid: 0000-0002-6067-5937
  surname: He
  fullname: He, Liang‐Nian
  email: heln@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkU9rFDEYhwepYFu9eg548TJr_kw2ibdl3epCqyB6DpnMOyVLJlmTTO36Tfy2Zl2xUBBPCeR5fnl5fxfNWYgBmuYlwQuCMX1jgoMFxZRizjB50pwTTknLhGBn9d4x1grJybPmIudd5aXEy_Pm5030YGdvEtqEWxcAkgu3KI7oBorxaB2nvYd7yGiMFalsSdGa-nQozqK1SX0M6J2L924A9BmG2RYXw1t0leKEVsNuzmWCUI6J21BqeK7aqkJ3rhxQiehhgO00xd5598McI543T0fjM7z4c142X682X9Yf2utP77fr1XVrGcekHbCRivbSLJkdxZIOlI2dwqLrmeAdoYoMHZdDhzk3IG2vFDXC0t4oTgCYZZfN61PuPsVvM-SiJ5cteG8CxDlrulRMSCwIruirR-guzinU6TQVVDLKlOSVWpwom2LOCUa9T24y6aAJ1sem9LEp_bepKnSPBOvK7x2UZJz_t6ZO2nfn4fCfT_Tq43bz4P4CvlqsrQ
CitedBy_id crossref_primary_10_1002_ange_202500154
crossref_primary_10_1016_j_cej_2024_148854
crossref_primary_10_1002_adma_202209654
crossref_primary_10_1021_acs_jpcc_4c04313
crossref_primary_10_1002_advs_202413203
crossref_primary_10_1002_cctc_202201321
crossref_primary_10_1039_D3EY00079F
crossref_primary_10_1039_D4RA03407D
crossref_primary_10_3390_catal15080698
crossref_primary_10_1002_cssc_202401916
crossref_primary_10_1016_j_ccr_2024_215655
crossref_primary_10_1002_adma_202403651
crossref_primary_10_1002_anie_202500154
crossref_primary_10_1016_j_ccr_2024_216021
crossref_primary_10_1002_anie_202423200
crossref_primary_10_1002_cssc_202301634
crossref_primary_10_1002_ange_202411766
crossref_primary_10_1002_eem2_12888
crossref_primary_10_1002_ange_202418156
crossref_primary_10_1039_D4TA09104C
crossref_primary_10_1002_cssc_202201455
crossref_primary_10_3390_catal13071109
crossref_primary_10_1002_ange_202423200
crossref_primary_10_1021_jacs_4c08953
crossref_primary_10_1002_anie_202407298
crossref_primary_10_1039_D5GC00657K
crossref_primary_10_1039_D2CY01195F
crossref_primary_10_1002_chem_202300879
crossref_primary_10_1002_anie_202302789
crossref_primary_10_1002_anie_202406557
crossref_primary_10_1360_TB_2024_0606
crossref_primary_10_1002_anie_202418156
crossref_primary_10_1016_j_apsusc_2023_158247
crossref_primary_10_1021_jacs_4c08927
crossref_primary_10_1016_j_ccr_2025_216823
crossref_primary_10_1002_anie_202411766
crossref_primary_10_1002_adfm_202513412
crossref_primary_10_1002_adfm_202515635
crossref_primary_10_1002_ange_202407298
crossref_primary_10_1002_aenm_202402441
crossref_primary_10_1002_ange_202302789
crossref_primary_10_1002_tcr_202400164
crossref_primary_10_1039_D3QM00423F
crossref_primary_10_1002_advs_202409084
crossref_primary_10_1002_ange_202406557
crossref_primary_10_1002_adfm_202500915
crossref_primary_10_1002_adfm_202315734
crossref_primary_10_1007_s13399_024_05343_5
crossref_primary_10_1021_jacs_5c12488
crossref_primary_10_1021_jacs_4c08084
crossref_primary_10_1002_adfm_202316187
crossref_primary_10_1002_adfm_202300926
Cites_doi 10.1039/D0GC00952K
10.1002/ange.201909257
10.1021/acs.inorgchem.0c03612
10.1016/j.trechm.2021.02.003
10.1039/D0CS00835D
10.1038/s41560-019-0374-6
10.1021/jacs.9b08445
10.1002/ange.201701104
10.1021/acscatal.1c02379
10.1002/anie.201900499
10.1021/jacs.9b09298
10.1016/j.ccr.2021.214271
10.1021/jacs.5b12652
10.1002/anie.201103616
10.1002/anie.201802792
10.1002/ange.202110186
10.1002/cssc.202002092
10.3389/fchem.2019.00397
10.1002/anie.202006988
10.1002/cssc.202001396
10.1021/jacs.8b13657
10.1021/jacs.5b06535
10.1039/C7SC04682K
10.1039/C9GC02705J
10.1021/jacs.6b07014
10.1002/chem.202002813
10.1016/j.ccr.2020.213435
10.1039/C4CC05563B
10.1002/cjoc.202000667
10.1039/C39850001414
10.1039/C6CC00982D
10.1039/C39840000328
10.1021/jacs.7b10723
10.1021/jacs.7b07709
10.1039/c39840001315
10.1021/jacs.6b08776
10.1002/ange.201103616
10.1002/slct.201600326
10.1038/s41929-019-0306-7
10.1016/j.jorganchem.2012.05.021
10.1016/j.coelec.2020.04.008
10.1021/acs.organomet.8b00336
10.1039/C5DT04491J
10.1021/ja5121088
10.1126/science.1148481
10.1021/acs.accounts.9b00496
10.1038/nclimate2100
10.1021/jacs.9b11806
10.1021/acscatal.7b03971
10.1073/pnas.1507063112
10.1021/acsami.0c06537
10.1039/c39740000158
10.1021/acs.organomet.8b00308
10.1021/ja501252f
10.1002/ange.201506219
10.1021/acs.accounts.9b00439
10.1021/acs.inorgchem.6b01707
10.1039/c2cc32617e
10.1021/ja303560c
10.1038/s41467-019-11542-w
10.1002/cssc.202000698
10.1002/chem.201605546
10.1002/cssc.202002718
10.1039/C39740000615
10.3390/catal10101179
10.1021/acscatal.0c04744
10.1021/ic500658x
10.1021/acs.inorgchem.0c00154
10.1126/science.aac8343
10.1142/S1088424619501608
10.1007/s12274-019-2403-y
10.1126/science.1224581
10.1021/jacs.5b13080
10.1002/ange.202006988
10.1021/ic1008363
10.1039/C6CC05430G
10.1002/cssc.202001037
10.1039/C5SC04015A
10.1039/C39830000536
10.1039/b801793j
10.1021/acs.jpcc.6b09947
10.1016/j.joule.2018.05.017
10.1021/ja506193v
10.1016/j.jpowsour.2021.230788
10.1007/978-3-662-46831-9
10.1039/D0CY02150D
10.1002/cphc.201700782
10.1021/acscatal.9b00404
10.1016/j.apcatb.2018.11.084
10.1039/D0SC05679K
10.1002/anie.202110186
10.1021/acs.chemrev.9b00766
10.1039/C8DT03850C
10.1016/j.poly.2013.01.024
10.1021/jacs.6b01980
10.1039/C7GC03451B
10.1021/acscatal.7b03275
10.1002/adma.202001848
10.1021/jz500759x
10.1016/j.apcatb.2019.118530
10.3762/bjoc.11.259
10.1016/j.chempr.2017.08.002
10.1039/C9EE03660A
10.1021/jacs.7b06269
10.1002/ange.201814339
10.1021/ja304783j
10.1002/chem.201603359
10.1002/anie.201803186
10.1039/C39910000156
10.1021/ja00544a035
10.1002/cssc.202001940
10.1021/acs.chemrev.9b00685
10.1002/anie.201506219
10.1021/jacs.8b09154
10.1002/anie.201909257
10.1039/C2CS35360A
10.1002/cctc.202000909
10.1021/ja501051s
10.1002/ange.201808593
10.1002/ange.202010859
10.1021/ic3001619
10.1021/jacs.0c07041
10.1021/je2010215
10.1021/jacs.1c02145
10.1038/nature13179
10.1039/D0GC03111A
10.1002/cssc.201702280
10.1002/ange.202200723
10.1002/cctc.201200904
10.1016/j.apcatb.2019.03.047
10.1021/jacs.7b11940
10.1002/chem.202200141
10.1002/anie.201808593
10.1039/D0CC00791A
10.1016/j.joule.2017.09.003
10.1038/s41560-020-0667-9
10.1039/C8TA05805A
10.1038/nature11118
10.1039/C5CS00391A
10.1038/ncomms14675
10.1038/s41586-019-1760-8
10.1002/anie.202200723
10.1038/s41929-021-00625-x
10.1021/jacs.1c04392
10.1002/ange.201803186
10.1016/j.ccr.2017.12.009
10.1021/ja00329a082
10.1038/s41467-018-02819-7
10.1039/D0EE02535F
10.1126/science.1209786
10.1002/anie.201701104
10.1039/C8CC06475J
10.1021/ja00090a068
10.1021/acsaem.9b00368
10.1002/ange.201900499
10.1021/acscatal.0c04035
10.1021/acs.chemrev.7b00459
10.1039/D1CY00650A
10.1016/j.chempr.2018.05.003
10.1016/j.ccr.2021.213778
10.1021/jacs.8b05658
10.1021/acsenergylett.9b00751
10.1002/anie.202010859
10.1039/C7CS00314E
10.1021/acs.accounts.8b00010
10.1016/S1388-2481(99)00041-7
10.1021/acscatal.7b02220
10.1002/ange.201802792
10.1002/chem.202000160
10.1002/anie.201814339
10.1039/f19868202385
10.1021/acs.organomet.8b00334
10.1021/jacs.5b08212
10.1126/science.aax4608
10.1021/acsenergylett.8b02355
10.1021/acsaem.1c00027
10.1016/0022-0728(96)04631-1
10.1021/acscatal.5b01767
10.1016/j.joule.2020.06.001
10.1021/ja4099609
10.1002/aenm.201801280
10.1021/ja00284a003
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202205301
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202205301
ANIE202205301
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22171149; 21975135
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7TM
K9.
7X8
ID FETCH-LOGICAL-c3501-d0a892b8a63cf762d23f49074b37541291d458d4055ae8cb992a7c2ba951ee3c3
IEDL.DBID DRFUL
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848557400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Thu Oct 02 10:29:26 EDT 2025
Tue Oct 07 07:06:18 EDT 2025
Sat Nov 29 02:36:47 EST 2025
Tue Nov 18 20:52:55 EST 2025
Wed Jan 22 16:22:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-d0a892b8a63cf762d23f49074b37541291d458d4055ae8cb992a7c2ba951ee3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6067-5937
PQID 2728323985
PQPubID 946352
PageCount 29
ParticipantIDs proquest_miscellaneous_2693780710
proquest_journals_2728323985
crossref_primary_10_1002_anie_202205301
crossref_citationtrail_10_1002_anie_202205301
wiley_primary_10_1002_anie_202205301_ANIE202205301
PublicationCentury 2000
PublicationDate November 2, 2022
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: November 2, 2022
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 451
2012; 486
2019; 10
2019; 12
1974
2020; 13
2020; 12
2020; 10
2013; 5
2014; 136
2022; 28
2018; 6
2018; 9
2018; 8
1986; 108
2022 2022; 61 134
2018; 2
2013; 58
1986; 82
2012; 134
2018; 4
2015; 137
2019; 21
2021; 435
1985
1984
1983
1996; 412
2016; 45
2019; 7
2019; 9
2019; 4
2019; 2
2020; 142
2020; 264
1984; 106
2019; 38
2022; 519
2020; 422
2020; 32
2021; 143
2017 2017; 56 129
1991
2018; 20
2017; 139
2016; 7
2010; 49
2016; 1
2018; 118
2015; 112
2019; 48
2017; 56
2021 2021; 60 133
2019; 575
2020; 26
2020; 24
2011 2011; 50 123
2020; 22
2012; 48
2018; 11
2021; 60
2007; 318
2016; 22
2017; 7
2017; 8
2017; 3
2019; 52
2020; 120
2017; 46
2020 2020; 59 132
2020; 59
2020; 56
2015; 349
2012; 57
2019; 365
2019; 244
2012; 51
2020; 5
2020; 4
2014; 5
2014; 4
2020; 53
2018 2018; 57 130
2021; 39
2020; 49
2014; 50
2012; 338
1980; 102
2014; 53
2011; 334
1994; 116
2021; 4
2015; 5
2018; 140
2021; 3
2015; 11
2013; 42
2017; 23
2007
2016; 52
1999; 1
2019; 141
2014; 510
2016; 120
2019 2019; 58 131
2021; 14
2016 2016; 55 128
2021; 12
2021; 11
2021
2012; 716
2019; 378
2013; 135
2016
2017; 18
2016; 138
2018; 51
2019; 251
2018; 54
2009; 38
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_9_2
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_132_2
e_1_2_8_178_2
e_1_2_8_178_3
e_1_2_8_193_1
e_1_2_8_41_2
e_1_2_8_170_2
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_117_2
e_1_2_8_1_1
e_1_2_8_38_3
e_1_2_8_38_2
e_1_2_8_15_1
e_1_2_8_120_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_143_2
e_1_2_8_189_2
e_1_2_8_99_2
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_76_1
e_1_2_8_53_2
e_1_2_8_30_1
e_1_2_8_25_2
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_133_1
e_1_2_8_179_2
e_1_2_8_110_1
e_1_2_8_63_2
e_1_2_8_118_2
e_1_2_8_171_2
e_1_2_8_86_1
e_1_2_8_194_1
e_1_2_8_40_2
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_90_1
e_1_2_8_121_2
e_1_2_8_98_2
e_1_2_8_182_1
e_1_2_8_106_2
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_144_2
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_183_1
e_1_2_8_107_2
e_1_2_8_93_3
e_1_2_8_122_2
e_1_2_8_93_2
e_1_2_8_168_1
e_1_2_8_70_2
e_1_2_8_145_2
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_88_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
Robert M. (e_1_2_8_43_2) 2021
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_2
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_60_3
e_1_2_8_113_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_136_2
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_19_2
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_162_2
e_1_2_8_11_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_2
e_1_2_8_147_2
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_137_2
e_1_2_8_44_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_56_2
e_1_2_8_79_1
e_1_2_8_94_2
e_1_2_8_163_2
e_1_2_8_94_3
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_33_2
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_3_2
e_1_2_8_138_2
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_3
e_1_2_8_190_1
e_1_2_8_36_2
e_1_2_8_190_2
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_2
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_180_1
e_1_2_8_154_1
e_1_2_8_4_2
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_1
e_1_2_8_191_1
Zoski C. G. (e_1_2_8_65_1) 2007
e_1_2_8_188_2
e_1_2_8_165_1
e_1_2_8_188_3
e_1_2_8_142_1
e_1_2_8_96_2
e_1_2_8_127_1
e_1_2_8_73_2
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 716
  start-page: 19
  year: 2012
  end-page: 25
  publication-title: J. Organomet. Chem.
– volume: 58 131
  start-page: 16172 16318
  year: 2019 2019
  end-page: 16176 16322
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 1179
  year: 2020
  publication-title: Catalysts
– volume: 116
  start-page: 5015
  year: 1994
  end-page: 5016
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 8468
  year: 2020
  end-page: 8535
  publication-title: Chem. Rev.
– volume: 138
  start-page: 5765
  year: 2016
  end-page: 5768
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 359
  year: 2021
  end-page: 372
  publication-title: Trends Chem.
– volume: 4
  start-page: 3604
  year: 2021
  end-page: 3611
  publication-title: ACS Appl. Energy Mater.
– start-page: 328
  year: 1984
  end-page: 330
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 4
  start-page: 1696
  year: 2018
  end-page: 1709
  publication-title: Chem
– volume: 55 128
  start-page: 3566 3628
  year: 2016 2016
  end-page: 3579 3642
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 488
  year: 2021
  end-page: 497
  publication-title: Nat. Catal.
– volume: 14
  start-page: 1308
  year: 2021
  end-page: 1315
  publication-title: ChemSusChem
– volume: 13
  start-page: 3412
  year: 2020
  end-page: 3417
  publication-title: ChemSusChem
– volume: 10
  start-page: 3602
  year: 2019
  publication-title: Nat. Commun.
– volume: 422
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 13203
  year: 2021
  end-page: 13216
  publication-title: ACS Catal.
– volume: 138
  start-page: 16639
  year: 2016
  end-page: 16644
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2952
  year: 2018
  end-page: 2960
  publication-title: Chem. Sci.
– volume: 2
  start-page: 2435
  year: 2019
  end-page: 2440
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 2506
  year: 2016
  end-page: 2515
  publication-title: Chem. Sci.
– volume: 13
  start-page: 6284
  year: 2020
  end-page: 6289
  publication-title: ChemSusChem
– volume: 11
  start-page: 2370
  year: 2015
  end-page: 2387
  publication-title: Beilstein J. Org. Chem.
– volume: 51
  start-page: 3932
  year: 2012
  end-page: 3934
  publication-title: Inorg. Chem.
– volume: 59 132
  start-page: 22451 22637
  year: 2020 2020
  end-page: 22455 22641
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 374
  year: 2020
  end-page: 403
  publication-title: Energy Environ. Sci.
– volume: 142
  start-page: 21656
  year: 2020
  end-page: 21669
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1187
  year: 2009
  end-page: 1198
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 16339 16577
  year: 2018 2018
  end-page: 16342 16580
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 264
  year: 2020
  publication-title: Appl. Catal. B
– volume: 56
  start-page: 4440
  year: 2020
  end-page: 4443
  publication-title: Chem. Commun.
– volume: 21
  start-page: 6056
  year: 2019
  end-page: 6061
  publication-title: Green Chem.
– volume: 365
  start-page: 367
  year: 2019
  end-page: 369
  publication-title: Science
– start-page: 536
  year: 1983
  end-page: 538
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 486
  start-page: 105
  year: 2012
  end-page: 108
  publication-title: Nature
– volume: 11
  start-page: 4673
  year: 2021
  end-page: 4689
  publication-title: Catal. Sci. Technol.
– volume: 8
  start-page: 14675
  year: 2017
  publication-title: Nat. Commun.
– volume: 137
  start-page: 5021
  year: 2015
  end-page: 5027
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 16774
  year: 2020
  end-page: 16781
  publication-title: Chem. Eur. J.
– volume: 28
  year: 2022
  publication-title: Chem. Eur. J.
– volume: 134
  start-page: 11235
  year: 2012
  end-page: 11242
  publication-title: J. Am. Chem. Soc.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 5864
  year: 2016
  end-page: 5867
  publication-title: Chem. Commun.
– volume: 59
  start-page: 6087
  year: 2020
  end-page: 6099
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 6302
  year: 2015
  end-page: 6309
  publication-title: ACS Catal.
– start-page: 158
  year: 1974
  end-page: 159
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 135
  start-page: 18288
  year: 2013
  end-page: 18291
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 4265
  year: 2020
  end-page: 4275
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 354
  year: 2018
  end-page: 363
  publication-title: ACS Catal.
– volume: 1
  start-page: 213
  year: 1999
  end-page: 216
  publication-title: Electrochem. Commun.
– year: 2007
– volume: 38
  start-page: 1213
  year: 2019
  end-page: 1218
  publication-title: Organometallics
– volume: 4
  start-page: 466
  year: 2019
  end-page: 474
  publication-title: Nat. Energy
– volume: 49
  start-page: 6884
  year: 2020
  end-page: 6946
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1408
  year: 2020
  end-page: 1444
  publication-title: Joule
– year: 2016
– volume: 58 131
  start-page: 4504 4552
  year: 2019 2019
  end-page: 4509 4557
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 3135
  year: 2017
  end-page: 3141
  publication-title: ChemPhysChem
– volume: 38
  start-page: 1224
  year: 2019
  end-page: 1229
  publication-title: Organometallics
– volume: 6
  start-page: 21654
  year: 2018
  end-page: 21665
  publication-title: J. Mater. Chem. A
– volume: 112
  start-page: 6882
  year: 2015
  end-page: 6886
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 45
  start-page: 14678
  year: 2016
  end-page: 14688
  publication-title: Dalton Trans.
– start-page: 156
  year: 1991
  end-page: 157
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 349
  start-page: 1208
  year: 2015
  end-page: 1213
  publication-title: Science
– volume: 39
  start-page: 1281
  year: 2021
  end-page: 1287
  publication-title: Chin. J. Chem.
– volume: 52
  start-page: 3432
  year: 2019
  end-page: 3441
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 7104
  year: 2021
  end-page: 7113
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 17081
  year: 2019
  end-page: 17085
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 5965
  year: 2019
  end-page: 5977
  publication-title: Dalton Trans.
– volume: 318
  start-page: 1461
  year: 2007
  end-page: 1464
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 575
  start-page: 639
  year: 2019
  end-page: 642
  publication-title: Nature
– volume: 139
  start-page: 13993
  year: 2017
  end-page: 13996
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 2385
  year: 1986
  end-page: 2400
  publication-title: J. Chem. Soc. Faraday Trans. 1
– volume: 510
  start-page: 139
  year: 2014
  end-page: 142
  publication-title: Nature
– volume: 50
  start-page: 14670
  year: 2014
  end-page: 14673
  publication-title: Chem. Commun.
– volume: 22
  start-page: 14158
  year: 2016
  end-page: 14161
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 4886
  year: 2020
  end-page: 4892
  publication-title: ChemCatChem
– volume: 14
  start-page: 483
  year: 2021
  end-page: 492
  publication-title: Energy Environ. Sci.
– volume: 251
  start-page: 112
  year: 2019
  end-page: 118
  publication-title: Appl. Catal. B
– volume: 9
  start-page: 3667
  year: 2019
  end-page: 3671
  publication-title: ACS Catal.
– volume: 13
  start-page: 6296
  year: 2020
  end-page: 6299
  publication-title: ChemSusChem
– volume: 118
  start-page: 4631
  year: 2018
  end-page: 4701
  publication-title: Chem. Rev.
– volume: 11
  start-page: 1580
  year: 2021
  end-page: 1589
  publication-title: Catal. Sci. Technol.
– volume: 60
  start-page: 3843
  year: 2021
  end-page: 3850
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 666
  year: 2019
  end-page: 672
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 37986
  year: 2020
  end-page: 37992
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 439
  year: 2012
  end-page: 449
  publication-title: J. Chem. Eng. Data
– volume: 13
  start-page: 6449
  year: 2020
  end-page: 6456
  publication-title: ChemSusChem
– volume: 57 130
  start-page: 7769 7895
  year: 2018 2018
  end-page: 7773 7899
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 1790
  year: 2013
  end-page: 1796
  publication-title: ChemCatChem
– volume: 11
  start-page: 1096
  year: 2021
  end-page: 1105
  publication-title: ACS Catal.
– volume: 138
  start-page: 2492
  year: 2016
  end-page: 2495
  publication-title: J. Am. Chem. Soc.
– year: 2021
– volume: 140
  start-page: 16669
  year: 2018
  end-page: 16675
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2033
  year: 2014
  end-page: 2038
  publication-title: J. Phys. Chem. Lett.
– volume: 519
  year: 2022
  publication-title: J. Power Sources
– volume: 42
  start-page: 2423
  year: 2013
  end-page: 2436
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 2604
  year: 2017
  end-page: 2618
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 11628 11732
  year: 2021 2021
  end-page: 11686 11792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 662
  year: 2021
  end-page: 670
  publication-title: ChemSusChem
– volume: 244
  start-page: 881
  year: 2019
  end-page: 888
  publication-title: Appl. Catal. B
– volume: 54
  start-page: 11630
  year: 2018
  end-page: 11633
  publication-title: Chem. Commun.
– volume: 137
  start-page: 10918
  year: 2015
  end-page: 10921
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 910
  year: 2018
  end-page: 918
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 7374
  year: 2012
  end-page: 7376
  publication-title: Chem. Commun.
– volume: 134
  start-page: 15632
  year: 2012
  end-page: 15635
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 8614
  year: 2020
  end-page: 8622
  publication-title: Green Chem.
– volume: 435
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 451
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 26
  start-page: 3034
  year: 2020
  end-page: 3038
  publication-title: Chem. Eur. J.
– volume: 143
  start-page: 13579
  year: 2021
  end-page: 13592
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 1783
  year: 2017
  end-page: 1793
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 6099
  year: 2017
  end-page: 6110
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 111
  year: 2014
  end-page: 116
  publication-title: Nat. Clim. Change
– volume: 141
  start-page: 6569
  year: 2019
  end-page: 6582
  publication-title: J. Am. Chem. Soc.
– start-page: 1414
  year: 1985
  end-page: 1416
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 58 131
  start-page: 6595 6667
  year: 2019 2019
  end-page: 6599 6671
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1025
  year: 2018
  end-page: 1031
  publication-title: ChemSusChem
– volume: 56 129
  start-page: 6468 6568
  year: 2017 2017
  end-page: 6472 6572
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 9903 10077
  year: 2011 2011
  end-page: 9906 10080
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 102
  start-page: 7361
  year: 1980
  end-page: 7363
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 4782
  year: 2017
  end-page: 4793
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 397
  year: 2019
  publication-title: Front. Chem.
– volume: 8
  start-page: 2021
  year: 2018
  end-page: 2029
  publication-title: ACS Catal.
– volume: 2
  start-page: 648
  year: 2019
  end-page: 658
  publication-title: Nat. Catal.
– volume: 3
  start-page: 652
  year: 2017
  end-page: 664
  publication-title: Chem
– volume: 136
  start-page: 5563
  year: 2014
  end-page: 5566
  publication-title: J. Am. Chem. Soc.
– start-page: 615
  year: 1974
  end-page: 616
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 140
  start-page: 12451
  year: 2018
  end-page: 12456
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 7461
  year: 1986
  end-page: 7467
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 255
  year: 2020
  end-page: 264
  publication-title: Acc. Chem. Res.
– volume: 120
  start-page: 8536
  year: 2020
  end-page: 8580
  publication-title: Chem. Rev.
– volume: 20
  start-page: 798
  year: 2018
  end-page: 803
  publication-title: Green Chem.
– volume: 2
  start-page: 825
  year: 2018
  end-page: 832
  publication-title: Joule
– volume: 5
  start-page: 684
  year: 2020
  end-page: 692
  publication-title: Nat. Energy
– volume: 49
  start-page: 9283
  year: 2010
  end-page: 9289
  publication-title: Inorg. Chem.
– volume: 338
  start-page: 90
  year: 2012
  end-page: 94
  publication-title: Science
– volume: 120
  start-page: 28951
  year: 2016
  end-page: 28960
  publication-title: J. Phys. Chem. C
– volume: 140
  start-page: 1004
  year: 2018
  end-page: 1010
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 3727
  year: 2020
  end-page: 3733
  publication-title: Green Chem.
– volume: 136
  start-page: 11821
  year: 2014
  end-page: 11829
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1116
  year: 2018
  end-page: 1122
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 9983
  year: 2014
  end-page: 10002
  publication-title: Inorg. Chem.
– volume: 141
  start-page: 17270
  year: 2019
  end-page: 17277
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 415
  year: 2018
  publication-title: Nat. Commun.
– volume: 106
  start-page: 5033
  year: 1984
  end-page: 5034
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 643
  year: 2011
  end-page: 644
  publication-title: Science
– volume: 139
  start-page: 14425
  year: 2017
  end-page: 14435
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 12084
  year: 2016
  end-page: 12087
  publication-title: Chem. Commun.
– volume: 46
  start-page: 761
  year: 2017
  end-page: 796
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 229
  year: 2013
  end-page: 234
  publication-title: Polyhedron
– volume: 138
  start-page: 1820
  year: 2016
  end-page: 1823
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 15948 16178
  year: 2018 2018
  end-page: 15982 16214
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 14129
  year: 2015
  end-page: 14135
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1219
  year: 2019
  end-page: 1223
  publication-title: Organometallics
– volume: 136
  start-page: 5460
  year: 2014
  end-page: 5471
  publication-title: J. Am. Chem. Soc.
– start-page: 1315
  year: 1984
  end-page: 1316
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 12
  start-page: 4779
  year: 2021
  end-page: 4788
  publication-title: Chem. Sci.
– volume: 11
  start-page: 1868
  year: 2021
  end-page: 1876
  publication-title: ACS Catal.
– volume: 22
  start-page: 87
  year: 2020
  end-page: 93
  publication-title: Curr. Opin. Electrochem.
– volume: 24
  start-page: 465
  year: 2020
  end-page: 472
  publication-title: J. Porphyrins Phthalocyanines
– volume: 1
  start-page: 1156
  year: 2016
  end-page: 1162
  publication-title: ChemistrySelect
– volume: 7
  start-page: 8382
  year: 2017
  end-page: 8385
  publication-title: ACS Catal.
– volume: 12
  start-page: 2093
  year: 2019
  end-page: 2125
  publication-title: Nano Res.
– volume: 4
  start-page: 1279
  year: 2019
  end-page: 1286
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 1030
  year: 2018
  end-page: 1032
  publication-title: Joule
– volume: 412
  start-page: 125
  year: 1996
  end-page: 132
  publication-title: J. Electroanal. Chem.
– volume: 378
  start-page: 237
  year: 2019
  end-page: 261
  publication-title: Coord. Chem. Rev.
– ident: e_1_2_8_9_2
  doi: 10.1039/D0GC00952K
– ident: e_1_2_8_187_1
– ident: e_1_2_8_36_3
  doi: 10.1002/ange.201909257
– ident: e_1_2_8_119_1
  doi: 10.1021/acs.inorgchem.0c03612
– ident: e_1_2_8_189_2
  doi: 10.1016/j.trechm.2021.02.003
– ident: e_1_2_8_10_1
  doi: 10.1039/D0CS00835D
– ident: e_1_2_8_67_1
– ident: e_1_2_8_194_1
  doi: 10.1038/s41560-019-0374-6
– ident: e_1_2_8_34_2
  doi: 10.1021/jacs.9b08445
– ident: e_1_2_8_132_2
  doi: 10.1002/ange.201701104
– ident: e_1_2_8_62_2
  doi: 10.1021/acscatal.1c02379
– ident: e_1_2_8_147_1
  doi: 10.1002/anie.201900499
– ident: e_1_2_8_180_1
  doi: 10.1021/jacs.9b09298
– ident: e_1_2_8_142_1
– ident: e_1_2_8_192_1
  doi: 10.1016/j.ccr.2021.214271
– ident: e_1_2_8_136_2
  doi: 10.1021/jacs.5b12652
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.201103616
– ident: e_1_2_8_38_2
  doi: 10.1002/anie.201802792
– ident: e_1_2_8_190_2
  doi: 10.1002/ange.202110186
– ident: e_1_2_8_138_2
  doi: 10.1002/cssc.202002092
– ident: e_1_2_8_64_1
  doi: 10.3389/fchem.2019.00397
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.202006988
– ident: e_1_2_8_128_1
  doi: 10.1002/cssc.202001396
– ident: e_1_2_8_161_1
– ident: e_1_2_8_101_1
  doi: 10.1021/jacs.8b13657
– ident: e_1_2_8_59_2
  doi: 10.1021/jacs.5b06535
– ident: e_1_2_8_1_1
– ident: e_1_2_8_89_1
  doi: 10.1039/C7SC04682K
– ident: e_1_2_8_171_2
  doi: 10.1039/C9GC02705J
– ident: e_1_2_8_72_2
  doi: 10.1021/jacs.6b07014
– ident: e_1_2_8_117_2
  doi: 10.1002/chem.202002813
– ident: e_1_2_8_56_2
  doi: 10.1016/j.ccr.2020.213435
– ident: e_1_2_8_109_1
  doi: 10.1039/C4CC05563B
– ident: e_1_2_8_79_1
  doi: 10.1002/cjoc.202000667
– ident: e_1_2_8_76_1
  doi: 10.1039/C39850001414
– ident: e_1_2_8_177_1
– ident: e_1_2_8_167_1
  doi: 10.1039/C6CC00982D
– ident: e_1_2_8_45_1
  doi: 10.1039/C39840000328
– ident: e_1_2_8_155_1
  doi: 10.1021/jacs.7b10723
– ident: e_1_2_8_120_1
– ident: e_1_2_8_100_1
  doi: 10.1021/jacs.7b07709
– ident: e_1_2_8_48_1
  doi: 10.1039/c39840001315
– ident: e_1_2_8_113_1
  doi: 10.1021/jacs.6b08776
– ident: e_1_2_8_46_2
  doi: 10.1002/ange.201103616
– ident: e_1_2_8_164_1
  doi: 10.1002/slct.201600326
– ident: e_1_2_8_17_1
  doi: 10.1038/s41929-019-0306-7
– ident: e_1_2_8_162_2
  doi: 10.1016/j.jorganchem.2012.05.021
– ident: e_1_2_8_24_2
  doi: 10.1016/j.coelec.2020.04.008
– ident: e_1_2_8_127_1
  doi: 10.1021/acs.organomet.8b00336
– ident: e_1_2_8_165_1
  doi: 10.1039/C5DT04491J
– ident: e_1_2_8_98_2
  doi: 10.1021/ja5121088
– ident: e_1_2_8_116_1
– ident: e_1_2_8_83_1
  doi: 10.1126/science.1148481
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.accounts.9b00496
– ident: e_1_2_8_4_2
  doi: 10.1038/nclimate2100
– ident: e_1_2_8_123_1
  doi: 10.1021/jacs.9b11806
– ident: e_1_2_8_74_1
  doi: 10.1021/acscatal.7b03971
– ident: e_1_2_8_125_1
  doi: 10.1073/pnas.1507063112
– ident: e_1_2_8_135_1
– ident: e_1_2_8_186_1
  doi: 10.1021/acsami.0c06537
– ident: e_1_2_8_49_1
  doi: 10.1039/c39740000158
– ident: e_1_2_8_91_1
  doi: 10.1021/acs.organomet.8b00308
– ident: e_1_2_8_105_1
– ident: e_1_2_8_81_1
  doi: 10.1021/ja501252f
– ident: e_1_2_8_178_3
  doi: 10.1002/ange.201506219
– ident: e_1_2_8_152_1
  doi: 10.1021/acs.accounts.9b00439
– ident: e_1_2_8_114_1
  doi: 10.1021/acs.inorgchem.6b01707
– ident: e_1_2_8_77_1
  doi: 10.1039/c2cc32617e
– ident: e_1_2_8_66_1
  doi: 10.1021/ja303560c
– ident: e_1_2_8_11_1
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-019-11542-w
– ident: e_1_2_8_12_2
  doi: 10.1002/cssc.202000698
– ident: e_1_2_8_110_1
  doi: 10.1002/chem.201605546
– ident: e_1_2_8_103_1
  doi: 10.1002/cssc.202002718
– ident: e_1_2_8_143_2
  doi: 10.1039/C39740000615
– ident: e_1_2_8_26_1
  doi: 10.3390/catal10101179
– ident: e_1_2_8_157_1
  doi: 10.1021/acscatal.0c04744
– ident: e_1_2_8_68_2
  doi: 10.1021/ic500658x
– ident: e_1_2_8_87_1
  doi: 10.1021/acs.inorgchem.0c00154
– ident: e_1_2_8_182_1
  doi: 10.1126/science.aac8343
– ident: e_1_2_8_86_1
  doi: 10.1142/S1088424619501608
– ident: e_1_2_8_169_1
– ident: e_1_2_8_41_2
  doi: 10.1007/s12274-019-2403-y
– volume-title: Handbook of Electrochemistry
  year: 2007
  ident: e_1_2_8_65_1
– ident: e_1_2_8_108_1
  doi: 10.1126/science.1224581
– ident: e_1_2_8_154_1
  doi: 10.1021/jacs.5b13080
– ident: e_1_2_8_31_2
  doi: 10.1002/ange.202006988
– ident: e_1_2_8_78_1
  doi: 10.1021/ic1008363
– ident: e_1_2_8_149_1
  doi: 10.1039/C6CC05430G
– ident: e_1_2_8_121_2
  doi: 10.1002/cssc.202001037
– ident: e_1_2_8_145_2
  doi: 10.1039/C5SC04015A
– ident: e_1_2_8_44_1
  doi: 10.1039/C39830000536
– ident: e_1_2_8_90_1
  doi: 10.1039/b801793j
– ident: e_1_2_8_73_2
  doi: 10.1021/acs.jpcc.6b09947
– ident: e_1_2_8_172_1
  doi: 10.1016/j.joule.2018.05.017
– ident: e_1_2_8_104_1
  doi: 10.1021/ja506193v
– ident: e_1_2_8_37_2
  doi: 10.1016/j.jpowsour.2021.230788
– ident: e_1_2_8_30_1
  doi: 10.1007/978-3-662-46831-9
– ident: e_1_2_8_168_1
  doi: 10.1039/D0CY02150D
– ident: e_1_2_8_15_1
  doi: 10.1002/cphc.201700782
– ident: e_1_2_8_153_1
  doi: 10.1021/acscatal.9b00404
– ident: e_1_2_8_150_1
  doi: 10.1016/j.apcatb.2018.11.084
– ident: e_1_2_8_71_1
– ident: e_1_2_8_111_1
  doi: 10.1039/D0SC05679K
– ident: e_1_2_8_190_1
  doi: 10.1002/anie.202110186
– volume-title: Carbon Dioxide Electrochemistry Homogeneous and Heterogeneous Catalysis
  year: 2021
  ident: e_1_2_8_43_2
– ident: e_1_2_8_179_2
  doi: 10.1021/acs.chemrev.9b00766
– ident: e_1_2_8_115_1
  doi: 10.1039/C8DT03850C
– ident: e_1_2_8_75_1
  doi: 10.1016/j.poly.2013.01.024
– ident: e_1_2_8_107_2
  doi: 10.1021/jacs.6b01980
– ident: e_1_2_8_18_1
– ident: e_1_2_8_21_2
  doi: 10.1039/C7GC03451B
– ident: e_1_2_8_126_1
  doi: 10.1021/acscatal.7b03275
– ident: e_1_2_8_25_2
  doi: 10.1002/adma.202001848
– ident: e_1_2_8_97_2
  doi: 10.1021/jz500759x
– ident: e_1_2_8_23_1
– ident: e_1_2_8_131_1
  doi: 10.1016/j.apcatb.2019.118530
– ident: e_1_2_8_8_2
  doi: 10.3762/bjoc.11.259
– ident: e_1_2_8_170_2
  doi: 10.1016/j.chempr.2017.08.002
– ident: e_1_2_8_42_2
  doi: 10.1039/C9EE03660A
– ident: e_1_2_8_137_2
  doi: 10.1021/jacs.7b06269
– ident: e_1_2_8_93_3
  doi: 10.1002/ange.201814339
– ident: e_1_2_8_148_1
  doi: 10.1021/ja304783j
– ident: e_1_2_8_99_2
  doi: 10.1002/chem.201603359
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.201803186
– ident: e_1_2_8_146_1
  doi: 10.1039/C39910000156
– ident: e_1_2_8_47_1
  doi: 10.1021/ja00544a035
– ident: e_1_2_8_88_1
  doi: 10.1002/cssc.202001940
– ident: e_1_2_8_173_1
  doi: 10.1021/acs.chemrev.9b00685
– ident: e_1_2_8_178_2
  doi: 10.1002/anie.201506219
– ident: e_1_2_8_7_1
– ident: e_1_2_8_70_2
  doi: 10.1021/jacs.8b09154
– ident: e_1_2_8_36_2
  doi: 10.1002/anie.201909257
– ident: e_1_2_8_69_2
  doi: 10.1039/C2CS35360A
– ident: e_1_2_8_118_2
  doi: 10.1002/cctc.202000909
– ident: e_1_2_8_80_1
  doi: 10.1021/ja501051s
– ident: e_1_2_8_60_3
  doi: 10.1002/ange.201808593
– ident: e_1_2_8_94_3
  doi: 10.1002/ange.202010859
– ident: e_1_2_8_85_1
  doi: 10.1021/ic3001619
– ident: e_1_2_8_176_1
  doi: 10.1021/jacs.0c07041
– ident: e_1_2_8_51_1
  doi: 10.1021/je2010215
– ident: e_1_2_8_184_1
  doi: 10.1021/jacs.1c02145
– ident: e_1_2_8_95_1
– ident: e_1_2_8_3_2
  doi: 10.1038/nature13179
– ident: e_1_2_8_13_2
  doi: 10.1039/D0GC03111A
– ident: e_1_2_8_92_1
– ident: e_1_2_8_22_2
  doi: 10.1002/cssc.201702280
– ident: e_1_2_8_188_3
  doi: 10.1002/ange.202200723
– ident: e_1_2_8_163_2
  doi: 10.1002/cctc.201200904
– ident: e_1_2_8_144_2
  doi: 10.1016/j.apcatb.2019.03.047
– ident: e_1_2_8_185_1
  doi: 10.1021/jacs.7b11940
– ident: e_1_2_8_40_2
  doi: 10.1002/chem.202200141
– ident: e_1_2_8_60_2
  doi: 10.1002/anie.201808593
– ident: e_1_2_8_159_1
  doi: 10.1039/D0CC00791A
– ident: e_1_2_8_5_1
  doi: 10.1016/j.joule.2017.09.003
– ident: e_1_2_8_53_2
  doi: 10.1038/s41560-020-0667-9
– ident: e_1_2_8_32_1
– ident: e_1_2_8_158_1
  doi: 10.1039/C8TA05805A
– ident: e_1_2_8_2_2
  doi: 10.1038/nature11118
– ident: e_1_2_8_19_2
  doi: 10.1039/C5CS00391A
– ident: e_1_2_8_54_2
  doi: 10.1038/ncomms14675
– ident: e_1_2_8_58_1
– ident: e_1_2_8_35_2
  doi: 10.1038/s41586-019-1760-8
– ident: e_1_2_8_188_2
  doi: 10.1002/anie.202200723
– ident: e_1_2_8_6_1
  doi: 10.1038/s41929-021-00625-x
– ident: e_1_2_8_124_1
  doi: 10.1021/jacs.1c04392
– ident: e_1_2_8_29_2
  doi: 10.1002/ange.201803186
– ident: e_1_2_8_20_2
  doi: 10.1016/j.ccr.2017.12.009
– ident: e_1_2_8_50_1
  doi: 10.1021/ja00329a082
– ident: e_1_2_8_191_1
  doi: 10.1038/s41467-018-02819-7
– ident: e_1_2_8_151_1
  doi: 10.1039/D0EE02535F
– ident: e_1_2_8_96_2
  doi: 10.1126/science.1209786
– ident: e_1_2_8_61_1
– ident: e_1_2_8_132_1
  doi: 10.1002/anie.201701104
– ident: e_1_2_8_102_1
  doi: 10.1039/C8CC06475J
– ident: e_1_2_8_106_2
  doi: 10.1021/ja00090a068
– ident: e_1_2_8_140_1
  doi: 10.1021/acsaem.9b00368
– ident: e_1_2_8_147_2
  doi: 10.1002/ange.201900499
– ident: e_1_2_8_166_1
  doi: 10.1021/acscatal.0c04035
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemrev.7b00459
– ident: e_1_2_8_193_1
  doi: 10.1039/D1CY00650A
– ident: e_1_2_8_183_1
  doi: 10.1016/j.chempr.2018.05.003
– ident: e_1_2_8_181_1
  doi: 10.1016/j.ccr.2021.213778
– ident: e_1_2_8_82_1
  doi: 10.1021/jacs.8b05658
– ident: e_1_2_8_14_1
  doi: 10.1021/acsenergylett.9b00751
– ident: e_1_2_8_94_2
  doi: 10.1002/anie.202010859
– ident: e_1_2_8_39_1
– ident: e_1_2_8_156_1
  doi: 10.1039/C7CS00314E
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.accounts.8b00010
– ident: e_1_2_8_130_1
  doi: 10.1016/S1388-2481(99)00041-7
– ident: e_1_2_8_55_2
  doi: 10.1021/acscatal.7b02220
– ident: e_1_2_8_38_3
  doi: 10.1002/ange.201802792
– ident: e_1_2_8_141_1
  doi: 10.1002/chem.202000160
– ident: e_1_2_8_93_2
  doi: 10.1002/anie.201814339
– ident: e_1_2_8_160_1
  doi: 10.1039/f19868202385
– ident: e_1_2_8_52_1
– ident: e_1_2_8_112_1
  doi: 10.1021/acs.organomet.8b00334
– ident: e_1_2_8_174_1
  doi: 10.1021/jacs.5b08212
– ident: e_1_2_8_33_2
  doi: 10.1126/science.aax4608
– ident: e_1_2_8_133_1
  doi: 10.1021/acsenergylett.8b02355
– ident: e_1_2_8_122_2
  doi: 10.1021/acsaem.1c00027
– ident: e_1_2_8_63_2
  doi: 10.1016/0022-0728(96)04631-1
– ident: e_1_2_8_175_1
  doi: 10.1021/acscatal.5b01767
– ident: e_1_2_8_28_1
  doi: 10.1016/j.joule.2020.06.001
– ident: e_1_2_8_134_1
  doi: 10.1021/ja4099609
– ident: e_1_2_8_139_1
  doi: 10.1002/aenm.201801280
– ident: e_1_2_8_84_1
  doi: 10.1021/ja00284a003
SSID ssj0028806
Score 2.63357
SecondaryResourceType review_article
Snippet The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among...
The electrocatalytic CO 2 reduction reaction (ECO 2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels....
The electrocatalytic CO2 reduction reaction (ECO2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202205301
SubjectTerms Carbon Dioxide
Catalysts
Chemical bonds
Chemical reduction
Clean energy
Coordination compounds
Electrocatalytic Reduction
Immobilization
Ligand Modification
Metal Complex Catalysts
Metal complexes
Molecular Immobilization
Organic chemistry
Title Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205301
https://www.proquest.com/docview/2728323985
https://www.proquest.com/docview/2693780710
Volume 61
WOSCitedRecordID wos000848557400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5ap9Bc-g5xm4QtFHpaIu_qserNODY1NKaEBnwT-xK4pFKw7JL-lP7bzuhl51AK6U1Cq9WyM7P69jHfB_AhCpyPvDI8RwPzMA8DrqWLeBD4MI6F0mqU12ITyWKhlsv0614Wf8MP0S-4UWTU4zUFuDbV-Y40lDKwcX5HiaKSErgOBDpvNICDi6vZ9Zd-0oX-2WQYSclJiL4jbgzE-f0a7v-YdmhzH7PWP53Z8_9v7gt41gJONm485CU88sUreDrpdN5ew-_LTiGX7ZETsjJnlx6ROaMR48bf-YohvmXTRjanXvX5hVWyiV6bsmAXq_Ju5Ty7IipYMvYnNluXP9jYfd9W9Ul2qnFebLBydAw2to1sBduUbNeAOUYFndZtckPfwPVs-m3ymbeCDdzS_iR3gVapMErH0uY4yjoh85Bm34aEdhFZjFwYKYcYMdJeWZOmQidWGI0wz3tp5REMirLwx8ASKY100hpKpI1NkqZWx0bZUS7DXKduCLyzVmZbNnMS1bjJGh5mkVGHZ32HD-FjX_624fH4a8mTzvhZG89VJhKSdJKpiobwvn-MhqLtFV34cotlYoR6iiDbEETtCv_4UjZezKf93duHvPQODum6To4UJzDYrLf-FJ7Yn5tVtT6Dx8lSnbUR8QeWMQyv
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Za9tAEB5KUkhfmvSibtJ2A4U-LZF3daz6ZhybmNimhATyJvYSuKRS8VHSn5J_mxldTh5KoPRR0mq17Mysvj3m-wC-RIHzkVeG52hgHuZhwLV0EQ8CH8axUFr180psIpnP1fV1-r05TUi5MDU_RLfgRpFRjdcU4LQgfbJlDaUUbJzgUaaopAyu3RB9CZ189_RifDXtZl3ooHWKkZSclOhb5sZAnDyu4fGfaQs3H4LW6q8z3v8P7T2Alw3kZIPaR17BM1-8hr1hq_T2Bu5mrUYue0BPyMqczTxic0Zjxo2_9SuGCJeNauGcat3nD1bJhnppyoKdLsrbhfPsgshgydzf2HhZ_mQD92Ozqs6yU42TYo2Vo2uwga2FK9i6ZNsGTDAu6LxunR36Fq7Go8vhGW8kG7ilHUruAq1SYZSOpc1xnHVC5iHNvw1J7SK26LswUg5RYqS9siZNhU6sMBqBnvfSynewU5SFfw8skdJIJ62hVNrYJGlqdWyU7ecyzHXqesBbc2W24TMnWY2brGZiFhl1eNZ1eA--duV_1Uwefy151Fo_ayJ6lYmERJ1kqqIeHHeP0VC0waILX26wTIxgTxFo64GofOGJL2WD-WTUXX34l5c-w97Z5WyaTSfz80N4QferVElxBDvr5cZ_hOf293qxWn5qAuMeVv4Ptw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja9wwFH6USWl7adKNTrNUhUBPIh7Ji5zbMDMmQ5MhhARyM1phSmqHWUr6U_pvo-dtkkMohB5ty7LQe0_-tLzvAziMAmMjKxR13sA0dGFAJTcRDQIbxjETUgxcJTaRzGbi-jo9b04TYi5MzQ_RLbhhZFTjNQa4vTXuaMMaiinYfoKHmaIcM7i2QlSS6cHW-CK7Ou1mXd5B6xQjzikq0bfMjQE7elzD4z_TBm4-BK3VXyfb_g_t3YG3DeQkw9pH3sELW7yH16NW6e0D_D1rNXLJA3pCUjpyZj02Jzhm3Ng7uyQe4ZJJLZxTrfv88VWSkVyosiDjeXk3N5ZcIBksmvuYZIvyFxman-tldZYda5wWK1-5dw0y1LVwBVmVZNOAqY8LPK9bZ4d-hKtscjk6oY1kA9W4Q0lNIEXKlJAx186Ps4ZxF-L8W6HUrscWAxNGwniUGEkrtEpTJhPNlPRAz1qu-SfoFWVhPwNJOFfccK0wlTZWSZpqGSuhB46HTqamD7Q1V64bPnOU1bjJayZmlmOH512H9-F7V_62ZvJ4suRea_28iehlzhIUdeKpiPrwrXvsDYUbLLKw5dqXiT3YEwja-sAqX_jHl_LhbDrprr4856Wv8Op8nOWn09mPXXiDt6tMSbYHvdVibffhpf69mi8XB01c3APKDQ8y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Engineering+of+Metal+Complexes+for+Electrocatalytic+Carbon+Dioxide+Reduction%3A+From+Adjustment+of+Intrinsic+Activity+to+Molecular+Immobilization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhi%E2%80%90Wen+Yang&rft.au=Jin%E2%80%90Mei+Chen&rft.au=Li%E2%80%90Qi+Qiu&rft.au=Wen%E2%80%90Jun+Xie&rft.date=2022-11-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=44&rft_id=info:doi/10.1002%2Fanie.202205301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon