Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization
The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational d...
Gespeichert in:
| Veröffentlicht in: | Angewandte Chemie International Edition Jg. 61; H. 44; S. e202205301 - n/a |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Wiley Subscription Services, Inc
02.11.2022
|
| Ausgabe: | International ed. in English |
| Schlagworte: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed.
This Review focuses on molecular catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR) including metal bipyridines and macrocycle complexes, and summarizes the molecular engineering strategies developed to regulate the intrinsic catalytic efficiency and modify the electrode. Guidelines are provided for the rational design of ECO2RR catalytic systems. |
|---|---|
| AbstractList | The electrocatalytic CO
2
reduction reaction (ECO
2
RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO
2
RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed. The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed. This Review focuses on molecular catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR) including metal bipyridines and macrocycle complexes, and summarizes the molecular engineering strategies developed to regulate the intrinsic catalytic efficiency and modify the electrode. Guidelines are provided for the rational design of ECO2RR catalytic systems. The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2RR, molecular metal complexes with well‐defined structures are convenient for studies of their rational design, structure–reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N‐based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed.Dedicated to the 60th anniversary of Institute of Elemento-Organic Chemistry, Nankai University. The electrocatalytic CO2 reduction reaction (ECO2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2 RR, molecular metal complexes with well-defined structures are convenient for studies of their rational design, structure-reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N-based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed.The electrocatalytic CO2 reduction reaction (ECO2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among various kinds of catalysts for ECO2 RR, molecular metal complexes with well-defined structures are convenient for studies of their rational design, structure-reactivity relationships, and mechanisms. In this Review, we summarize the molecular engineering of several N-based metal complexes including Re/Mn bipyridine compounds and metal macrocycles, concluding with general modification strategies to devise novel molecular catalysts with high intrinsic activity. Through physical adsorption, covalent linking, and formation of a periodic backbone, these active molecules can be heterogenized into immobilized catalysts with more practical prospects. Finally, significant challenges and opportunities based on molecular catalysts are discussed. |
| Author | Xie, Wen‐Jun Chen, Jin‐Mei He, Liang‐Nian Yang, Zhi‐Wen Qiu, Li‐Qi |
| Author_xml | – sequence: 1 givenname: Zhi‐Wen surname: Yang fullname: Yang, Zhi‐Wen organization: Nankai University – sequence: 2 givenname: Jin‐Mei surname: Chen fullname: Chen, Jin‐Mei organization: Nankai University – sequence: 3 givenname: Li‐Qi surname: Qiu fullname: Qiu, Li‐Qi organization: Nankai University – sequence: 4 givenname: Wen‐Jun surname: Xie fullname: Xie, Wen‐Jun organization: Nankai University – sequence: 5 givenname: Liang‐Nian orcidid: 0000-0002-6067-5937 surname: He fullname: He, Liang‐Nian email: heln@nankai.edu.cn organization: Nankai University |
| BookMark | eNqFkU9rFDEYhwepYFu9eg548TJr_kw2ibdl3epCqyB6DpnMOyVLJlmTTO36Tfy2Zl2xUBBPCeR5fnl5fxfNWYgBmuYlwQuCMX1jgoMFxZRizjB50pwTTknLhGBn9d4x1grJybPmIudd5aXEy_Pm5030YGdvEtqEWxcAkgu3KI7oBorxaB2nvYd7yGiMFalsSdGa-nQozqK1SX0M6J2L924A9BmG2RYXw1t0leKEVsNuzmWCUI6J21BqeK7aqkJ3rhxQiehhgO00xd5598McI543T0fjM7z4c142X682X9Yf2utP77fr1XVrGcekHbCRivbSLJkdxZIOlI2dwqLrmeAdoYoMHZdDhzk3IG2vFDXC0t4oTgCYZZfN61PuPsVvM-SiJ5cteG8CxDlrulRMSCwIruirR-guzinU6TQVVDLKlOSVWpwom2LOCUa9T24y6aAJ1sem9LEp_bepKnSPBOvK7x2UZJz_t6ZO2nfn4fCfT_Tq43bz4P4CvlqsrQ |
| CitedBy_id | crossref_primary_10_1002_ange_202500154 crossref_primary_10_1016_j_cej_2024_148854 crossref_primary_10_1002_adma_202209654 crossref_primary_10_1021_acs_jpcc_4c04313 crossref_primary_10_1002_advs_202413203 crossref_primary_10_1002_cctc_202201321 crossref_primary_10_1039_D3EY00079F crossref_primary_10_1039_D4RA03407D crossref_primary_10_3390_catal15080698 crossref_primary_10_1002_cssc_202401916 crossref_primary_10_1016_j_ccr_2024_215655 crossref_primary_10_1002_adma_202403651 crossref_primary_10_1002_anie_202500154 crossref_primary_10_1016_j_ccr_2024_216021 crossref_primary_10_1002_anie_202423200 crossref_primary_10_1002_cssc_202301634 crossref_primary_10_1002_ange_202411766 crossref_primary_10_1002_eem2_12888 crossref_primary_10_1002_ange_202418156 crossref_primary_10_1039_D4TA09104C crossref_primary_10_1002_cssc_202201455 crossref_primary_10_3390_catal13071109 crossref_primary_10_1002_ange_202423200 crossref_primary_10_1021_jacs_4c08953 crossref_primary_10_1002_anie_202407298 crossref_primary_10_1039_D5GC00657K crossref_primary_10_1039_D2CY01195F crossref_primary_10_1002_chem_202300879 crossref_primary_10_1002_anie_202302789 crossref_primary_10_1002_anie_202406557 crossref_primary_10_1360_TB_2024_0606 crossref_primary_10_1002_anie_202418156 crossref_primary_10_1016_j_apsusc_2023_158247 crossref_primary_10_1021_jacs_4c08927 crossref_primary_10_1016_j_ccr_2025_216823 crossref_primary_10_1002_anie_202411766 crossref_primary_10_1002_adfm_202513412 crossref_primary_10_1002_adfm_202515635 crossref_primary_10_1002_ange_202407298 crossref_primary_10_1002_aenm_202402441 crossref_primary_10_1002_ange_202302789 crossref_primary_10_1002_tcr_202400164 crossref_primary_10_1039_D3QM00423F crossref_primary_10_1002_advs_202409084 crossref_primary_10_1002_ange_202406557 crossref_primary_10_1002_adfm_202500915 crossref_primary_10_1002_adfm_202315734 crossref_primary_10_1007_s13399_024_05343_5 crossref_primary_10_1021_jacs_5c12488 crossref_primary_10_1021_jacs_4c08084 crossref_primary_10_1002_adfm_202316187 crossref_primary_10_1002_adfm_202300926 |
| Cites_doi | 10.1039/D0GC00952K 10.1002/ange.201909257 10.1021/acs.inorgchem.0c03612 10.1016/j.trechm.2021.02.003 10.1039/D0CS00835D 10.1038/s41560-019-0374-6 10.1021/jacs.9b08445 10.1002/ange.201701104 10.1021/acscatal.1c02379 10.1002/anie.201900499 10.1021/jacs.9b09298 10.1016/j.ccr.2021.214271 10.1021/jacs.5b12652 10.1002/anie.201103616 10.1002/anie.201802792 10.1002/ange.202110186 10.1002/cssc.202002092 10.3389/fchem.2019.00397 10.1002/anie.202006988 10.1002/cssc.202001396 10.1021/jacs.8b13657 10.1021/jacs.5b06535 10.1039/C7SC04682K 10.1039/C9GC02705J 10.1021/jacs.6b07014 10.1002/chem.202002813 10.1016/j.ccr.2020.213435 10.1039/C4CC05563B 10.1002/cjoc.202000667 10.1039/C39850001414 10.1039/C6CC00982D 10.1039/C39840000328 10.1021/jacs.7b10723 10.1021/jacs.7b07709 10.1039/c39840001315 10.1021/jacs.6b08776 10.1002/ange.201103616 10.1002/slct.201600326 10.1038/s41929-019-0306-7 10.1016/j.jorganchem.2012.05.021 10.1016/j.coelec.2020.04.008 10.1021/acs.organomet.8b00336 10.1039/C5DT04491J 10.1021/ja5121088 10.1126/science.1148481 10.1021/acs.accounts.9b00496 10.1038/nclimate2100 10.1021/jacs.9b11806 10.1021/acscatal.7b03971 10.1073/pnas.1507063112 10.1021/acsami.0c06537 10.1039/c39740000158 10.1021/acs.organomet.8b00308 10.1021/ja501252f 10.1002/ange.201506219 10.1021/acs.accounts.9b00439 10.1021/acs.inorgchem.6b01707 10.1039/c2cc32617e 10.1021/ja303560c 10.1038/s41467-019-11542-w 10.1002/cssc.202000698 10.1002/chem.201605546 10.1002/cssc.202002718 10.1039/C39740000615 10.3390/catal10101179 10.1021/acscatal.0c04744 10.1021/ic500658x 10.1021/acs.inorgchem.0c00154 10.1126/science.aac8343 10.1142/S1088424619501608 10.1007/s12274-019-2403-y 10.1126/science.1224581 10.1021/jacs.5b13080 10.1002/ange.202006988 10.1021/ic1008363 10.1039/C6CC05430G 10.1002/cssc.202001037 10.1039/C5SC04015A 10.1039/C39830000536 10.1039/b801793j 10.1021/acs.jpcc.6b09947 10.1016/j.joule.2018.05.017 10.1021/ja506193v 10.1016/j.jpowsour.2021.230788 10.1007/978-3-662-46831-9 10.1039/D0CY02150D 10.1002/cphc.201700782 10.1021/acscatal.9b00404 10.1016/j.apcatb.2018.11.084 10.1039/D0SC05679K 10.1002/anie.202110186 10.1021/acs.chemrev.9b00766 10.1039/C8DT03850C 10.1016/j.poly.2013.01.024 10.1021/jacs.6b01980 10.1039/C7GC03451B 10.1021/acscatal.7b03275 10.1002/adma.202001848 10.1021/jz500759x 10.1016/j.apcatb.2019.118530 10.3762/bjoc.11.259 10.1016/j.chempr.2017.08.002 10.1039/C9EE03660A 10.1021/jacs.7b06269 10.1002/ange.201814339 10.1021/ja304783j 10.1002/chem.201603359 10.1002/anie.201803186 10.1039/C39910000156 10.1021/ja00544a035 10.1002/cssc.202001940 10.1021/acs.chemrev.9b00685 10.1002/anie.201506219 10.1021/jacs.8b09154 10.1002/anie.201909257 10.1039/C2CS35360A 10.1002/cctc.202000909 10.1021/ja501051s 10.1002/ange.201808593 10.1002/ange.202010859 10.1021/ic3001619 10.1021/jacs.0c07041 10.1021/je2010215 10.1021/jacs.1c02145 10.1038/nature13179 10.1039/D0GC03111A 10.1002/cssc.201702280 10.1002/ange.202200723 10.1002/cctc.201200904 10.1016/j.apcatb.2019.03.047 10.1021/jacs.7b11940 10.1002/chem.202200141 10.1002/anie.201808593 10.1039/D0CC00791A 10.1016/j.joule.2017.09.003 10.1038/s41560-020-0667-9 10.1039/C8TA05805A 10.1038/nature11118 10.1039/C5CS00391A 10.1038/ncomms14675 10.1038/s41586-019-1760-8 10.1002/anie.202200723 10.1038/s41929-021-00625-x 10.1021/jacs.1c04392 10.1002/ange.201803186 10.1016/j.ccr.2017.12.009 10.1021/ja00329a082 10.1038/s41467-018-02819-7 10.1039/D0EE02535F 10.1126/science.1209786 10.1002/anie.201701104 10.1039/C8CC06475J 10.1021/ja00090a068 10.1021/acsaem.9b00368 10.1002/ange.201900499 10.1021/acscatal.0c04035 10.1021/acs.chemrev.7b00459 10.1039/D1CY00650A 10.1016/j.chempr.2018.05.003 10.1016/j.ccr.2021.213778 10.1021/jacs.8b05658 10.1021/acsenergylett.9b00751 10.1002/anie.202010859 10.1039/C7CS00314E 10.1021/acs.accounts.8b00010 10.1016/S1388-2481(99)00041-7 10.1021/acscatal.7b02220 10.1002/ange.201802792 10.1002/chem.202000160 10.1002/anie.201814339 10.1039/f19868202385 10.1021/acs.organomet.8b00334 10.1021/jacs.5b08212 10.1126/science.aax4608 10.1021/acsenergylett.8b02355 10.1021/acsaem.1c00027 10.1016/0022-0728(96)04631-1 10.1021/acscatal.5b01767 10.1016/j.joule.2020.06.001 10.1021/ja4099609 10.1002/aenm.201801280 10.1021/ja00284a003 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 7TM K9. 7X8 |
| DOI | 10.1002/anie.202205301 |
| DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_anie_202205301 ANIE202205301 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22171149; 21975135 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c3501-d0a892b8a63cf762d23f49074b37541291d458d4055ae8cb992a7c2ba951ee3c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848557400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Thu Oct 02 10:29:26 EDT 2025 Tue Oct 07 07:06:18 EDT 2025 Sat Nov 29 02:36:47 EST 2025 Tue Nov 18 20:52:55 EST 2025 Wed Jan 22 16:22:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 44 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3501-d0a892b8a63cf762d23f49074b37541291d458d4055ae8cb992a7c2ba951ee3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6067-5937 |
| PQID | 2728323985 |
| PQPubID | 946352 |
| PageCount | 29 |
| ParticipantIDs | proquest_miscellaneous_2693780710 proquest_journals_2728323985 crossref_primary_10_1002_anie_202205301 crossref_citationtrail_10_1002_anie_202205301 wiley_primary_10_1002_anie_202205301_ANIE202205301 |
| PublicationCentury | 2000 |
| PublicationDate | November 2, 2022 |
| PublicationDateYYYYMMDD | 2022-11-02 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2, 2022 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2022; 451 2012; 486 2019; 10 2019; 12 1974 2020; 13 2020; 12 2020; 10 2013; 5 2014; 136 2022; 28 2018; 6 2018; 9 2018; 8 1986; 108 2022 2022; 61 134 2018; 2 2013; 58 1986; 82 2012; 134 2018; 4 2015; 137 2019; 21 2021; 435 1985 1984 1983 1996; 412 2016; 45 2019; 7 2019; 9 2019; 4 2019; 2 2020; 142 2020; 264 1984; 106 2019; 38 2022; 519 2020; 422 2020; 32 2021; 143 2017 2017; 56 129 1991 2018; 20 2017; 139 2016; 7 2010; 49 2016; 1 2018; 118 2015; 112 2019; 48 2017; 56 2021 2021; 60 133 2019; 575 2020; 26 2020; 24 2011 2011; 50 123 2020; 22 2012; 48 2018; 11 2021; 60 2007; 318 2016; 22 2017; 7 2017; 8 2017; 3 2019; 52 2020; 120 2017; 46 2020 2020; 59 132 2020; 59 2020; 56 2015; 349 2012; 57 2019; 365 2019; 244 2012; 51 2020; 5 2020; 4 2014; 5 2014; 4 2020; 53 2018 2018; 57 130 2021; 39 2020; 49 2014; 50 2012; 338 1980; 102 2014; 53 2011; 334 1994; 116 2021; 4 2015; 5 2018; 140 2021; 3 2015; 11 2013; 42 2017; 23 2007 2016; 52 1999; 1 2019; 141 2014; 510 2016; 120 2019 2019; 58 131 2021; 14 2016 2016; 55 128 2021; 12 2021; 11 2021 2012; 716 2019; 378 2013; 135 2016 2017; 18 2016; 138 2018; 51 2019; 251 2018; 54 2009; 38 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_9_2 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_132_2 e_1_2_8_178_2 e_1_2_8_178_3 e_1_2_8_193_1 e_1_2_8_41_2 e_1_2_8_170_2 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_117_2 e_1_2_8_1_1 e_1_2_8_38_3 e_1_2_8_38_2 e_1_2_8_15_1 e_1_2_8_120_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_143_2 e_1_2_8_189_2 e_1_2_8_99_2 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_76_1 e_1_2_8_53_2 e_1_2_8_30_1 e_1_2_8_25_2 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_133_1 e_1_2_8_179_2 e_1_2_8_110_1 e_1_2_8_63_2 e_1_2_8_118_2 e_1_2_8_171_2 e_1_2_8_86_1 e_1_2_8_194_1 e_1_2_8_40_2 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_90_1 e_1_2_8_121_2 e_1_2_8_98_2 e_1_2_8_182_1 e_1_2_8_106_2 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_144_2 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_183_1 e_1_2_8_107_2 e_1_2_8_93_3 e_1_2_8_122_2 e_1_2_8_93_2 e_1_2_8_168_1 e_1_2_8_70_2 e_1_2_8_145_2 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_88_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 Robert M. (e_1_2_8_43_2) 2021 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_2 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_60_3 e_1_2_8_113_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_136_2 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_2 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_2 e_1_2_8_11_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_2 e_1_2_8_147_2 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_137_2 e_1_2_8_44_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_56_2 e_1_2_8_79_1 e_1_2_8_94_2 e_1_2_8_163_2 e_1_2_8_94_3 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_33_2 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_3_2 e_1_2_8_138_2 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_3 e_1_2_8_190_1 e_1_2_8_36_2 e_1_2_8_190_2 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_2 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_180_1 e_1_2_8_154_1 e_1_2_8_4_2 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_1 e_1_2_8_191_1 Zoski C. G. (e_1_2_8_65_1) 2007 e_1_2_8_188_2 e_1_2_8_165_1 e_1_2_8_188_3 e_1_2_8_142_1 e_1_2_8_96_2 e_1_2_8_127_1 e_1_2_8_73_2 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 716 start-page: 19 year: 2012 end-page: 25 publication-title: J. Organomet. Chem. – volume: 58 131 start-page: 16172 16318 year: 2019 2019 end-page: 16176 16322 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 1179 year: 2020 publication-title: Catalysts – volume: 116 start-page: 5015 year: 1994 end-page: 5016 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 8468 year: 2020 end-page: 8535 publication-title: Chem. Rev. – volume: 138 start-page: 5765 year: 2016 end-page: 5768 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 359 year: 2021 end-page: 372 publication-title: Trends Chem. – volume: 4 start-page: 3604 year: 2021 end-page: 3611 publication-title: ACS Appl. Energy Mater. – start-page: 328 year: 1984 end-page: 330 publication-title: J. Chem. Soc. Chem. Commun. – volume: 4 start-page: 1696 year: 2018 end-page: 1709 publication-title: Chem – volume: 55 128 start-page: 3566 3628 year: 2016 2016 end-page: 3579 3642 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 488 year: 2021 end-page: 497 publication-title: Nat. Catal. – volume: 14 start-page: 1308 year: 2021 end-page: 1315 publication-title: ChemSusChem – volume: 13 start-page: 3412 year: 2020 end-page: 3417 publication-title: ChemSusChem – volume: 10 start-page: 3602 year: 2019 publication-title: Nat. Commun. – volume: 422 year: 2020 publication-title: Coord. Chem. Rev. – volume: 11 start-page: 13203 year: 2021 end-page: 13216 publication-title: ACS Catal. – volume: 138 start-page: 16639 year: 2016 end-page: 16644 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2952 year: 2018 end-page: 2960 publication-title: Chem. Sci. – volume: 2 start-page: 2435 year: 2019 end-page: 2440 publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 2506 year: 2016 end-page: 2515 publication-title: Chem. Sci. – volume: 13 start-page: 6284 year: 2020 end-page: 6289 publication-title: ChemSusChem – volume: 11 start-page: 2370 year: 2015 end-page: 2387 publication-title: Beilstein J. Org. Chem. – volume: 51 start-page: 3932 year: 2012 end-page: 3934 publication-title: Inorg. Chem. – volume: 59 132 start-page: 22451 22637 year: 2020 2020 end-page: 22455 22641 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 374 year: 2020 end-page: 403 publication-title: Energy Environ. Sci. – volume: 142 start-page: 21656 year: 2020 end-page: 21669 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1187 year: 2009 end-page: 1198 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 16339 16577 year: 2018 2018 end-page: 16342 16580 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 264 year: 2020 publication-title: Appl. Catal. B – volume: 56 start-page: 4440 year: 2020 end-page: 4443 publication-title: Chem. Commun. – volume: 21 start-page: 6056 year: 2019 end-page: 6061 publication-title: Green Chem. – volume: 365 start-page: 367 year: 2019 end-page: 369 publication-title: Science – start-page: 536 year: 1983 end-page: 538 publication-title: J. Chem. Soc. Chem. Commun. – volume: 486 start-page: 105 year: 2012 end-page: 108 publication-title: Nature – volume: 11 start-page: 4673 year: 2021 end-page: 4689 publication-title: Catal. Sci. Technol. – volume: 8 start-page: 14675 year: 2017 publication-title: Nat. Commun. – volume: 137 start-page: 5021 year: 2015 end-page: 5027 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 16774 year: 2020 end-page: 16781 publication-title: Chem. Eur. J. – volume: 28 year: 2022 publication-title: Chem. Eur. J. – volume: 134 start-page: 11235 year: 2012 end-page: 11242 publication-title: J. Am. Chem. Soc. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 5864 year: 2016 end-page: 5867 publication-title: Chem. Commun. – volume: 59 start-page: 6087 year: 2020 end-page: 6099 publication-title: Inorg. Chem. – volume: 5 start-page: 6302 year: 2015 end-page: 6309 publication-title: ACS Catal. – start-page: 158 year: 1974 end-page: 159 publication-title: J. Chem. Soc. Chem. Commun. – volume: 135 start-page: 18288 year: 2013 end-page: 18291 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 4265 year: 2020 end-page: 4275 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 354 year: 2018 end-page: 363 publication-title: ACS Catal. – volume: 1 start-page: 213 year: 1999 end-page: 216 publication-title: Electrochem. Commun. – year: 2007 – volume: 38 start-page: 1213 year: 2019 end-page: 1218 publication-title: Organometallics – volume: 4 start-page: 466 year: 2019 end-page: 474 publication-title: Nat. Energy – volume: 49 start-page: 6884 year: 2020 end-page: 6946 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1408 year: 2020 end-page: 1444 publication-title: Joule – year: 2016 – volume: 58 131 start-page: 4504 4552 year: 2019 2019 end-page: 4509 4557 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 3135 year: 2017 end-page: 3141 publication-title: ChemPhysChem – volume: 38 start-page: 1224 year: 2019 end-page: 1229 publication-title: Organometallics – volume: 6 start-page: 21654 year: 2018 end-page: 21665 publication-title: J. Mater. Chem. A – volume: 112 start-page: 6882 year: 2015 end-page: 6886 publication-title: Proc. Natl. Acad. Sci. USA – volume: 45 start-page: 14678 year: 2016 end-page: 14688 publication-title: Dalton Trans. – start-page: 156 year: 1991 end-page: 157 publication-title: J. Chem. Soc. Chem. Commun. – volume: 349 start-page: 1208 year: 2015 end-page: 1213 publication-title: Science – volume: 39 start-page: 1281 year: 2021 end-page: 1287 publication-title: Chin. J. Chem. – volume: 52 start-page: 3432 year: 2019 end-page: 3441 publication-title: Acc. Chem. Res. – volume: 143 start-page: 7104 year: 2021 end-page: 7113 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 17081 year: 2019 end-page: 17085 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 5965 year: 2019 end-page: 5977 publication-title: Dalton Trans. – volume: 318 start-page: 1461 year: 2007 end-page: 1464 publication-title: Science – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 575 start-page: 639 year: 2019 end-page: 642 publication-title: Nature – volume: 139 start-page: 13993 year: 2017 end-page: 13996 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 2385 year: 1986 end-page: 2400 publication-title: J. Chem. Soc. Faraday Trans. 1 – volume: 510 start-page: 139 year: 2014 end-page: 142 publication-title: Nature – volume: 50 start-page: 14670 year: 2014 end-page: 14673 publication-title: Chem. Commun. – volume: 22 start-page: 14158 year: 2016 end-page: 14161 publication-title: Chem. Eur. J. – volume: 12 start-page: 4886 year: 2020 end-page: 4892 publication-title: ChemCatChem – volume: 14 start-page: 483 year: 2021 end-page: 492 publication-title: Energy Environ. Sci. – volume: 251 start-page: 112 year: 2019 end-page: 118 publication-title: Appl. Catal. B – volume: 9 start-page: 3667 year: 2019 end-page: 3671 publication-title: ACS Catal. – volume: 13 start-page: 6296 year: 2020 end-page: 6299 publication-title: ChemSusChem – volume: 118 start-page: 4631 year: 2018 end-page: 4701 publication-title: Chem. Rev. – volume: 11 start-page: 1580 year: 2021 end-page: 1589 publication-title: Catal. Sci. Technol. – volume: 60 start-page: 3843 year: 2021 end-page: 3850 publication-title: Inorg. Chem. – volume: 4 start-page: 666 year: 2019 end-page: 672 publication-title: ACS Energy Lett. – volume: 12 start-page: 37986 year: 2020 end-page: 37992 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 439 year: 2012 end-page: 449 publication-title: J. Chem. Eng. Data – volume: 13 start-page: 6449 year: 2020 end-page: 6456 publication-title: ChemSusChem – volume: 57 130 start-page: 7769 7895 year: 2018 2018 end-page: 7773 7899 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 1790 year: 2013 end-page: 1796 publication-title: ChemCatChem – volume: 11 start-page: 1096 year: 2021 end-page: 1105 publication-title: ACS Catal. – volume: 138 start-page: 2492 year: 2016 end-page: 2495 publication-title: J. Am. Chem. Soc. – year: 2021 – volume: 140 start-page: 16669 year: 2018 end-page: 16675 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2033 year: 2014 end-page: 2038 publication-title: J. Phys. Chem. Lett. – volume: 519 year: 2022 publication-title: J. Power Sources – volume: 42 start-page: 2423 year: 2013 end-page: 2436 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 2604 year: 2017 end-page: 2618 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 11628 11732 year: 2021 2021 end-page: 11686 11792 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 662 year: 2021 end-page: 670 publication-title: ChemSusChem – volume: 244 start-page: 881 year: 2019 end-page: 888 publication-title: Appl. Catal. B – volume: 54 start-page: 11630 year: 2018 end-page: 11633 publication-title: Chem. Commun. – volume: 137 start-page: 10918 year: 2015 end-page: 10921 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 910 year: 2018 end-page: 918 publication-title: Acc. Chem. Res. – volume: 48 start-page: 7374 year: 2012 end-page: 7376 publication-title: Chem. Commun. – volume: 134 start-page: 15632 year: 2012 end-page: 15635 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 8614 year: 2020 end-page: 8622 publication-title: Green Chem. – volume: 435 year: 2021 publication-title: Coord. Chem. Rev. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 451 year: 2022 publication-title: Coord. Chem. Rev. – volume: 26 start-page: 3034 year: 2020 end-page: 3038 publication-title: Chem. Eur. J. – volume: 143 start-page: 13579 year: 2021 end-page: 13592 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 1783 year: 2017 end-page: 1793 publication-title: Inorg. Chem. – volume: 46 start-page: 6099 year: 2017 end-page: 6110 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 111 year: 2014 end-page: 116 publication-title: Nat. Clim. Change – volume: 141 start-page: 6569 year: 2019 end-page: 6582 publication-title: J. Am. Chem. Soc. – start-page: 1414 year: 1985 end-page: 1416 publication-title: J. Chem. Soc. Chem. Commun. – volume: 58 131 start-page: 6595 6667 year: 2019 2019 end-page: 6599 6671 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1025 year: 2018 end-page: 1031 publication-title: ChemSusChem – volume: 56 129 start-page: 6468 6568 year: 2017 2017 end-page: 6472 6572 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 9903 10077 year: 2011 2011 end-page: 9906 10080 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 102 start-page: 7361 year: 1980 end-page: 7363 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 4782 year: 2017 end-page: 4793 publication-title: Chem. Eur. J. – volume: 7 start-page: 397 year: 2019 publication-title: Front. Chem. – volume: 8 start-page: 2021 year: 2018 end-page: 2029 publication-title: ACS Catal. – volume: 2 start-page: 648 year: 2019 end-page: 658 publication-title: Nat. Catal. – volume: 3 start-page: 652 year: 2017 end-page: 664 publication-title: Chem – volume: 136 start-page: 5563 year: 2014 end-page: 5566 publication-title: J. Am. Chem. Soc. – start-page: 615 year: 1974 end-page: 616 publication-title: J. Chem. Soc. Chem. Commun. – volume: 140 start-page: 12451 year: 2018 end-page: 12456 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 7461 year: 1986 end-page: 7467 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 255 year: 2020 end-page: 264 publication-title: Acc. Chem. Res. – volume: 120 start-page: 8536 year: 2020 end-page: 8580 publication-title: Chem. Rev. – volume: 20 start-page: 798 year: 2018 end-page: 803 publication-title: Green Chem. – volume: 2 start-page: 825 year: 2018 end-page: 832 publication-title: Joule – volume: 5 start-page: 684 year: 2020 end-page: 692 publication-title: Nat. Energy – volume: 49 start-page: 9283 year: 2010 end-page: 9289 publication-title: Inorg. Chem. – volume: 338 start-page: 90 year: 2012 end-page: 94 publication-title: Science – volume: 120 start-page: 28951 year: 2016 end-page: 28960 publication-title: J. Phys. Chem. C – volume: 140 start-page: 1004 year: 2018 end-page: 1010 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 3727 year: 2020 end-page: 3733 publication-title: Green Chem. – volume: 136 start-page: 11821 year: 2014 end-page: 11829 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1116 year: 2018 end-page: 1122 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 9983 year: 2014 end-page: 10002 publication-title: Inorg. Chem. – volume: 141 start-page: 17270 year: 2019 end-page: 17277 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 415 year: 2018 publication-title: Nat. Commun. – volume: 106 start-page: 5033 year: 1984 end-page: 5034 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 643 year: 2011 end-page: 644 publication-title: Science – volume: 139 start-page: 14425 year: 2017 end-page: 14435 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 12084 year: 2016 end-page: 12087 publication-title: Chem. Commun. – volume: 46 start-page: 761 year: 2017 end-page: 796 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 229 year: 2013 end-page: 234 publication-title: Polyhedron – volume: 138 start-page: 1820 year: 2016 end-page: 1823 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 15948 16178 year: 2018 2018 end-page: 15982 16214 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 14129 year: 2015 end-page: 14135 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1219 year: 2019 end-page: 1223 publication-title: Organometallics – volume: 136 start-page: 5460 year: 2014 end-page: 5471 publication-title: J. Am. Chem. Soc. – start-page: 1315 year: 1984 end-page: 1316 publication-title: J. Chem. Soc. Chem. Commun. – volume: 12 start-page: 4779 year: 2021 end-page: 4788 publication-title: Chem. Sci. – volume: 11 start-page: 1868 year: 2021 end-page: 1876 publication-title: ACS Catal. – volume: 22 start-page: 87 year: 2020 end-page: 93 publication-title: Curr. Opin. Electrochem. – volume: 24 start-page: 465 year: 2020 end-page: 472 publication-title: J. Porphyrins Phthalocyanines – volume: 1 start-page: 1156 year: 2016 end-page: 1162 publication-title: ChemistrySelect – volume: 7 start-page: 8382 year: 2017 end-page: 8385 publication-title: ACS Catal. – volume: 12 start-page: 2093 year: 2019 end-page: 2125 publication-title: Nano Res. – volume: 4 start-page: 1279 year: 2019 end-page: 1286 publication-title: ACS Energy Lett. – volume: 2 start-page: 1030 year: 2018 end-page: 1032 publication-title: Joule – volume: 412 start-page: 125 year: 1996 end-page: 132 publication-title: J. Electroanal. Chem. – volume: 378 start-page: 237 year: 2019 end-page: 261 publication-title: Coord. Chem. Rev. – ident: e_1_2_8_9_2 doi: 10.1039/D0GC00952K – ident: e_1_2_8_187_1 – ident: e_1_2_8_36_3 doi: 10.1002/ange.201909257 – ident: e_1_2_8_119_1 doi: 10.1021/acs.inorgchem.0c03612 – ident: e_1_2_8_189_2 doi: 10.1016/j.trechm.2021.02.003 – ident: e_1_2_8_10_1 doi: 10.1039/D0CS00835D – ident: e_1_2_8_67_1 – ident: e_1_2_8_194_1 doi: 10.1038/s41560-019-0374-6 – ident: e_1_2_8_34_2 doi: 10.1021/jacs.9b08445 – ident: e_1_2_8_132_2 doi: 10.1002/ange.201701104 – ident: e_1_2_8_62_2 doi: 10.1021/acscatal.1c02379 – ident: e_1_2_8_147_1 doi: 10.1002/anie.201900499 – ident: e_1_2_8_180_1 doi: 10.1021/jacs.9b09298 – ident: e_1_2_8_142_1 – ident: e_1_2_8_192_1 doi: 10.1016/j.ccr.2021.214271 – ident: e_1_2_8_136_2 doi: 10.1021/jacs.5b12652 – ident: e_1_2_8_46_1 doi: 10.1002/anie.201103616 – ident: e_1_2_8_38_2 doi: 10.1002/anie.201802792 – ident: e_1_2_8_190_2 doi: 10.1002/ange.202110186 – ident: e_1_2_8_138_2 doi: 10.1002/cssc.202002092 – ident: e_1_2_8_64_1 doi: 10.3389/fchem.2019.00397 – ident: e_1_2_8_31_1 doi: 10.1002/anie.202006988 – ident: e_1_2_8_128_1 doi: 10.1002/cssc.202001396 – ident: e_1_2_8_161_1 – ident: e_1_2_8_101_1 doi: 10.1021/jacs.8b13657 – ident: e_1_2_8_59_2 doi: 10.1021/jacs.5b06535 – ident: e_1_2_8_1_1 – ident: e_1_2_8_89_1 doi: 10.1039/C7SC04682K – ident: e_1_2_8_171_2 doi: 10.1039/C9GC02705J – ident: e_1_2_8_72_2 doi: 10.1021/jacs.6b07014 – ident: e_1_2_8_117_2 doi: 10.1002/chem.202002813 – ident: e_1_2_8_56_2 doi: 10.1016/j.ccr.2020.213435 – ident: e_1_2_8_109_1 doi: 10.1039/C4CC05563B – ident: e_1_2_8_79_1 doi: 10.1002/cjoc.202000667 – ident: e_1_2_8_76_1 doi: 10.1039/C39850001414 – ident: e_1_2_8_177_1 – ident: e_1_2_8_167_1 doi: 10.1039/C6CC00982D – ident: e_1_2_8_45_1 doi: 10.1039/C39840000328 – ident: e_1_2_8_155_1 doi: 10.1021/jacs.7b10723 – ident: e_1_2_8_120_1 – ident: e_1_2_8_100_1 doi: 10.1021/jacs.7b07709 – ident: e_1_2_8_48_1 doi: 10.1039/c39840001315 – ident: e_1_2_8_113_1 doi: 10.1021/jacs.6b08776 – ident: e_1_2_8_46_2 doi: 10.1002/ange.201103616 – ident: e_1_2_8_164_1 doi: 10.1002/slct.201600326 – ident: e_1_2_8_17_1 doi: 10.1038/s41929-019-0306-7 – ident: e_1_2_8_162_2 doi: 10.1016/j.jorganchem.2012.05.021 – ident: e_1_2_8_24_2 doi: 10.1016/j.coelec.2020.04.008 – ident: e_1_2_8_127_1 doi: 10.1021/acs.organomet.8b00336 – ident: e_1_2_8_165_1 doi: 10.1039/C5DT04491J – ident: e_1_2_8_98_2 doi: 10.1021/ja5121088 – ident: e_1_2_8_116_1 – ident: e_1_2_8_83_1 doi: 10.1126/science.1148481 – ident: e_1_2_8_27_1 doi: 10.1021/acs.accounts.9b00496 – ident: e_1_2_8_4_2 doi: 10.1038/nclimate2100 – ident: e_1_2_8_123_1 doi: 10.1021/jacs.9b11806 – ident: e_1_2_8_74_1 doi: 10.1021/acscatal.7b03971 – ident: e_1_2_8_125_1 doi: 10.1073/pnas.1507063112 – ident: e_1_2_8_135_1 – ident: e_1_2_8_186_1 doi: 10.1021/acsami.0c06537 – ident: e_1_2_8_49_1 doi: 10.1039/c39740000158 – ident: e_1_2_8_91_1 doi: 10.1021/acs.organomet.8b00308 – ident: e_1_2_8_105_1 – ident: e_1_2_8_81_1 doi: 10.1021/ja501252f – ident: e_1_2_8_178_3 doi: 10.1002/ange.201506219 – ident: e_1_2_8_152_1 doi: 10.1021/acs.accounts.9b00439 – ident: e_1_2_8_114_1 doi: 10.1021/acs.inorgchem.6b01707 – ident: e_1_2_8_77_1 doi: 10.1039/c2cc32617e – ident: e_1_2_8_66_1 doi: 10.1021/ja303560c – ident: e_1_2_8_11_1 – ident: e_1_2_8_57_1 doi: 10.1038/s41467-019-11542-w – ident: e_1_2_8_12_2 doi: 10.1002/cssc.202000698 – ident: e_1_2_8_110_1 doi: 10.1002/chem.201605546 – ident: e_1_2_8_103_1 doi: 10.1002/cssc.202002718 – ident: e_1_2_8_143_2 doi: 10.1039/C39740000615 – ident: e_1_2_8_26_1 doi: 10.3390/catal10101179 – ident: e_1_2_8_157_1 doi: 10.1021/acscatal.0c04744 – ident: e_1_2_8_68_2 doi: 10.1021/ic500658x – ident: e_1_2_8_87_1 doi: 10.1021/acs.inorgchem.0c00154 – ident: e_1_2_8_182_1 doi: 10.1126/science.aac8343 – ident: e_1_2_8_86_1 doi: 10.1142/S1088424619501608 – ident: e_1_2_8_169_1 – ident: e_1_2_8_41_2 doi: 10.1007/s12274-019-2403-y – volume-title: Handbook of Electrochemistry year: 2007 ident: e_1_2_8_65_1 – ident: e_1_2_8_108_1 doi: 10.1126/science.1224581 – ident: e_1_2_8_154_1 doi: 10.1021/jacs.5b13080 – ident: e_1_2_8_31_2 doi: 10.1002/ange.202006988 – ident: e_1_2_8_78_1 doi: 10.1021/ic1008363 – ident: e_1_2_8_149_1 doi: 10.1039/C6CC05430G – ident: e_1_2_8_121_2 doi: 10.1002/cssc.202001037 – ident: e_1_2_8_145_2 doi: 10.1039/C5SC04015A – ident: e_1_2_8_44_1 doi: 10.1039/C39830000536 – ident: e_1_2_8_90_1 doi: 10.1039/b801793j – ident: e_1_2_8_73_2 doi: 10.1021/acs.jpcc.6b09947 – ident: e_1_2_8_172_1 doi: 10.1016/j.joule.2018.05.017 – ident: e_1_2_8_104_1 doi: 10.1021/ja506193v – ident: e_1_2_8_37_2 doi: 10.1016/j.jpowsour.2021.230788 – ident: e_1_2_8_30_1 doi: 10.1007/978-3-662-46831-9 – ident: e_1_2_8_168_1 doi: 10.1039/D0CY02150D – ident: e_1_2_8_15_1 doi: 10.1002/cphc.201700782 – ident: e_1_2_8_153_1 doi: 10.1021/acscatal.9b00404 – ident: e_1_2_8_150_1 doi: 10.1016/j.apcatb.2018.11.084 – ident: e_1_2_8_71_1 – ident: e_1_2_8_111_1 doi: 10.1039/D0SC05679K – ident: e_1_2_8_190_1 doi: 10.1002/anie.202110186 – volume-title: Carbon Dioxide Electrochemistry Homogeneous and Heterogeneous Catalysis year: 2021 ident: e_1_2_8_43_2 – ident: e_1_2_8_179_2 doi: 10.1021/acs.chemrev.9b00766 – ident: e_1_2_8_115_1 doi: 10.1039/C8DT03850C – ident: e_1_2_8_75_1 doi: 10.1016/j.poly.2013.01.024 – ident: e_1_2_8_107_2 doi: 10.1021/jacs.6b01980 – ident: e_1_2_8_18_1 – ident: e_1_2_8_21_2 doi: 10.1039/C7GC03451B – ident: e_1_2_8_126_1 doi: 10.1021/acscatal.7b03275 – ident: e_1_2_8_25_2 doi: 10.1002/adma.202001848 – ident: e_1_2_8_97_2 doi: 10.1021/jz500759x – ident: e_1_2_8_23_1 – ident: e_1_2_8_131_1 doi: 10.1016/j.apcatb.2019.118530 – ident: e_1_2_8_8_2 doi: 10.3762/bjoc.11.259 – ident: e_1_2_8_170_2 doi: 10.1016/j.chempr.2017.08.002 – ident: e_1_2_8_42_2 doi: 10.1039/C9EE03660A – ident: e_1_2_8_137_2 doi: 10.1021/jacs.7b06269 – ident: e_1_2_8_93_3 doi: 10.1002/ange.201814339 – ident: e_1_2_8_148_1 doi: 10.1021/ja304783j – ident: e_1_2_8_99_2 doi: 10.1002/chem.201603359 – ident: e_1_2_8_29_1 doi: 10.1002/anie.201803186 – ident: e_1_2_8_146_1 doi: 10.1039/C39910000156 – ident: e_1_2_8_47_1 doi: 10.1021/ja00544a035 – ident: e_1_2_8_88_1 doi: 10.1002/cssc.202001940 – ident: e_1_2_8_173_1 doi: 10.1021/acs.chemrev.9b00685 – ident: e_1_2_8_178_2 doi: 10.1002/anie.201506219 – ident: e_1_2_8_7_1 – ident: e_1_2_8_70_2 doi: 10.1021/jacs.8b09154 – ident: e_1_2_8_36_2 doi: 10.1002/anie.201909257 – ident: e_1_2_8_69_2 doi: 10.1039/C2CS35360A – ident: e_1_2_8_118_2 doi: 10.1002/cctc.202000909 – ident: e_1_2_8_80_1 doi: 10.1021/ja501051s – ident: e_1_2_8_60_3 doi: 10.1002/ange.201808593 – ident: e_1_2_8_94_3 doi: 10.1002/ange.202010859 – ident: e_1_2_8_85_1 doi: 10.1021/ic3001619 – ident: e_1_2_8_176_1 doi: 10.1021/jacs.0c07041 – ident: e_1_2_8_51_1 doi: 10.1021/je2010215 – ident: e_1_2_8_184_1 doi: 10.1021/jacs.1c02145 – ident: e_1_2_8_95_1 – ident: e_1_2_8_3_2 doi: 10.1038/nature13179 – ident: e_1_2_8_13_2 doi: 10.1039/D0GC03111A – ident: e_1_2_8_92_1 – ident: e_1_2_8_22_2 doi: 10.1002/cssc.201702280 – ident: e_1_2_8_188_3 doi: 10.1002/ange.202200723 – ident: e_1_2_8_163_2 doi: 10.1002/cctc.201200904 – ident: e_1_2_8_144_2 doi: 10.1016/j.apcatb.2019.03.047 – ident: e_1_2_8_185_1 doi: 10.1021/jacs.7b11940 – ident: e_1_2_8_40_2 doi: 10.1002/chem.202200141 – ident: e_1_2_8_60_2 doi: 10.1002/anie.201808593 – ident: e_1_2_8_159_1 doi: 10.1039/D0CC00791A – ident: e_1_2_8_5_1 doi: 10.1016/j.joule.2017.09.003 – ident: e_1_2_8_53_2 doi: 10.1038/s41560-020-0667-9 – ident: e_1_2_8_32_1 – ident: e_1_2_8_158_1 doi: 10.1039/C8TA05805A – ident: e_1_2_8_2_2 doi: 10.1038/nature11118 – ident: e_1_2_8_19_2 doi: 10.1039/C5CS00391A – ident: e_1_2_8_54_2 doi: 10.1038/ncomms14675 – ident: e_1_2_8_58_1 – ident: e_1_2_8_35_2 doi: 10.1038/s41586-019-1760-8 – ident: e_1_2_8_188_2 doi: 10.1002/anie.202200723 – ident: e_1_2_8_6_1 doi: 10.1038/s41929-021-00625-x – ident: e_1_2_8_124_1 doi: 10.1021/jacs.1c04392 – ident: e_1_2_8_29_2 doi: 10.1002/ange.201803186 – ident: e_1_2_8_20_2 doi: 10.1016/j.ccr.2017.12.009 – ident: e_1_2_8_50_1 doi: 10.1021/ja00329a082 – ident: e_1_2_8_191_1 doi: 10.1038/s41467-018-02819-7 – ident: e_1_2_8_151_1 doi: 10.1039/D0EE02535F – ident: e_1_2_8_96_2 doi: 10.1126/science.1209786 – ident: e_1_2_8_61_1 – ident: e_1_2_8_132_1 doi: 10.1002/anie.201701104 – ident: e_1_2_8_102_1 doi: 10.1039/C8CC06475J – ident: e_1_2_8_106_2 doi: 10.1021/ja00090a068 – ident: e_1_2_8_140_1 doi: 10.1021/acsaem.9b00368 – ident: e_1_2_8_147_2 doi: 10.1002/ange.201900499 – ident: e_1_2_8_166_1 doi: 10.1021/acscatal.0c04035 – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemrev.7b00459 – ident: e_1_2_8_193_1 doi: 10.1039/D1CY00650A – ident: e_1_2_8_183_1 doi: 10.1016/j.chempr.2018.05.003 – ident: e_1_2_8_181_1 doi: 10.1016/j.ccr.2021.213778 – ident: e_1_2_8_82_1 doi: 10.1021/jacs.8b05658 – ident: e_1_2_8_14_1 doi: 10.1021/acsenergylett.9b00751 – ident: e_1_2_8_94_2 doi: 10.1002/anie.202010859 – ident: e_1_2_8_39_1 – ident: e_1_2_8_156_1 doi: 10.1039/C7CS00314E – ident: e_1_2_8_129_1 doi: 10.1021/acs.accounts.8b00010 – ident: e_1_2_8_130_1 doi: 10.1016/S1388-2481(99)00041-7 – ident: e_1_2_8_55_2 doi: 10.1021/acscatal.7b02220 – ident: e_1_2_8_38_3 doi: 10.1002/ange.201802792 – ident: e_1_2_8_141_1 doi: 10.1002/chem.202000160 – ident: e_1_2_8_93_2 doi: 10.1002/anie.201814339 – ident: e_1_2_8_160_1 doi: 10.1039/f19868202385 – ident: e_1_2_8_52_1 – ident: e_1_2_8_112_1 doi: 10.1021/acs.organomet.8b00334 – ident: e_1_2_8_174_1 doi: 10.1021/jacs.5b08212 – ident: e_1_2_8_33_2 doi: 10.1126/science.aax4608 – ident: e_1_2_8_133_1 doi: 10.1021/acsenergylett.8b02355 – ident: e_1_2_8_122_2 doi: 10.1021/acsaem.1c00027 – ident: e_1_2_8_63_2 doi: 10.1016/0022-0728(96)04631-1 – ident: e_1_2_8_175_1 doi: 10.1021/acscatal.5b01767 – ident: e_1_2_8_28_1 doi: 10.1016/j.joule.2020.06.001 – ident: e_1_2_8_134_1 doi: 10.1021/ja4099609 – ident: e_1_2_8_139_1 doi: 10.1002/aenm.201801280 – ident: e_1_2_8_84_1 doi: 10.1021/ja00284a003 |
| SSID | ssj0028806 |
| Score | 2.63357 |
| SecondaryResourceType | review_article |
| Snippet | The electrocatalytic CO2 reduction reaction (ECO2RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels. Among... The electrocatalytic CO 2 reduction reaction (ECO 2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels.... The electrocatalytic CO2 reduction reaction (ECO2 RR) is one promising method for storing intermittent clean energy in chemical bonds and producing fuels.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e202205301 |
| SubjectTerms | Carbon Dioxide Catalysts Chemical bonds Chemical reduction Clean energy Coordination compounds Electrocatalytic Reduction Immobilization Ligand Modification Metal Complex Catalysts Metal complexes Molecular Immobilization Organic chemistry |
| Title | Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205301 https://www.proquest.com/docview/2728323985 https://www.proquest.com/docview/2693780710 |
| Volume | 61 |
| WOSCitedRecordID | wos000848557400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5Sp9BemvRF3SZhC4GeRORdydrtzTg2NSSmhCb4JvYlcEmlYtkl_Sn9t53Ry86hBNKLkNBqtew89tvHzAdwKrhEFGtVYCNhAkTgOtDhUNFlENmhNnG1mHNzkczncrFQX3ei-Ov8EN2CG1lG5a_JwLUpz7ZJQykCG-d3FCgqKIBrn6Pyxj3YP7-aXl90ky7UzzrCSIiAiOjbxI0hP7tfw_2BaYs2dzFrNehMD_6_uYfwogGcbFRryEvY8_kreDZued5ew5_LliGX7SQnZEXGLj0ic0Ye49bf-ZIhvmWTmjanWvX5jVWysV6ZImfny-Ju6Ty7olSwJOzPbLoqfrCR-74pq5PsVOMsX2PlqBhsZGvaCrYu2LYBM7QKOq1bx4a-gevp5Nv4S9AQNgSW9icDF2qpuJF6KGyGXtZxkUU0-zZEtIvIYuCiWDrEiLH20hqluE4sNxphnvfCirfQy4vcvwPmokRooaKBicIo404lDpFmONDoojJuTR-CVlqpbbKZE6nGbVrnYeYpdXjadXgfPnXlf9Z5PP5Z8qgVftrYc5nyhCidhJJxHz52r1FQtL2ic19ssMwQoZ4kyNYHXqnCA39KR_PZpHt6_5iPPsBzuq-CI_kR9NarjT-Gp_bXelmuTuBJspAnjUX8BYBCC6g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VUIleKH2JUKBbCYmThbO7ib29RSERUZOoQlBxs_ZlKQhslAeCn8K_7YxfgQOqVPViyfZ6vNqdmf32MfMBHAkeI4q1KrBSmAARuA502FV0aUvb1aZTLOb8HkfTaXx1pX5VpwkpFqbMD9EsuJFlFP6aDJwWpE_WWUMpBBsneBQpKiiCa1OiLqGSb56eDy_HzawLFbQMMRIiICb6OnNjyE9eSng5Mq3h5nPQWow6w_f_ob47sF1BTtYrdeQDvPHZR9jq10xvn-BpUnPksmfpCVmesolHbM7IZ9z4B79giHDZoCTOKdZ9HlEk6-u5yTN2OssfZs6zc0oGS939gw3n-S3ruevVojjLThJH2RKFo2qwni2JK9gyZ-sKjNAu6LxuGR36GS6Hg4v-WVBRNgSWdigDF-pYcRPrrrAp-lnHRSpp_m2IahexRdvJTuwQJXa0j61RiuvIcqMR6HkvrPgCG1me-V1gTkZCCyXbRoYy5U5FDrFm2NbopFJuTQuCursSW-UzJ1qNm6TMxMwTavCkafAWHDfl78pMHq-W3K97P6ksepHwiEidhIo7LfjevMaOog0Wnfl8hWW6CPZiAm0t4IUu_OVPSW86GjR3e__y0TfYOruYjJPxaPrzK7yj50WoJN-HjeV85Q_grb1fzhbzw8ow_gA6NQ6w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja9tAFH4EJ7S9dC91kzZTCPQkIs-MLU1uxraoiWNCSEpuYjaBQyoFLyX9Kf23fU-bk0MplF4EkkajYd4y3yzvfQBHgseIYq0KrBQmQASuAx0OFF160g606ZeLOd9m0XweX1-r8_o0IcXCVPkh2gU3sozSX5OB-zuXHW-zhlIINk7wKFJUUATXriQmmQ7sji-Sq1k760IFrUKMhAiIib7J3Bjy48c1PB6ZtnDzIWgtR53kxX9o70t4XkNONqx05BXs-Pw1PB01TG9v4NdZw5HLHqQnZEXGzjxic0Y-49bf-xVDhMsmFXFOue7zE6tkI700Rc7Gi-J-4Ty7oGSwJO4TliyL72zobjar8iw71TjN11g5qgYb2oq4gq0Ltm3AFO2CzutW0aFv4SqZXI6-BjVlQ2BphzJwoY4VN7EeCJuhn3VcZJLm34aodhFb9Jzsxw5RYl_72BqluI4sNxqBnvfCinfQyYvcvwfmZCS0ULJnZCgz7lTkEGuGPY1OKuPWdCFoxJXaOp850WrcplUmZp5Sh6dth3fhS1v-rsrk8ceSB43009qiVymPiNRJqLjfhc_taxQUbbDo3BcbLDNAsBcTaOsCL3XhL39Kh_PppL378C8fHcKT83GSzqbz0314Ro_LSEl-AJ31cuM_wp79sV6slp9qu_gNrksOKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Engineering+of+Metal+Complexes+for+Electrocatalytic+Carbon+Dioxide+Reduction%3A+From+Adjustment+of+Intrinsic+Activity+to+Molecular+Immobilization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Zhi-Wen&rft.au=Chen%2C+Jin-Mei&rft.au=Qiu%2C+Li-Qi&rft.au=Xie%2C+Wen-Jun&rft.date=2022-11-02&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=44&rft.spage=e202205301&rft_id=info:doi/10.1002%2Fanie.202205301&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |