Comparing Different Light Models for Virtual Electrodes in Optoelectronic Tweezers
ABSTRACT Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so‐called virtual elec...
Uloženo v:
| Vydáno v: | Electrophoresis Ročník 46; číslo 17; s. 1333 - 1340 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.09.2025
|
| Témata: | |
| ISSN: | 0173-0835, 1522-2683, 1522-2683 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so‐called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated‐Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated‐Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes. |
|---|---|
| AbstractList | Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so-called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated-Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated-Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes. Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so-called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated-Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated-Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes.Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so-called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated-Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated-Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes. ABSTRACT Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so‐called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated‐Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated‐Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes. |
| Author | Martinez‐Duarte, Rodrigo Perez‐Gonzalez, Victor H. Guzman‐Saleh, Ernesto |
| Author_xml | – sequence: 1 givenname: Ernesto surname: Guzman‐Saleh fullname: Guzman‐Saleh, Ernesto organization: Tecnologico de Monterrey – sequence: 2 givenname: Victor H. surname: Perez‐Gonzalez fullname: Perez‐Gonzalez, Victor H. email: vhpg@tec.mx organization: Tecnologico de Monterrey – sequence: 3 givenname: Rodrigo surname: Martinez‐Duarte fullname: Martinez‐Duarte, Rodrigo email: rodrigm@clemson.edu organization: Clemson University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40099714$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10V1LwzAUBuAgE_ehF_4BCXijF51J03Tppcz5AZOJTm9D2p7MjK6pScuYv97OTS8EIXDg8OSQk7ePOqUtAaFTSoaUkPAKisoPBWX0APUoD8MgjAXroB6hIxYQwXgX9b1fEkKiJIqOUDciJElGNOqh57FdVcqZcoFvjNbgoKzx1Czea_xocyg81tbhN-PqRhV4UkBWu7bvsSnxrKot7DqlyfB8DfAJzh-jQ60KDyf7OkCvt5P5-D6Yzu4extfTIGOc0CCOcqIFzVKucpFyofOIUq0SMgq10IQBMJ4ymkKcadFukmSJ0irNYwChFedsgC52cytnPxrwtVwZn0FRqBJs4yWjIyHC9pCWnv-hS9u4sn2dZCFPEs5jRlt1tldNuoJcVs6slNvIn99qweUOZM5670D_EkrkNgm5TUJuk2jt1c6uTQGb_6GcTJ9evm98AYgQijo |
| Cites_doi | 10.1364/OE.26.005300 10.1117/12.787019 10.1038/nmeth.2019 10.1002/elps.202100202 10.1109/OMN.2019.8925125 10.3390/s17030449 10.1039/D2CS00359G 10.1109/JMEMS.2008.916342 10.1073/pnas.1903406116 10.1109/NEMS.2011.6017481 10.1063/1.3640045 10.1007/s10404-011-0895-1 10.1007/s10404-013-1246-1 10.1039/c3lc41256c 10.1002/elps.202100123 10.1364/OE.15.012619 10.1063/1.3212725 10.3390/s17112691 10.1002/biot.200600112 10.1016/j.snb.2017.12.003 10.1038/srep32851 10.1016/j.matpr.2020.06.371 10.1364/PRJ.437528 10.1063/1.4971348 10.1109/JMEMS.2007.896717 10.1002/elps.201200242 10.1002/elps.200700415 10.1002/elps.202100090 10.1021/jp061367e 10.1364/OL.44.004171 10.3390/mi11030255 10.1364/OE.17.005231 10.1021/acs.analchem.9b03448 10.1109/JSTQE.2007.893558 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley‐VCH GmbH. 2025 The Author(s). Electrophoresis published by Wiley‐VCH GmbH. 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley‐VCH GmbH. – notice: 2025 The Author(s). Electrophoresis published by Wiley‐VCH GmbH. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U5 8FD L7M 7X8 |
| DOI | 10.1002/elps.8131 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Technology Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1522-2683 |
| EndPage | 1340 |
| ExternalDocumentID | 40099714 10_1002_elps_8131 ELPS8131 |
| Genre | researchArticle Journal Article Comparative Study |
| GrantInformation_xml | – fundername: Federico Baur Endowed Chair in Nanotechnology funderid: 0020240I03 – fundername: TIGER grant program at Clemson University – fundername: Tecnologico de Monterrey through the Nano‐Sensors & Devices Research Group funderid: 0020209I06 – fundername: Consejo Nacional de Humanidades, Ciencia y Tecnología funderid: 62382 – fundername: Consejo Nacional de Humanidades, Ciencia y Tecnología grantid: 62382 – fundername: Tecnologico de Monterrey through the Nano-Sensors & Devices Research Group grantid: 0020209I06 – fundername: Federico Baur Endowed Chair in Nanotechnology grantid: 0020240I03 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ SV3 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRJ WXSBR WYISQ XG1 XPP XV2 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7U5 8FD L7M 7X8 |
| ID | FETCH-LOGICAL-c3501-64d0f81cb5ad8b58fd411fa9072f8f03ee35b31be6cf80179c9afabd6ee8fa553 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446720900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0173-0835 1522-2683 |
| IngestDate | Fri Jul 11 16:50:37 EDT 2025 Sat Oct 11 07:44:47 EDT 2025 Tue Oct 14 01:30:27 EDT 2025 Sat Nov 29 07:15:44 EST 2025 Sat Oct 11 09:10:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | virtual electrodes optoelectronic tweezers photoconductive light‐induced dielectrophoresis optically induced dielectrophoresis |
| Language | English |
| License | Attribution-NonCommercial 2025 The Author(s). Electrophoresis published by Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3501-64d0f81cb5ad8b58fd411fa9072f8f03ee35b31be6cf80179c9afabd6ee8fa553 |
| Notes | Funding Financial support was provided by Tecnologico de Monterrey through the Nano‐Sensors & Devices Research Group (0020209I06); the Federico Baur Endowed Chair in Nanotechnology (0020240I03); the Consejo Nacional de Humanidades, Ciencia y Tecnología (SNI Grant 62382); and the TIGER grant program at Clemson University. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felps.8131 |
| PMID | 40099714 |
| PQID | 3259955631 |
| PQPubID | 2045162 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_3178828820 proquest_journals_3259955631 pubmed_primary_40099714 crossref_primary_10_1002_elps_8131 wiley_primary_10_1002_elps_8131_ELPS8131 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Electrophoresis |
| PublicationTitleAlternate | Electrophoresis |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 91 2021; 42 2011 2016; 109 2022; 51 2008; 17 2006; 110 2022; 48 2022; 43 2006; 1 2003 2020; 11 2012; 12 2012; 33 2011; 5 2007; 13 2018; 26 2007; 15 2007; 16 2016; 6 2008; 6993 2009; 95 2017; 17 2013; 13 2019; 44 2008; 29 2018; 258 2014; 16 2019 2019; 116 2022; 10 2009; 17 2012; 9 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Morgan H. (e_1_2_9_11_1) 2003 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 10 start-page: 550 year: 2022 end-page: 556 article-title: Influence of Light Pattern Thickness on the Manipulation of Dielectric Microparticles by Optoelectronic Tweezers publication-title: Photonics Research – start-page: 825 year: 2011 end-page: 830 article-title: An Equivalent Electrical Model for Numerical Analyses of ODEP Manipulation – volume: 17 start-page: 5231 year: 2009 end-page: 5239 article-title: Trap Profiles of Projector Based Optoelectronic Tweezers (OET) With HeLa Cells publication-title: Optics Express – volume: 91 start-page: 14975 year: 2019 end-page: 14982 article-title: Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic‐Enhanced PDMS‐Based Microfluidics publication-title: Analytical Chemistry – volume: 17 start-page: 2691 year: 2017 article-title: Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon‐Electrodes publication-title: Sensors – volume: 51 start-page: 9203 year: 2022 end-page: 9242 article-title: Optoelectronic Tweezers: A Versatile Toolbox for Nano‐/Micro‐Manipulation publication-title: Chemical Society Reviews – volume: 11 start-page: 255 year: 2020 article-title: Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes publication-title: Micromachines – volume: 29 start-page: 1203 year: 2008 end-page: 1212 article-title: Interactive Manipulation of Blood Cells Using a Lens‐Integrated Liquid Crystal Display Based Optoelectronic Tweezers System publication-title: Electrophoresis – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: Fiji: An Open‐Source Platform for Biological‐Image Analysis publication-title: Nature Methods – volume: 33 start-page: 3110 year: 2012 end-page: 3132 article-title: Microfabrication Technologies in Dielectrophoresis Applications—A Review publication-title: Electrophoresis – year: 2003 – volume: 43 start-page: 327 year: 2022 end-page: 339 article-title: Electrically Driven Microfluidic Platforms for Exosome Manipulation and Characterization publication-title: Electrophoresis – volume: 17 start-page: 525 year: 2008 end-page: 531 article-title: Light‐Actuated AC Electroosmosis for Nanoparticle Manipulation publication-title: Journal of Microelectromechanical Systems – volume: 44 start-page: 4171 year: 2019 end-page: 4174 article-title: Size‐Scaling Effects for Microparticles and Cells Manipulated by Optoelectronic Tweezers publication-title: Optics Letters – volume: 5 year: 2011 article-title: Separation of Platelets From Other Blood Cells in Continuous‐Flow by Dielectrophoresis Field‐Flow‐Fractionation publication-title: Biomicrofluidics – volume: 48 start-page: 16 year: 2022 end-page: 20 article-title: Tuning the Mechanical Stiffness of Lightweight Carbon Origami publication-title: Materials Today: Proceedings – volume: 43 start-page: 167 year: 2022 end-page: 189 article-title: Review of Nonlinear Electrokinetic Flows in Insulator‐Based Dielectrophoresis: From Induced Charge to Joule Heating Effects publication-title: Electrophoresis – volume: 15 start-page: 12619 year: 2007 end-page: 12626 article-title: The Resolution of Optical Traps Created by Light Induced Dielectrophoresis (LIDEP) publication-title: Optics Express – volume: 13 start-page: 235 year: 2007 end-page: 243 article-title: Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers publication-title: IEEE Journal of Selected Topics in Quantum Electronics – volume: 13 start-page: 1371 year: 2013 end-page: 1383 article-title: High‐Purity and Label‐Free Isolation of Circulating Tumor Cells (CTCs) in a Microfluidic Platform by Using Optically‐Induced‐Dielectrophoretic (ODEP) Force publication-title: Lab on A Chip – volume: 116 start-page: 14823 year: 2019 end-page: 14828 article-title: The Optoelectronic Microrobot: A Versatile Toolbox for Micromanipulation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 16 start-page: 491 year: 2007 end-page: 499 article-title: Dynamic Cell and Microparticle Control via Optoelectronic Tweezers publication-title: Journal of Microelectromechanical Systems – start-page: 94 year: 2019 end-page: 95 article-title: Optoelectronic Tweezers—An Optofluidic Platform for Digital Cell Biology – volume: 17 start-page: 449 year: 2017 article-title: Dielectrophoresis for Biomedical Sciences Applications: A Review publication-title: Sensors – volume: 42 start-page: 2445 year: 2021 end-page: 2464 article-title: Particle Trapping in Electrically Driven Insulator‐Based Microfluidics: Dielectrophoresis and Induced‐Charge Electrokinetics publication-title: Electrophoresis – volume: 1 start-page: 949 year: 2006 end-page: 957 article-title: Dielectrophoresis Based‐Cell Patterning for Tissue Engineering publication-title: Biotechnology Journal – volume: 6 year: 2016 article-title: Application of Optically‐Induced‐Dielectrophoresis in Microfluidic System for Purification of Circulating Tumour Cells for Gene Expression Analysis‐Cancer Cell Line Model publication-title: Scientific Reports – volume: 95 year: 2009 article-title: Parallel Trapping of Multiwalled Carbon Nanotubes With Optoelectronic Tweezers publication-title: Applied Physics Letters – volume: 16 start-page: 533 year: 2014 end-page: 540 article-title: Simulation and Analysis of Particle Trajectory Caused by the Optical‐Induced Dielectrophoresis Force publication-title: Microfluidics and Nanofluidics – volume: 26 start-page: 5300 year: 2018 end-page: 5309 article-title: Escape From an Optoelectronic Tweezer Trap: Experimental Results and Simulations publication-title: Optics Express – volume: 12 start-page: 529 year: 2012 end-page: 544 article-title: Dynamics Simulation of Positioning and Assembling Multi‐Microparticles Utilizing Optoelectronic Tweezers publication-title: Microfluidics and Nanofluidics – volume: 110 start-page: 14098 year: 2006 end-page: 14106 article-title: Dielectrophoretic Assembly of Nanowires publication-title: Journal of Physical Chemistry B – volume: 258 start-page: 1161 year: 2018 end-page: 1173 article-title: Optically‐Induced‐Dielectrophoresis (ODEP)‐Based Cell Manipulation in a Microfluidic System for High‐Purity Isolation of Integral Circulating Tumor Cell (CTC) Clusters Based on Their Size Characteristics publication-title: Sensors and Actuators B: Chemical – volume: 109 year: 2016 article-title: Use of Optoelectronic Tweezers in Manufacturing—Accurate Solder Bead Positioning publication-title: Applied Physics Letters – volume: 6993 start-page: 76 year: 2008 – ident: e_1_2_9_34_1 doi: 10.1364/OE.26.005300 – volume-title: AC Electrokinetics: Colloids and Nanoparticles year: 2003 ident: e_1_2_9_11_1 – ident: e_1_2_9_19_1 doi: 10.1117/12.787019 – ident: e_1_2_9_38_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_9_4_1 doi: 10.1002/elps.202100202 – ident: e_1_2_9_16_1 doi: 10.1109/OMN.2019.8925125 – ident: e_1_2_9_10_1 doi: 10.3390/s17030449 – ident: e_1_2_9_39_1 – ident: e_1_2_9_20_1 doi: 10.1039/D2CS00359G – ident: e_1_2_9_22_1 doi: 10.1109/JMEMS.2008.916342 – ident: e_1_2_9_23_1 doi: 10.1073/pnas.1903406116 – ident: e_1_2_9_40_1 – ident: e_1_2_9_30_1 doi: 10.1109/NEMS.2011.6017481 – ident: e_1_2_9_6_1 doi: 10.1063/1.3640045 – ident: e_1_2_9_36_1 doi: 10.1007/s10404-011-0895-1 – ident: e_1_2_9_28_1 doi: 10.1007/s10404-013-1246-1 – ident: e_1_2_9_17_1 doi: 10.1039/c3lc41256c – ident: e_1_2_9_13_1 doi: 10.1002/elps.202100123 – ident: e_1_2_9_15_1 doi: 10.1364/OE.15.012619 – ident: e_1_2_9_21_1 doi: 10.1063/1.3212725 – ident: e_1_2_9_5_1 doi: 10.3390/s17112691 – ident: e_1_2_9_7_1 doi: 10.1002/biot.200600112 – ident: e_1_2_9_25_1 doi: 10.1016/j.snb.2017.12.003 – ident: e_1_2_9_24_1 doi: 10.1038/srep32851 – ident: e_1_2_9_8_1 doi: 10.1016/j.matpr.2020.06.371 – ident: e_1_2_9_29_1 doi: 10.1364/PRJ.437528 – ident: e_1_2_9_33_1 doi: 10.1063/1.4971348 – ident: e_1_2_9_26_1 – ident: e_1_2_9_32_1 doi: 10.1109/JMEMS.2007.896717 – ident: e_1_2_9_2_1 doi: 10.1002/elps.201200242 – ident: e_1_2_9_27_1 doi: 10.1002/elps.200700415 – ident: e_1_2_9_14_1 doi: 10.1002/elps.202100090 – ident: e_1_2_9_9_1 doi: 10.1021/jp061367e – ident: e_1_2_9_31_1 doi: 10.1364/OL.44.004171 – ident: e_1_2_9_37_1 – ident: e_1_2_9_12_1 doi: 10.3390/mi11030255 – ident: e_1_2_9_35_1 doi: 10.1364/OE.17.005231 – ident: e_1_2_9_3_1 doi: 10.1021/acs.analchem.9b03448 – ident: e_1_2_9_18_1 doi: 10.1109/JSTQE.2007.893558 |
| SSID | ssj0004944 |
| Score | 2.4764423 |
| Snippet | ABSTRACT
Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To... Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1333 |
| SubjectTerms | Comparative studies Computer Simulation Dielectrophoresis Electric fields Electrodes Electrophoresis - instrumentation Electrophoresis - methods Equipment Design Light light‐induced dielectrophoresis Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidic devices Models, Theoretical Normal Distribution Optical Tweezers optically induced dielectrophoresis optoelectronic tweezers Optoelectronics photoconductive virtual electrodes |
| Title | Comparing Different Light Models for Virtual Electrodes in Optoelectronic Tweezers |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felps.8131 https://www.ncbi.nlm.nih.gov/pubmed/40099714 https://www.proquest.com/docview/3259955631 https://www.proquest.com/docview/3178828820 |
| Volume | 46 |
| WOSCitedRecordID | wos001446720900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004944 issn: 0173-0835 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD4MFfTF-2VeRhQffKk2Tdql-CRzw4ehwxt7K0mTyEC6sU4Ff7057bohIghCKYWkTTnJab6T9HwfwKlgJnIzUexxrgOP2yjypBKpFwqtlY2V8k3BM9tt3t6Kfj_u1eCyyoUp-SFmC27oGcX3Gh1cqvxiThpqXkf5uaCYQ71IKROo2xDw3jwpMuYlsXeTIQVzWNEK-cHF7Nbvk9EPhPkdsBYzTmftX--6DqtToEmuypGxATWTbcJyq9J324L7VilBmL2Q66lKyoR0MVYnKJD2mhOHZ8nzYIwZJqRdyuVok5NBRu5Gk-FcQIc8fhjz6XDkNjx12o-tG2-qsOCluKHoRVz7VtBUhVILFQqrOaVWuoA5sML6zBgWKkaViVIr0HfTWFqpdGSMsDIM2Q4sZMPM7AGxkYypFA5wKs0twwUlFbvokTFXzz20DieVqZNRSaSRlJTJQYLmSdA8dTisOiGZ-lKesABJ0cIIi49nxc5YuLUhMzN8c3WoC-UDd_h12C07b9YKRxTcpLwOZ0Uf_d580u72HvBi_-9VD2AlQEng4rezQ1iYjN_MESyl75NBPm4UQ9Kdm33RgMXr-85T9wszqedQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6ICvri_TKvUXzwpdo2aZeCLzIninUOneJbSZpEBtKNdSr4681p1w0RQRD6UEh64SSn5ztJz_cBHHGqQxuJIocx5TvMhKEjJE-dgCslTSSlqwue2bjeavHn56g9BWdVLUzJDzFecEPPKL7X6OC4IH06YQ3Vr_38hHtYRD3DbJTBWe6z9qQqMmIls3edIgdzUPEKuf7p-NLv0egHxPyOWIuQc7n4v5ddgoUR1CTn5dxYhimdrcBco1J4W4X7RilCmL2Qi5FOypDEmK0TlEh7zYlFtOSpO8AaE9IsBXOUzkk3I3f9YW8ioUM6H1p_WiS5Bo-XzU7jyhlpLDgpbik6IVOu4V4qA6G4DLhRzPOMsCmzb7hxqdY0kNSTOkwNR-9NI2GEVKHW3IggoOswnfUyvQnEhCLyBLeQUypmKC4pycjmj5TafvamNTisbJ30SyqNpCRN9hM0T4LmqcFONQrJyJvyhPpIixaE2HwwbrbGws0Nkenem-3j2WTet4dbg41y9MZPYYiD6x6rwXExSL8_PmnG7Qc82fp7132Yu-rcxkl83brZhnkfBYKLn9B2YHo4eNO7MJu-D7v5YK-Yn19KVOiz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFL2EtGx9abd1a9N2rTr6sBc3tiU7MvSl5IOWmTR0zeibkSxpBIIT4rSF_vrq-iOhlMGg4AeDZEtc6VrnSr7nAJxxqkO7EkUOY8p3mAlDR0ieOgFXSppISlcXPLNxZzjk9_fRqAEXdS5MyQ-x2nBDzyi-1-jgeq5Me80aqqfz_Jx7mES9wVBEpgkbvdvBOF7nRUas5PbuUGRhDmpmIddvrx5-vR69AZmvMWux6Ax23tfdT7BdgU1yWc6Oz9DQ2Rf42K013nbhtlvKEGZ_Sa9SSlmSGON1giJp05xYTEv-TBaYZUL6pWSO0jmZZORmvpytRXTI3ZPWzxZLfoXxoH_XvXIqlQUnxUNFJ2TKNdxLZSAUlwE3inmeETZo9g03LtWaBpJ6Uoep4ei_aSSMkCrUmhsRBPQbNLNZpveBmFBEnuAWdErFDMVNJRnZCJJSW8--tAU_alsn85JMIylpk_0EzZOgeVpwVI9CUvlTnlAfidGCEItPV8XWWHi8ITI9e7B1PBvO-_ZyW7BXjt6qFYZIuOOxFvwsBunfzSf9ePQbbw7-v-oJfBj1Bkl8Pfx1CFs-KgQXf6EdQXO5eNDfYTN9XE7yxXE1QV8AOs_pyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Different+Light+Models+for+Virtual+Electrodes+in+Optoelectronic+Tweezers&rft.jtitle=Electrophoresis&rft.au=Guzman-Saleh%2C+Ernesto&rft.au=Perez-Gonzalez%2C+Victor+H&rft.au=Martinez-Duarte%2C+Rodrigo&rft.date=2025-09-01&rft.eissn=1522-2683&rft.volume=46&rft.issue=17&rft.spage=1333&rft_id=info:doi/10.1002%2Felps.8131&rft_id=info%3Apmid%2F40099714&rft.externalDocID=40099714 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0173-0835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0173-0835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0173-0835&client=summon |