Comparing Different Light Models for Virtual Electrodes in Optoelectronic Tweezers

ABSTRACT Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so‐called virtual elec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electrophoresis Ročník 46; číslo 17; s. 1333 - 1340
Hlavní autoři: Guzman‐Saleh, Ernesto, Perez‐Gonzalez, Victor H., Martinez‐Duarte, Rodrigo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.09.2025
Témata:
ISSN:0173-0835, 1522-2683, 1522-2683
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so‐called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated‐Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated‐Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes.
AbstractList Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so-called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated-Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated-Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes.
Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so-called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated-Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated-Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes.Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so-called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated-Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated-Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes.
ABSTRACT Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so‐called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated‐Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated‐Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes.
Author Martinez‐Duarte, Rodrigo
Perez‐Gonzalez, Victor H.
Guzman‐Saleh, Ernesto
Author_xml – sequence: 1
  givenname: Ernesto
  surname: Guzman‐Saleh
  fullname: Guzman‐Saleh, Ernesto
  organization: Tecnologico de Monterrey
– sequence: 2
  givenname: Victor H.
  surname: Perez‐Gonzalez
  fullname: Perez‐Gonzalez, Victor H.
  email: vhpg@tec.mx
  organization: Tecnologico de Monterrey
– sequence: 3
  givenname: Rodrigo
  surname: Martinez‐Duarte
  fullname: Martinez‐Duarte, Rodrigo
  email: rodrigm@clemson.edu
  organization: Clemson University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40099714$$D View this record in MEDLINE/PubMed
BookMark eNp10V1LwzAUBuAgE_ehF_4BCXijF51J03Tppcz5AZOJTm9D2p7MjK6pScuYv97OTS8EIXDg8OSQk7ePOqUtAaFTSoaUkPAKisoPBWX0APUoD8MgjAXroB6hIxYQwXgX9b1fEkKiJIqOUDciJElGNOqh57FdVcqZcoFvjNbgoKzx1Czea_xocyg81tbhN-PqRhV4UkBWu7bvsSnxrKot7DqlyfB8DfAJzh-jQ60KDyf7OkCvt5P5-D6Yzu4extfTIGOc0CCOcqIFzVKucpFyofOIUq0SMgq10IQBMJ4ymkKcadFukmSJ0irNYwChFedsgC52cytnPxrwtVwZn0FRqBJs4yWjIyHC9pCWnv-hS9u4sn2dZCFPEs5jRlt1tldNuoJcVs6slNvIn99qweUOZM5670D_EkrkNgm5TUJuk2jt1c6uTQGb_6GcTJ9evm98AYgQijo
Cites_doi 10.1364/OE.26.005300
10.1117/12.787019
10.1038/nmeth.2019
10.1002/elps.202100202
10.1109/OMN.2019.8925125
10.3390/s17030449
10.1039/D2CS00359G
10.1109/JMEMS.2008.916342
10.1073/pnas.1903406116
10.1109/NEMS.2011.6017481
10.1063/1.3640045
10.1007/s10404-011-0895-1
10.1007/s10404-013-1246-1
10.1039/c3lc41256c
10.1002/elps.202100123
10.1364/OE.15.012619
10.1063/1.3212725
10.3390/s17112691
10.1002/biot.200600112
10.1016/j.snb.2017.12.003
10.1038/srep32851
10.1016/j.matpr.2020.06.371
10.1364/PRJ.437528
10.1063/1.4971348
10.1109/JMEMS.2007.896717
10.1002/elps.201200242
10.1002/elps.200700415
10.1002/elps.202100090
10.1021/jp061367e
10.1364/OL.44.004171
10.3390/mi11030255
10.1364/OE.17.005231
10.1021/acs.analchem.9b03448
10.1109/JSTQE.2007.893558
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley‐VCH GmbH.
2025 The Author(s). Electrophoresis published by Wiley‐VCH GmbH.
2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2025 The Author(s). Electrophoresis published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U5
8FD
L7M
7X8
DOI 10.1002/elps.8131
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1522-2683
EndPage 1340
ExternalDocumentID 40099714
10_1002_elps_8131
ELPS8131
Genre researchArticle
Journal Article
Comparative Study
GrantInformation_xml – fundername: Federico Baur Endowed Chair in Nanotechnology
  funderid: 0020240I03
– fundername: TIGER grant program at Clemson University
– fundername: Tecnologico de Monterrey through the Nano‐Sensors & Devices Research Group
  funderid: 0020209I06
– fundername: Consejo Nacional de Humanidades, Ciencia y Tecnología
  funderid: 62382
– fundername: Consejo Nacional de Humanidades, Ciencia y Tecnología
  grantid: 62382
– fundername: Tecnologico de Monterrey through the Nano-Sensors & Devices Research Group
  grantid: 0020209I06
– fundername: Federico Baur Endowed Chair in Nanotechnology
  grantid: 0020240I03
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7U5
8FD
L7M
7X8
ID FETCH-LOGICAL-c3501-64d0f81cb5ad8b58fd411fa9072f8f03ee35b31be6cf80179c9afabd6ee8fa553
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446720900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0173-0835
1522-2683
IngestDate Fri Jul 11 16:50:37 EDT 2025
Sat Oct 11 07:44:47 EDT 2025
Tue Oct 14 01:30:27 EDT 2025
Sat Nov 29 07:15:44 EST 2025
Sat Oct 11 09:10:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords virtual electrodes
optoelectronic tweezers
photoconductive
light‐induced dielectrophoresis
optically induced dielectrophoresis
Language English
License Attribution-NonCommercial
2025 The Author(s). Electrophoresis published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-64d0f81cb5ad8b58fd411fa9072f8f03ee35b31be6cf80179c9afabd6ee8fa553
Notes Funding
Financial support was provided by Tecnologico de Monterrey through the Nano‐Sensors & Devices Research Group (0020209I06); the Federico Baur Endowed Chair in Nanotechnology (0020240I03); the Consejo Nacional de Humanidades, Ciencia y Tecnología (SNI Grant 62382); and the TIGER grant program at Clemson University.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felps.8131
PMID 40099714
PQID 3259955631
PQPubID 2045162
PageCount 8
ParticipantIDs proquest_miscellaneous_3178828820
proquest_journals_3259955631
pubmed_primary_40099714
crossref_primary_10_1002_elps_8131
wiley_primary_10_1002_elps_8131_ELPS8131
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Electrophoresis
PublicationTitleAlternate Electrophoresis
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 91
2021; 42
2011
2016; 109
2022; 51
2008; 17
2006; 110
2022; 48
2022; 43
2006; 1
2003
2020; 11
2012; 12
2012; 33
2011; 5
2007; 13
2018; 26
2007; 15
2007; 16
2016; 6
2008; 6993
2009; 95
2017; 17
2013; 13
2019; 44
2008; 29
2018; 258
2014; 16
2019
2019; 116
2022; 10
2009; 17
2012; 9
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Morgan H. (e_1_2_9_11_1) 2003
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 10
  start-page: 550
  year: 2022
  end-page: 556
  article-title: Influence of Light Pattern Thickness on the Manipulation of Dielectric Microparticles by Optoelectronic Tweezers
  publication-title: Photonics Research
– start-page: 825
  year: 2011
  end-page: 830
  article-title: An Equivalent Electrical Model for Numerical Analyses of ODEP Manipulation
– volume: 17
  start-page: 5231
  year: 2009
  end-page: 5239
  article-title: Trap Profiles of Projector Based Optoelectronic Tweezers (OET) With HeLa Cells
  publication-title: Optics Express
– volume: 91
  start-page: 14975
  year: 2019
  end-page: 14982
  article-title: Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic‐Enhanced PDMS‐Based Microfluidics
  publication-title: Analytical Chemistry
– volume: 17
  start-page: 2691
  year: 2017
  article-title: Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon‐Electrodes
  publication-title: Sensors
– volume: 51
  start-page: 9203
  year: 2022
  end-page: 9242
  article-title: Optoelectronic Tweezers: A Versatile Toolbox for Nano‐/Micro‐Manipulation
  publication-title: Chemical Society Reviews
– volume: 11
  start-page: 255
  year: 2020
  article-title: Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes
  publication-title: Micromachines
– volume: 29
  start-page: 1203
  year: 2008
  end-page: 1212
  article-title: Interactive Manipulation of Blood Cells Using a Lens‐Integrated Liquid Crystal Display Based Optoelectronic Tweezers System
  publication-title: Electrophoresis
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: An Open‐Source Platform for Biological‐Image Analysis
  publication-title: Nature Methods
– volume: 33
  start-page: 3110
  year: 2012
  end-page: 3132
  article-title: Microfabrication Technologies in Dielectrophoresis Applications—A Review
  publication-title: Electrophoresis
– year: 2003
– volume: 43
  start-page: 327
  year: 2022
  end-page: 339
  article-title: Electrically Driven Microfluidic Platforms for Exosome Manipulation and Characterization
  publication-title: Electrophoresis
– volume: 17
  start-page: 525
  year: 2008
  end-page: 531
  article-title: Light‐Actuated AC Electroosmosis for Nanoparticle Manipulation
  publication-title: Journal of Microelectromechanical Systems
– volume: 44
  start-page: 4171
  year: 2019
  end-page: 4174
  article-title: Size‐Scaling Effects for Microparticles and Cells Manipulated by Optoelectronic Tweezers
  publication-title: Optics Letters
– volume: 5
  year: 2011
  article-title: Separation of Platelets From Other Blood Cells in Continuous‐Flow by Dielectrophoresis Field‐Flow‐Fractionation
  publication-title: Biomicrofluidics
– volume: 48
  start-page: 16
  year: 2022
  end-page: 20
  article-title: Tuning the Mechanical Stiffness of Lightweight Carbon Origami
  publication-title: Materials Today: Proceedings
– volume: 43
  start-page: 167
  year: 2022
  end-page: 189
  article-title: Review of Nonlinear Electrokinetic Flows in Insulator‐Based Dielectrophoresis: From Induced Charge to Joule Heating Effects
  publication-title: Electrophoresis
– volume: 15
  start-page: 12619
  year: 2007
  end-page: 12626
  article-title: The Resolution of Optical Traps Created by Light Induced Dielectrophoresis (LIDEP)
  publication-title: Optics Express
– volume: 13
  start-page: 235
  year: 2007
  end-page: 243
  article-title: Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers
  publication-title: IEEE Journal of Selected Topics in Quantum Electronics
– volume: 13
  start-page: 1371
  year: 2013
  end-page: 1383
  article-title: High‐Purity and Label‐Free Isolation of Circulating Tumor Cells (CTCs) in a Microfluidic Platform by Using Optically‐Induced‐Dielectrophoretic (ODEP) Force
  publication-title: Lab on A Chip
– volume: 116
  start-page: 14823
  year: 2019
  end-page: 14828
  article-title: The Optoelectronic Microrobot: A Versatile Toolbox for Micromanipulation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  start-page: 491
  year: 2007
  end-page: 499
  article-title: Dynamic Cell and Microparticle Control via Optoelectronic Tweezers
  publication-title: Journal of Microelectromechanical Systems
– start-page: 94
  year: 2019
  end-page: 95
  article-title: Optoelectronic Tweezers—An Optofluidic Platform for Digital Cell Biology
– volume: 17
  start-page: 449
  year: 2017
  article-title: Dielectrophoresis for Biomedical Sciences Applications: A Review
  publication-title: Sensors
– volume: 42
  start-page: 2445
  year: 2021
  end-page: 2464
  article-title: Particle Trapping in Electrically Driven Insulator‐Based Microfluidics: Dielectrophoresis and Induced‐Charge Electrokinetics
  publication-title: Electrophoresis
– volume: 1
  start-page: 949
  year: 2006
  end-page: 957
  article-title: Dielectrophoresis Based‐Cell Patterning for Tissue Engineering
  publication-title: Biotechnology Journal
– volume: 6
  year: 2016
  article-title: Application of Optically‐Induced‐Dielectrophoresis in Microfluidic System for Purification of Circulating Tumour Cells for Gene Expression Analysis‐Cancer Cell Line Model
  publication-title: Scientific Reports
– volume: 95
  year: 2009
  article-title: Parallel Trapping of Multiwalled Carbon Nanotubes With Optoelectronic Tweezers
  publication-title: Applied Physics Letters
– volume: 16
  start-page: 533
  year: 2014
  end-page: 540
  article-title: Simulation and Analysis of Particle Trajectory Caused by the Optical‐Induced Dielectrophoresis Force
  publication-title: Microfluidics and Nanofluidics
– volume: 26
  start-page: 5300
  year: 2018
  end-page: 5309
  article-title: Escape From an Optoelectronic Tweezer Trap: Experimental Results and Simulations
  publication-title: Optics Express
– volume: 12
  start-page: 529
  year: 2012
  end-page: 544
  article-title: Dynamics Simulation of Positioning and Assembling Multi‐Microparticles Utilizing Optoelectronic Tweezers
  publication-title: Microfluidics and Nanofluidics
– volume: 110
  start-page: 14098
  year: 2006
  end-page: 14106
  article-title: Dielectrophoretic Assembly of Nanowires
  publication-title: Journal of Physical Chemistry B
– volume: 258
  start-page: 1161
  year: 2018
  end-page: 1173
  article-title: Optically‐Induced‐Dielectrophoresis (ODEP)‐Based Cell Manipulation in a Microfluidic System for High‐Purity Isolation of Integral Circulating Tumor Cell (CTC) Clusters Based on Their Size Characteristics
  publication-title: Sensors and Actuators B: Chemical
– volume: 109
  year: 2016
  article-title: Use of Optoelectronic Tweezers in Manufacturing—Accurate Solder Bead Positioning
  publication-title: Applied Physics Letters
– volume: 6993
  start-page: 76
  year: 2008
– ident: e_1_2_9_34_1
  doi: 10.1364/OE.26.005300
– volume-title: AC Electrokinetics: Colloids and Nanoparticles
  year: 2003
  ident: e_1_2_9_11_1
– ident: e_1_2_9_19_1
  doi: 10.1117/12.787019
– ident: e_1_2_9_38_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_9_4_1
  doi: 10.1002/elps.202100202
– ident: e_1_2_9_16_1
  doi: 10.1109/OMN.2019.8925125
– ident: e_1_2_9_10_1
  doi: 10.3390/s17030449
– ident: e_1_2_9_39_1
– ident: e_1_2_9_20_1
  doi: 10.1039/D2CS00359G
– ident: e_1_2_9_22_1
  doi: 10.1109/JMEMS.2008.916342
– ident: e_1_2_9_23_1
  doi: 10.1073/pnas.1903406116
– ident: e_1_2_9_40_1
– ident: e_1_2_9_30_1
  doi: 10.1109/NEMS.2011.6017481
– ident: e_1_2_9_6_1
  doi: 10.1063/1.3640045
– ident: e_1_2_9_36_1
  doi: 10.1007/s10404-011-0895-1
– ident: e_1_2_9_28_1
  doi: 10.1007/s10404-013-1246-1
– ident: e_1_2_9_17_1
  doi: 10.1039/c3lc41256c
– ident: e_1_2_9_13_1
  doi: 10.1002/elps.202100123
– ident: e_1_2_9_15_1
  doi: 10.1364/OE.15.012619
– ident: e_1_2_9_21_1
  doi: 10.1063/1.3212725
– ident: e_1_2_9_5_1
  doi: 10.3390/s17112691
– ident: e_1_2_9_7_1
  doi: 10.1002/biot.200600112
– ident: e_1_2_9_25_1
  doi: 10.1016/j.snb.2017.12.003
– ident: e_1_2_9_24_1
  doi: 10.1038/srep32851
– ident: e_1_2_9_8_1
  doi: 10.1016/j.matpr.2020.06.371
– ident: e_1_2_9_29_1
  doi: 10.1364/PRJ.437528
– ident: e_1_2_9_33_1
  doi: 10.1063/1.4971348
– ident: e_1_2_9_26_1
– ident: e_1_2_9_32_1
  doi: 10.1109/JMEMS.2007.896717
– ident: e_1_2_9_2_1
  doi: 10.1002/elps.201200242
– ident: e_1_2_9_27_1
  doi: 10.1002/elps.200700415
– ident: e_1_2_9_14_1
  doi: 10.1002/elps.202100090
– ident: e_1_2_9_9_1
  doi: 10.1021/jp061367e
– ident: e_1_2_9_31_1
  doi: 10.1364/OL.44.004171
– ident: e_1_2_9_37_1
– ident: e_1_2_9_12_1
  doi: 10.3390/mi11030255
– ident: e_1_2_9_35_1
  doi: 10.1364/OE.17.005231
– ident: e_1_2_9_3_1
  doi: 10.1021/acs.analchem.9b03448
– ident: e_1_2_9_18_1
  doi: 10.1109/JSTQE.2007.893558
SSID ssj0004944
Score 2.4764423
Snippet ABSTRACT Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To...
Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1333
SubjectTerms Comparative studies
Computer Simulation
Dielectrophoresis
Electric fields
Electrodes
Electrophoresis - instrumentation
Electrophoresis - methods
Equipment Design
Light
light‐induced dielectrophoresis
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microfluidic devices
Models, Theoretical
Normal Distribution
Optical Tweezers
optically induced dielectrophoresis
optoelectronic tweezers
Optoelectronics
photoconductive
virtual electrodes
Title Comparing Different Light Models for Virtual Electrodes in Optoelectronic Tweezers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felps.8131
https://www.ncbi.nlm.nih.gov/pubmed/40099714
https://www.proquest.com/docview/3259955631
https://www.proquest.com/docview/3178828820
Volume 46
WOSCitedRecordID wos001446720900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004944
  issn: 0173-0835
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD4MFfTF-2VeRhQffKk2Tdql-CRzw4ehwxt7K0mTyEC6sU4Ff7057bohIghCKYWkTTnJab6T9HwfwKlgJnIzUexxrgOP2yjypBKpFwqtlY2V8k3BM9tt3t6Kfj_u1eCyyoUp-SFmC27oGcX3Gh1cqvxiThpqXkf5uaCYQ71IKROo2xDw3jwpMuYlsXeTIQVzWNEK-cHF7Nbvk9EPhPkdsBYzTmftX--6DqtToEmuypGxATWTbcJyq9J324L7VilBmL2Q66lKyoR0MVYnKJD2mhOHZ8nzYIwZJqRdyuVok5NBRu5Gk-FcQIc8fhjz6XDkNjx12o-tG2-qsOCluKHoRVz7VtBUhVILFQqrOaVWuoA5sML6zBgWKkaViVIr0HfTWFqpdGSMsDIM2Q4sZMPM7AGxkYypFA5wKs0twwUlFbvokTFXzz20DieVqZNRSaSRlJTJQYLmSdA8dTisOiGZ-lKesABJ0cIIi49nxc5YuLUhMzN8c3WoC-UDd_h12C07b9YKRxTcpLwOZ0Uf_d580u72HvBi_-9VD2AlQEng4rezQ1iYjN_MESyl75NBPm4UQ9Kdm33RgMXr-85T9wszqedQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6ICvri_TKvUXzwpdo2aZeCLzIninUOneJbSZpEBtKNdSr4681p1w0RQRD6UEh64SSn5ztJz_cBHHGqQxuJIocx5TvMhKEjJE-dgCslTSSlqwue2bjeavHn56g9BWdVLUzJDzFecEPPKL7X6OC4IH06YQ3Vr_38hHtYRD3DbJTBWe6z9qQqMmIls3edIgdzUPEKuf7p-NLv0egHxPyOWIuQc7n4v5ddgoUR1CTn5dxYhimdrcBco1J4W4X7RilCmL2Qi5FOypDEmK0TlEh7zYlFtOSpO8AaE9IsBXOUzkk3I3f9YW8ioUM6H1p_WiS5Bo-XzU7jyhlpLDgpbik6IVOu4V4qA6G4DLhRzPOMsCmzb7hxqdY0kNSTOkwNR-9NI2GEVKHW3IggoOswnfUyvQnEhCLyBLeQUypmKC4pycjmj5TafvamNTisbJ30SyqNpCRN9hM0T4LmqcFONQrJyJvyhPpIixaE2HwwbrbGws0Nkenem-3j2WTet4dbg41y9MZPYYiD6x6rwXExSL8_PmnG7Qc82fp7132Yu-rcxkl83brZhnkfBYKLn9B2YHo4eNO7MJu-D7v5YK-Yn19KVOiz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFL2EtGx9abd1a9N2rTr6sBc3tiU7MvSl5IOWmTR0zeibkSxpBIIT4rSF_vrq-iOhlMGg4AeDZEtc6VrnSr7nAJxxqkO7EkUOY8p3mAlDR0ieOgFXSppISlcXPLNxZzjk9_fRqAEXdS5MyQ-x2nBDzyi-1-jgeq5Me80aqqfz_Jx7mES9wVBEpgkbvdvBOF7nRUas5PbuUGRhDmpmIddvrx5-vR69AZmvMWux6Ax23tfdT7BdgU1yWc6Oz9DQ2Rf42K013nbhtlvKEGZ_Sa9SSlmSGON1giJp05xYTEv-TBaYZUL6pWSO0jmZZORmvpytRXTI3ZPWzxZLfoXxoH_XvXIqlQUnxUNFJ2TKNdxLZSAUlwE3inmeETZo9g03LtWaBpJ6Uoep4ei_aSSMkCrUmhsRBPQbNLNZpveBmFBEnuAWdErFDMVNJRnZCJJSW8--tAU_alsn85JMIylpk_0EzZOgeVpwVI9CUvlTnlAfidGCEItPV8XWWHi8ITI9e7B1PBvO-_ZyW7BXjt6qFYZIuOOxFvwsBunfzSf9ePQbbw7-v-oJfBj1Bkl8Pfx1CFs-KgQXf6EdQXO5eNDfYTN9XE7yxXE1QV8AOs_pyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Different+Light+Models+for+Virtual+Electrodes+in+Optoelectronic+Tweezers&rft.jtitle=Electrophoresis&rft.au=Guzman-Saleh%2C+Ernesto&rft.au=Perez-Gonzalez%2C+Victor+H&rft.au=Martinez-Duarte%2C+Rodrigo&rft.date=2025-09-01&rft.eissn=1522-2683&rft.volume=46&rft.issue=17&rft.spage=1333&rft_id=info:doi/10.1002%2Felps.8131&rft_id=info%3Apmid%2F40099714&rft.externalDocID=40099714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0173-0835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0173-0835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0173-0835&client=summon