4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing
Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. H...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 34; číslo 39; s. e2204890 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.
A novel hybrid 4D printing method, which integrates laser‐assisted direct ink writing and Digital Light Processing, is developed to fabricate freestanding liquid crystal elastomers (LCEs) “on‐the‐fly” with optional structural or removable materials. Various architectures, including hybrid active lattices, active tensegrities, loading‐bearing actuators, and spatial LCE lattices, can be successfully fabricated. |
|---|---|
| AbstractList | Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices. Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices. Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices. A novel hybrid 4D printing method, which integrates laser‐assisted direct ink writing and Digital Light Processing, is developed to fabricate freestanding liquid crystal elastomers (LCEs) “on‐the‐fly” with optional structural or removable materials. Various architectures, including hybrid active lattices, active tensegrities, loading‐bearing actuators, and spatial LCE lattices, can be successfully fabricated. |
| Author | Qi, H. Jerry Yue, Liang Zhou, Kun Sun, Xiaohao Peng, Xirui Demoly, Frédéric Wu, Shuai Zhao, Ruike Renee Montgomery, S. Macrae |
| Author_xml | – sequence: 1 givenname: Xirui orcidid: 0000-0001-6654-3831 surname: Peng fullname: Peng, Xirui organization: Georgia Institute of Technology – sequence: 2 givenname: Shuai surname: Wu fullname: Wu, Shuai organization: Stanford University – sequence: 3 givenname: Xiaohao surname: Sun fullname: Sun, Xiaohao organization: Georgia Institute of Technology – sequence: 4 givenname: Liang surname: Yue fullname: Yue, Liang organization: Georgia Institute of Technology – sequence: 5 givenname: S. Macrae surname: Montgomery fullname: Montgomery, S. Macrae organization: Georgia Institute of Technology – sequence: 6 givenname: Frédéric surname: Demoly fullname: Demoly, Frédéric organization: UTBM – sequence: 7 givenname: Kun surname: Zhou fullname: Zhou, Kun organization: Nanyang Technological University – sequence: 8 givenname: Ruike Renee surname: Zhao fullname: Zhao, Ruike Renee email: rrzhao@stanford.edu organization: Stanford University – sequence: 9 givenname: H. Jerry orcidid: 0000-0002-3212-5284 surname: Qi fullname: Qi, H. Jerry email: qih@me.gatech.edu organization: Georgia Institute of Technology |
| BookMark | eNqFkM9LwzAUx4NMcJtePRe8eOl8SZO0OY79cMJED4rH8tamI9KlLmkn--_NmCgMxEMIefl83nt8B6RnG6sJuaYwogDsDssNjhgwBjxTcEb6VDAac1CiR_qgEhErybMLMvD-HQCUBNknb3waPTtjW2PXUVNFc6e1b9GWh_fSbDtTRhO3D6U6mtXo22ajnY92BqPFfuXC77gsTWt2OnpE21VYtF1ot74k5xXWXl9930PyOp-9TBbx8un-YTJexkUiAOKSllVG0xVjFUgpMJxSgOICVYqYpayQqZZCrxIONFEglQahEFRFgaVCJkNye-z74ZptF1bPN8YXuq7R6qbzOUuB0Szh9IDenKDvTeds2C5QNOOSckYDNTpShWu8d7rKP5zZoNvnFPJDzvkh5_wn5yDwE6EwLbamsa1DU_-tqaP2aWq9_2dIPp4-jn_dL-K0kmM |
| CitedBy_id | crossref_primary_10_1002_ange_202411280 crossref_primary_10_1002_admt_202401950 crossref_primary_10_1016_j_cej_2023_142830 crossref_primary_10_1038_s41467_023_35929_y crossref_primary_10_1002_aisy_202200226 crossref_primary_10_1002_adma_202302824 crossref_primary_10_1038_s41467_024_48353_7 crossref_primary_10_1002_chem_202301027 crossref_primary_10_1038_s42004_024_01141_2 crossref_primary_10_1002_admt_202501236 crossref_primary_10_1007_s40843_024_3158_7 crossref_primary_10_1002_adma_202511630 crossref_primary_10_1002_adma_202302066 crossref_primary_10_1002_adma_202405505 crossref_primary_10_1088_2631_7990_ad7e5f crossref_primary_10_1002_admt_202400074 crossref_primary_10_1002_mame_202400445 crossref_primary_10_1007_s12668_024_01596_6 crossref_primary_10_1016_j_cej_2023_142388 crossref_primary_10_1088_2631_7990_ace090 crossref_primary_10_1515_rams_2024_0028 crossref_primary_10_1088_1361_665X_ad3c85 crossref_primary_10_1080_17452759_2025_2499927 crossref_primary_10_1002_adma_202209566 crossref_primary_10_1016_j_eurpolymj_2024_113648 crossref_primary_10_1002_adma_202303969 crossref_primary_10_1002_adma_202312263 crossref_primary_10_1088_1361_665X_ad5c22 crossref_primary_10_1002_rpm_20240021 crossref_primary_10_1038_s44334_024_00005_w crossref_primary_10_1002_adfm_202504979 crossref_primary_10_1002_adma_202419039 crossref_primary_10_1002_adfm_202413824 crossref_primary_10_1002_smll_202306952 crossref_primary_10_1038_s41467_024_52716_5 crossref_primary_10_1021_acs_macromol_5c01037 crossref_primary_10_1002_adma_202303680 crossref_primary_10_1002_adfm_202312480 crossref_primary_10_1002_adfm_202406847 crossref_primary_10_1002_adma_202307858 crossref_primary_10_1021_jacs_4c01642 crossref_primary_10_1016_j_addma_2023_103514 crossref_primary_10_1016_j_matdes_2025_113737 crossref_primary_10_1002_adma_202509892 crossref_primary_10_1002_adma_202302765 crossref_primary_10_3390_app14135669 crossref_primary_10_1038_s41467_023_39566_3 crossref_primary_10_1021_acsami_5c06159 crossref_primary_10_1038_s41378_025_00885_8 crossref_primary_10_1007_s10311_024_01726_2 crossref_primary_10_1002_adfm_202311425 crossref_primary_10_1038_s41578_025_00809_y crossref_primary_10_3390_cryst14040357 crossref_primary_10_1016_j_mser_2024_100890 crossref_primary_10_1038_s41524_022_00962_w crossref_primary_10_1002_admt_202500607 crossref_primary_10_1002_anie_202411280 crossref_primary_10_1002_smo_20230025 crossref_primary_10_1021_acsami_5c08610 crossref_primary_10_1038_s41467_024_49775_z crossref_primary_10_1002_adma_202414209 crossref_primary_10_1002_adom_202500993 crossref_primary_10_1002_admt_202300408 crossref_primary_10_1002_admt_202300727 crossref_primary_10_1002_advs_202407746 crossref_primary_10_1002_adfm_202424400 crossref_primary_10_1038_s41427_023_00511_x crossref_primary_10_1080_21680396_2025_2472163 crossref_primary_10_1111_ffe_14695 crossref_primary_10_1021_acsami_4c11779 crossref_primary_10_1039_D5TC00958H crossref_primary_10_3390_biomimetics8020196 crossref_primary_10_1002_adma_202400763 crossref_primary_10_1002_adma_202401533 crossref_primary_10_1016_j_matt_2023_02_003 crossref_primary_10_1002_adem_202401796 crossref_primary_10_1002_adfm_202413962 crossref_primary_10_1002_adma_202310743 crossref_primary_10_1002_adma_202307586 crossref_primary_10_1002_adma_202402301 |
| Cites_doi | 10.1063/1.4819837 10.1002/anie.201915694 10.1126/sciadv.abc0034 10.1016/j.addma.2020.101582 10.1002/adma.201703817 10.1002/aisy.202100107 10.1021/acsami.7b11851 10.1126/science.abg1487 10.1016/j.addma.2019.100819 10.1021/acsmacrolett.6b00475 10.1038/nmat4544 10.1002/adma.201706164 10.1002/adfm.202201766 10.1039/C5RA01039J 10.1103/PhysRevA.41.1997 10.1021/acsami.9b18037 10.1016/B978-0-12-814062-8.00002-9 10.1080/17452759.2017.1326724 10.1126/science.1250169 10.1016/j.addma.2022.102727 10.1002/aisy.202000060 10.1126/sciadv.abg3677 10.1093/oso/9780198520245.001.0001 10.1038/s41467-020-17251-z 10.1080/14686996.2018.1431862 10.1021/cr3005197 10.1021/acsami.7b18265 10.1002/adma.201905682 10.1021/acsami.9b06081 10.1126/sciadv.1602890 10.1002/adma.201501446 10.1002/adma.202000797 10.1038/s41586-018-0474-7 10.1002/adma.201806849 10.1016/j.jeurceramsoc.2021.08.031 10.1016/j.jmsy.2019.08.005 10.1073/pnas.1525131113 10.1126/scirobotics.aax7044 10.1088/1361-665X/aae96f 10.1016/j.eml.2016.05.012 10.1002/aisy.202100065 10.1002/adma.202200272 10.1103/PhysRevA.19.338 10.1038/s41557-020-0444-1 10.1038/srep31110 10.1002/adfm.201806412 10.1021/acsami.0c13863 10.1088/0964-1726/23/9/094007 10.1039/C7SM00759K 10.1002/adma.202104390 10.1016/j.jfluidstructs.2014.05.014 10.1126/science.aab0129 10.1016/j.cobme.2017.05.006 10.1002/adfm.201805290 10.1038/nbt.2958 10.1002/adfm.202109805 10.1021/acsami.0c00027 10.1016/j.addma.2019.100894 10.1002/marc.201700710 10.1002/advs.202100411 10.1002/adfm.202110360 10.1126/scirobotics.aay9024 10.1002/adma.202106175 10.1038/s41598-017-03412-6 10.1038/nature16521 10.1016/j.addma.2021.101911 10.1016/j.addma.2021.101921 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202204890 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adma_202204890 ADMA202204890 |
| Genre | article |
| GrantInformation_xml | – fundername: HP Inc. and Northrop Grumman Corporation – fundername: National Science Foundation funderid: ECCS‐1542174; CMMI‐2145601; CMMI‐2142789 – fundername: AFOSR funderid: FA 9550‐20‐1‐0306 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3500-d1df817b22f0665a665d50945a97aa872c67e65eb340139069e059a09f1027563 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 122 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 19:32:53 EDT 2025 Fri Jul 25 06:04:33 EDT 2025 Tue Nov 18 20:55:32 EST 2025 Sat Nov 29 07:20:27 EST 2025 Wed Jan 22 16:23:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 39 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3500-d1df817b22f0665a665d50945a97aa872c67e65eb340139069e059a09f1027563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3212-5284 0000-0001-6654-3831 |
| PQID | 2718461421 |
| PQPubID | 2045203 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2702183416 proquest_journals_2718461421 crossref_primary_10_1002_adma_202204890 crossref_citationtrail_10_1002_adma_202204890 wiley_primary_10_1002_adma_202204890_ADMA202204890 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013 2014 2016 2018; 103 23 6 10 2021 2020; 13 2 1979 1990 2016; 19 41 5 2015; 5 2021; 3 2015 2017 2018 2020 2021 2021 2021 2017 2018; 27 13 29 6 34 32 7 13 27 2019 2019; 53 1993 2020; 12 2020; 11 2020; 32 2017 2019; 29 29 2018; 39 2017 2019; 12 30 2014 2016; 114 9 2022; 4 2017 2018 2018 2018 2019 2019 2019; 9 561 30 27 4 29 11 2020 2022; 32 34 2017 2021 2021 2019; 3 32 29 2015 2018; 349 19 2016 2020 2019; 15 12 11 2021 2020; 372 36 2016; 113 2021 2020; 33 59 2021 2014; 41 50 2022; 32 2022; 54 2017 2014; 2 32 2021; 40 2017 2020 2019; 7 5 31 2014 2016 2021; 344 529 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_7_4 e_1_2_8_9_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_20_3 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_13_4 Le T. (e_1_2_8_13_2) 2021 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_21_4 e_1_2_8_21_5 e_1_2_8_25_1 e_1_2_8_21_6 e_1_2_8_21_7 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_23_1 e_1_2_8_10_8 e_1_2_8_10_9 e_1_2_8_18_1 e_1_2_8_10_4 e_1_2_8_12_2 e_1_2_8_10_5 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_10_6 e_1_2_8_14_2 e_1_2_8_10_7 e_1_2_8_16_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_12_1 e_1_2_8_31_3 |
| References_xml | – volume: 29 29 year: 2017 2019 publication-title: Adv. Mater. Addit. Manuf. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3462 year: 2020 publication-title: Nat. Commun. – volume: 54 year: 2022 publication-title: Addit. Manuf. – volume: 114 9 start-page: 557 108 year: 2014 2016 publication-title: Chem. Rev. Extreme Mech. Lett. – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 124 7 year: 2019 2019 publication-title: J. Manuf. Syst. – volume: 33 59 start-page: 4778 year: 2021 2020 publication-title: Adv. Mater. Angew. Chem., Int. Ed. – volume: 9 561 30 27 4 29 11 start-page: 226 year: 2017 2018 2018 2018 2019 2019 2019 publication-title: ACS Appl. Mater. Interfaces Nature Adv. Mater. Smart Mater. Struct. Sci. Rob. Adv. Funct. Mater. ACS Appl. Mater. Interfaces – volume: 13 2 year: 2021 2020 publication-title: ACS Appl. Mater. Interfaces Adv. Intell. Syst. – volume: 19 41 5 start-page: 338 1997 955 year: 1979 1990 2016 publication-title: Phys. Rev. A Phys. Rev. A ACS Macro Lett. – volume: 41 50 start-page: 18 171 year: 2021 2014 publication-title: J. Eur. Ceram. Soc. J. Fluids Struct. – volume: 103 23 6 10 start-page: 7381 year: 2013 2014 2016 2018 publication-title: Appl. Phys. Lett. Smart Mater. Struct. Sci. Rep. ACS Appl. Mater. Interfaces – volume: 3 32 29 start-page: 732 year: 2017 2021 2021 2019 end-page: 747 publication-title: Sci. Adv. Adv. Funct. Mater. Adv. Funct. Mater. – volume: 32 34 year: 2020 2022 publication-title: Adv. Mater. Adv. Mater. – volume: 15 12 11 start-page: 413 363 year: 2016 2020 2019 publication-title: Nat. Mater. Nat. Chem. ACS Appl. Mater. Interfaces – volume: 113 start-page: 6137 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 year: 2021 publication-title: Adv. Intell. Syst. – volume: 4 year: 2022 publication-title: Adv. Intell. Syst. – volume: 344 529 8 start-page: 70 509 year: 2014 2016 2021 publication-title: Science Nature Adv. Sci. – volume: 2 32 start-page: 105 773 year: 2017 2014 publication-title: Curr. Opin. Biomed. Eng. Nat. Biotechnol. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 40 year: 2021 publication-title: Addit. Manuf. – volume: 349 19 start-page: 161 243 year: 2015 2018 publication-title: Science Sci. Technol. Adv. Mater. – volume: 27 13 29 6 34 32 7 13 27 start-page: 3883 5558 5558 year: 2015 2017 2018 2020 2021 2021 2021 2017 2018 publication-title: Adv. Mater. Soft Matter Adv. Funct. Mater. Sci. Adv. Adv. Mater. Adv. Funct. Mater. Sci. Adv. Soft Matter Smart Mater. Struct. – volume: 372 36 year: 2021 2020 publication-title: Science Addit. Manuf. – volume: 7 5 31 start-page: 3511 year: 2017 2020 2019 publication-title: Sci. Rep. Sci. Rob. Adv. Mater. – year: 1993 – volume: 12 30 start-page: 261 year: 2017 2019 publication-title: Virtual Phys. Prototyping Addit. Manuf. – ident: e_1_2_8_7_1 doi: 10.1063/1.4819837 – ident: e_1_2_8_14_2 doi: 10.1002/anie.201915694 – ident: e_1_2_8_10_4 doi: 10.1126/sciadv.abc0034 – ident: e_1_2_8_2_2 doi: 10.1016/j.addma.2020.101582 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201703817 – ident: e_1_2_8_32_1 doi: 10.1002/aisy.202100107 – ident: e_1_2_8_21_1 doi: 10.1021/acsami.7b11851 – ident: e_1_2_8_2_1 doi: 10.1126/science.abg1487 – ident: e_1_2_8_4_2 doi: 10.1016/j.addma.2019.100819 – ident: e_1_2_8_20_3 doi: 10.1021/acsmacrolett.6b00475 – ident: e_1_2_8_8_1 doi: 10.1038/nmat4544 – ident: e_1_2_8_21_3 doi: 10.1002/adma.201706164 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202201766 – ident: e_1_2_8_19_1 doi: 10.1039/C5RA01039J – ident: e_1_2_8_20_2 doi: 10.1103/PhysRevA.41.1997 – ident: e_1_2_8_21_7 doi: 10.1021/acsami.9b18037 – ident: e_1_2_8_1_2 doi: 10.1016/B978-0-12-814062-8.00002-9 – ident: e_1_2_8_3_1 doi: 10.1080/17452759.2017.1326724 – ident: e_1_2_8_12_1 doi: 10.1126/science.1250169 – ident: e_1_2_8_28_1 doi: 10.1016/j.addma.2022.102727 – ident: e_1_2_8_9_2 doi: 10.1002/aisy.202000060 – ident: e_1_2_8_10_7 doi: 10.1126/sciadv.abg3677 – ident: e_1_2_8_17_1 doi: 10.1093/oso/9780198520245.001.0001 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-020-17251-z – ident: e_1_2_8_6_2 doi: 10.1080/14686996.2018.1431862 – ident: e_1_2_8_29_1 doi: 10.1021/cr3005197 – ident: e_1_2_8_7_4 doi: 10.1021/acsami.7b18265 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201905682 – ident: e_1_2_8_8_3 doi: 10.1021/acsami.9b06081 – ident: e_1_2_8_13_1 doi: 10.1126/sciadv.1602890 – ident: e_1_2_8_10_1 doi: 10.1002/adma.201501446 – ident: e_1_2_8_24_1 doi: 10.1002/adma.202000797 – ident: e_1_2_8_21_2 doi: 10.1038/s41586-018-0474-7 – ident: e_1_2_8_31_3 doi: 10.1002/adma.201806849 – ident: e_1_2_8_30_1 doi: 10.1016/j.jeurceramsoc.2021.08.031 – ident: e_1_2_8_1_1 doi: 10.1016/j.jmsy.2019.08.005 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.1525131113 – ident: e_1_2_8_21_5 doi: 10.1126/scirobotics.aax7044 – start-page: 732 volume-title: Annu. Computer Security Applications Conf. year: 2021 ident: e_1_2_8_13_2 – ident: e_1_2_8_21_4 doi: 10.1088/1361-665X/aae96f – ident: e_1_2_8_29_2 doi: 10.1016/j.eml.2016.05.012 – ident: e_1_2_8_18_1 doi: 10.1002/aisy.202100065 – ident: e_1_2_8_24_2 doi: 10.1002/adma.202200272 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevA.19.338 – ident: e_1_2_8_8_2 doi: 10.1038/s41557-020-0444-1 – ident: e_1_2_8_7_3 doi: 10.1038/srep31110 – ident: e_1_2_8_10_3 doi: 10.1002/adfm.201806412 – ident: e_1_2_8_21_6 doi: 10.1002/adfm.201806412 – ident: e_1_2_8_9_1 doi: 10.1021/acsami.0c13863 – ident: e_1_2_8_7_2 doi: 10.1088/0964-1726/23/9/094007 – ident: e_1_2_8_10_9 doi: 10.1088/1361-665X/aae96f – ident: e_1_2_8_10_8 doi: 10.1039/C7SM00759K – ident: e_1_2_8_10_5 doi: 10.1002/adma.202104390 – ident: e_1_2_8_30_2 doi: 10.1016/j.jfluidstructs.2014.05.014 – ident: e_1_2_8_6_1 doi: 10.1126/science.aab0129 – ident: e_1_2_8_5_1 doi: 10.1016/j.cobme.2017.05.006 – ident: e_1_2_8_13_4 doi: 10.1002/adfm.201805290 – ident: e_1_2_8_5_2 doi: 10.1038/nbt.2958 – ident: e_1_2_8_13_3 doi: 10.1002/adfm.202109805 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.0c00027 – ident: e_1_2_8_3_2 doi: 10.1016/j.addma.2019.100894 – ident: e_1_2_8_11_1 doi: 10.1002/marc.201700710 – ident: e_1_2_8_12_3 doi: 10.1002/advs.202100411 – ident: e_1_2_8_10_6 doi: 10.1002/adfm.202110360 – ident: e_1_2_8_31_2 doi: 10.1126/scirobotics.aay9024 – ident: e_1_2_8_10_2 doi: 10.1039/C7SM00759K – ident: e_1_2_8_14_1 doi: 10.1002/adma.202106175 – ident: e_1_2_8_31_1 doi: 10.1038/s41598-017-03412-6 – ident: e_1_2_8_12_2 doi: 10.1038/nature16521 – ident: e_1_2_8_22_1 doi: 10.1016/j.addma.2021.101911 – ident: e_1_2_8_27_1 doi: 10.1016/j.addma.2021.101921 |
| SSID | ssj0009606 |
| Score | 2.671285 |
| Snippet | Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2204890 |
| SubjectTerms | 4D printing Actuation Actuators Automation Elastomers hybrid 3D printing Lattices liquid crystal elastomers Liquid crystals Manufacturing engineering Materials science Metamaterials multimaterial 3D printing Printing Robotics Smart structures soft robots Supports Tensegrity Wearable technology |
| Title | 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204890 https://www.proquest.com/docview/2718461421 https://www.proquest.com/docview/2702183416 |
| Volume | 34 |
| WOSCitedRecordID | wos000846856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4t7R7YA7APRFlAXmmlPUUkjmPHx6ql4gAIrRZtb9E0tqVKKIU-kPj363HStBxWSHCI5CQTJ7I98TcezzcAP0vBuUEUkcszEQleumgSG7JaJ9pYbUUuXUg2oW5u8vFY325F8df8EO2CG2lG-F-TguNkcb4hDUUTeIM4Mc9qb7R3uR-8WQe6w9-ju6sN8a4M-TXJ3xdpKfI1cWPMz1_W8HJi2qDNbcwaJp3R_vs_9wD2GsDJ-vUI-QwfbPUFPm3REH6Fv2LIbn2RdkCzmWOjubXreBd2NX1cTQ0bzJ_9pXt24dH2ckaL3expiuzymSK-WN-YsAeJXWO1oliJEPz4De5GF38Gl1GTcCEq0yyOI5MYlydqwrkjjwz6wxDBXoZaIeaKl1JZmXn7m6wyHUttPTrDWLuEvJ8yPYRONavsETDlRVLExDqjROZSNNYqUaaoEaWScQ-idWsXZcNGTkkx7ouaR5kX1GBF22A9-NXKP9Q8HP-VPFl3XtHo46LgfgoWHonwpAc_2ttek8g9gpWdrUgm4EWPUHvAQ1e-8qaiP7zut2fHb3noO-xSud60dgKd5XxlT-Fj-bScLuZnsKPG-Vkzov8B-vPzxw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5GW9j60HXdStN2mwqFPZnasixZj6FpyFgSSmlZ38zFkiBQnDZNCv3vq5Mdp30Yg7EHgy2ffyDfWd9Jd98BnJaCc4MoIpdnIhK8dNEkNuS1TrSx2opculBsQo3H-e2tvmyiCSkXpuaHaCfcyDLC_5oMnCakz9asoWgCcRAn6lntvfZN4XXJK_lm76p_M1wz78pQYJMW_CItRb5iboz52ds7vB2Z1nDzNWgNo07_4394313YaSAn69Y68gne2WoPtl8REX6G36LHLv0uxUCzmWP9ubWrjBc2nD4sp4adz5990x278Hh7MaPpbvY0RTZ4ppwv1jUmRCGxEVZLypYI6Y9f4KZ_cX0-iJqSC1GZZnEcmcS4PFETzh2tyaDfDFHsZagVYq54KZWVmffAyS_TsdTW4zOMtUto_VOm-7BRzSp7AEx5kRQxsc4okbkUjbVKlClqRKlk3IFo1d1F2fCRU1mMu6JmUuYFdVjRdlgHfrTy9zUTxx8lj1dfr2gs8rHgfhAWHovwpAMn7WlvS7RAgpWdLUkmIEaPUTvAw7f8y5OKbm_UbY8O_-Wi7_B-cD0aFsOf419H8IHa6xC2Y9hYzJf2K2yVT4vp4_xbo9gv5gT2zw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GOsr60O6rLG23qTDYk6kty5L1GJqajqUhjJb1zVwsCQLF6dKk0P--Otlx2ocyGHsw2PL5A8ln_U539zuAb5Xg3CCKyOWZiASvXDSNDVmtU22stiKXLhSbUONxfn2tJ200IeXCNPwQ3YIbaUb4X5OC21vjTjasoWgCcRAn6lntrfYtQZVkerA1_FVcjTbMuzIU2CSHX6SlyNfMjTE_eX6H5zPTBm4-Ba1h1in2_sP7voXdFnKyQfONvINXtn4PO0-ICD_AbzFkE79LMdBs7lixsHad8cJGsz-rmWGniwffdMPOPN5ezmm5m93PkJ0_UM4XGxgTopDYBdYrypYI6Y8f4ao4uzw9j9qSC1GVZnEcmcS4PFFTzh35ZNBvhij2MtQKMVe8ksrKzFvgZJfpWGrr8RnG2iXk_5TpPvTqeW0_AVNeJEVMrDNKZC5FY60SVYoaUSoZ9yFad3dZtXzkVBbjpmyYlHlJHVZ2HdaH7538bcPE8aLk0Xr0ylYj70ruJ2HhsQhP-nDcnfa6RA4SrO18RTIBMXqM2gcexvIvTyoHw4tBd3TwLxd9he3JsChHP8Y_D-ENNTcRbEfQWy5W9jO8ru6Xs7vFl_a7fgR8QfZK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D+Printing+of+Freestanding+Liquid+Crystal+Elastomers+via+Hybrid+Additive+Manufacturing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Peng%2C+Xirui&rft.au=Wu%2C+Shuai&rft.au=Sun%2C+Xiaohao&rft.au=Yue%2C+Liang&rft.date=2022-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=39&rft.spage=e2204890&rft_id=info:doi/10.1002%2Fadma.202204890&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |