4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing

Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. H...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 34; číslo 39; s. e2204890 - n/a
Hlavní autori: Peng, Xirui, Wu, Shuai, Sun, Xiaohao, Yue, Liang, Montgomery, S. Macrae, Demoly, Frédéric, Zhou, Kun, Zhao, Ruike Renee, Qi, H. Jerry
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim Wiley Subscription Services, Inc 01.09.2022
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices. A novel hybrid 4D printing method, which integrates laser‐assisted direct ink writing and Digital Light Processing, is developed to fabricate freestanding liquid crystal elastomers (LCEs) “on‐the‐fly” with optional structural or removable materials. Various architectures, including hybrid active lattices, active tensegrities, loading‐bearing actuators, and spatial LCE lattices, can be successfully fabricated.
AbstractList Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.
Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.
Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices. A novel hybrid 4D printing method, which integrates laser‐assisted direct ink writing and Digital Light Processing, is developed to fabricate freestanding liquid crystal elastomers (LCEs) “on‐the‐fly” with optional structural or removable materials. Various architectures, including hybrid active lattices, active tensegrities, loading‐bearing actuators, and spatial LCE lattices, can be successfully fabricated.
Author Qi, H. Jerry
Yue, Liang
Zhou, Kun
Sun, Xiaohao
Peng, Xirui
Demoly, Frédéric
Wu, Shuai
Zhao, Ruike Renee
Montgomery, S. Macrae
Author_xml – sequence: 1
  givenname: Xirui
  orcidid: 0000-0001-6654-3831
  surname: Peng
  fullname: Peng, Xirui
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Shuai
  surname: Wu
  fullname: Wu, Shuai
  organization: Stanford University
– sequence: 3
  givenname: Xiaohao
  surname: Sun
  fullname: Sun, Xiaohao
  organization: Georgia Institute of Technology
– sequence: 4
  givenname: Liang
  surname: Yue
  fullname: Yue, Liang
  organization: Georgia Institute of Technology
– sequence: 5
  givenname: S. Macrae
  surname: Montgomery
  fullname: Montgomery, S. Macrae
  organization: Georgia Institute of Technology
– sequence: 6
  givenname: Frédéric
  surname: Demoly
  fullname: Demoly, Frédéric
  organization: UTBM
– sequence: 7
  givenname: Kun
  surname: Zhou
  fullname: Zhou, Kun
  organization: Nanyang Technological University
– sequence: 8
  givenname: Ruike Renee
  surname: Zhao
  fullname: Zhao, Ruike Renee
  email: rrzhao@stanford.edu
  organization: Stanford University
– sequence: 9
  givenname: H. Jerry
  orcidid: 0000-0002-3212-5284
  surname: Qi
  fullname: Qi, H. Jerry
  email: qih@me.gatech.edu
  organization: Georgia Institute of Technology
BookMark eNqFkM9LwzAUx4NMcJtePRe8eOl8SZO0OY79cMJED4rH8tamI9KlLmkn--_NmCgMxEMIefl83nt8B6RnG6sJuaYwogDsDssNjhgwBjxTcEb6VDAac1CiR_qgEhErybMLMvD-HQCUBNknb3waPTtjW2PXUVNFc6e1b9GWh_fSbDtTRhO3D6U6mtXo22ajnY92BqPFfuXC77gsTWt2OnpE21VYtF1ot74k5xXWXl9930PyOp-9TBbx8un-YTJexkUiAOKSllVG0xVjFUgpMJxSgOICVYqYpayQqZZCrxIONFEglQahEFRFgaVCJkNye-z74ZptF1bPN8YXuq7R6qbzOUuB0Szh9IDenKDvTeds2C5QNOOSckYDNTpShWu8d7rKP5zZoNvnFPJDzvkh5_wn5yDwE6EwLbamsa1DU_-tqaP2aWq9_2dIPp4-jn_dL-K0kmM
CitedBy_id crossref_primary_10_1002_ange_202411280
crossref_primary_10_1002_admt_202401950
crossref_primary_10_1016_j_cej_2023_142830
crossref_primary_10_1038_s41467_023_35929_y
crossref_primary_10_1002_aisy_202200226
crossref_primary_10_1002_adma_202302824
crossref_primary_10_1038_s41467_024_48353_7
crossref_primary_10_1002_chem_202301027
crossref_primary_10_1038_s42004_024_01141_2
crossref_primary_10_1002_admt_202501236
crossref_primary_10_1007_s40843_024_3158_7
crossref_primary_10_1002_adma_202511630
crossref_primary_10_1002_adma_202302066
crossref_primary_10_1002_adma_202405505
crossref_primary_10_1088_2631_7990_ad7e5f
crossref_primary_10_1002_admt_202400074
crossref_primary_10_1002_mame_202400445
crossref_primary_10_1007_s12668_024_01596_6
crossref_primary_10_1016_j_cej_2023_142388
crossref_primary_10_1088_2631_7990_ace090
crossref_primary_10_1515_rams_2024_0028
crossref_primary_10_1088_1361_665X_ad3c85
crossref_primary_10_1080_17452759_2025_2499927
crossref_primary_10_1002_adma_202209566
crossref_primary_10_1016_j_eurpolymj_2024_113648
crossref_primary_10_1002_adma_202303969
crossref_primary_10_1002_adma_202312263
crossref_primary_10_1088_1361_665X_ad5c22
crossref_primary_10_1002_rpm_20240021
crossref_primary_10_1038_s44334_024_00005_w
crossref_primary_10_1002_adfm_202504979
crossref_primary_10_1002_adma_202419039
crossref_primary_10_1002_adfm_202413824
crossref_primary_10_1002_smll_202306952
crossref_primary_10_1038_s41467_024_52716_5
crossref_primary_10_1021_acs_macromol_5c01037
crossref_primary_10_1002_adma_202303680
crossref_primary_10_1002_adfm_202312480
crossref_primary_10_1002_adfm_202406847
crossref_primary_10_1002_adma_202307858
crossref_primary_10_1021_jacs_4c01642
crossref_primary_10_1016_j_addma_2023_103514
crossref_primary_10_1016_j_matdes_2025_113737
crossref_primary_10_1002_adma_202509892
crossref_primary_10_1002_adma_202302765
crossref_primary_10_3390_app14135669
crossref_primary_10_1038_s41467_023_39566_3
crossref_primary_10_1021_acsami_5c06159
crossref_primary_10_1038_s41378_025_00885_8
crossref_primary_10_1007_s10311_024_01726_2
crossref_primary_10_1002_adfm_202311425
crossref_primary_10_1038_s41578_025_00809_y
crossref_primary_10_3390_cryst14040357
crossref_primary_10_1016_j_mser_2024_100890
crossref_primary_10_1038_s41524_022_00962_w
crossref_primary_10_1002_admt_202500607
crossref_primary_10_1002_anie_202411280
crossref_primary_10_1002_smo_20230025
crossref_primary_10_1021_acsami_5c08610
crossref_primary_10_1038_s41467_024_49775_z
crossref_primary_10_1002_adma_202414209
crossref_primary_10_1002_adom_202500993
crossref_primary_10_1002_admt_202300408
crossref_primary_10_1002_admt_202300727
crossref_primary_10_1002_advs_202407746
crossref_primary_10_1002_adfm_202424400
crossref_primary_10_1038_s41427_023_00511_x
crossref_primary_10_1080_21680396_2025_2472163
crossref_primary_10_1111_ffe_14695
crossref_primary_10_1021_acsami_4c11779
crossref_primary_10_1039_D5TC00958H
crossref_primary_10_3390_biomimetics8020196
crossref_primary_10_1002_adma_202400763
crossref_primary_10_1002_adma_202401533
crossref_primary_10_1016_j_matt_2023_02_003
crossref_primary_10_1002_adem_202401796
crossref_primary_10_1002_adfm_202413962
crossref_primary_10_1002_adma_202310743
crossref_primary_10_1002_adma_202307586
crossref_primary_10_1002_adma_202402301
Cites_doi 10.1063/1.4819837
10.1002/anie.201915694
10.1126/sciadv.abc0034
10.1016/j.addma.2020.101582
10.1002/adma.201703817
10.1002/aisy.202100107
10.1021/acsami.7b11851
10.1126/science.abg1487
10.1016/j.addma.2019.100819
10.1021/acsmacrolett.6b00475
10.1038/nmat4544
10.1002/adma.201706164
10.1002/adfm.202201766
10.1039/C5RA01039J
10.1103/PhysRevA.41.1997
10.1021/acsami.9b18037
10.1016/B978-0-12-814062-8.00002-9
10.1080/17452759.2017.1326724
10.1126/science.1250169
10.1016/j.addma.2022.102727
10.1002/aisy.202000060
10.1126/sciadv.abg3677
10.1093/oso/9780198520245.001.0001
10.1038/s41467-020-17251-z
10.1080/14686996.2018.1431862
10.1021/cr3005197
10.1021/acsami.7b18265
10.1002/adma.201905682
10.1021/acsami.9b06081
10.1126/sciadv.1602890
10.1002/adma.201501446
10.1002/adma.202000797
10.1038/s41586-018-0474-7
10.1002/adma.201806849
10.1016/j.jeurceramsoc.2021.08.031
10.1016/j.jmsy.2019.08.005
10.1073/pnas.1525131113
10.1126/scirobotics.aax7044
10.1088/1361-665X/aae96f
10.1016/j.eml.2016.05.012
10.1002/aisy.202100065
10.1002/adma.202200272
10.1103/PhysRevA.19.338
10.1038/s41557-020-0444-1
10.1038/srep31110
10.1002/adfm.201806412
10.1021/acsami.0c13863
10.1088/0964-1726/23/9/094007
10.1039/C7SM00759K
10.1002/adma.202104390
10.1016/j.jfluidstructs.2014.05.014
10.1126/science.aab0129
10.1016/j.cobme.2017.05.006
10.1002/adfm.201805290
10.1038/nbt.2958
10.1002/adfm.202109805
10.1021/acsami.0c00027
10.1016/j.addma.2019.100894
10.1002/marc.201700710
10.1002/advs.202100411
10.1002/adfm.202110360
10.1126/scirobotics.aay9024
10.1002/adma.202106175
10.1038/s41598-017-03412-6
10.1038/nature16521
10.1016/j.addma.2021.101911
10.1016/j.addma.2021.101921
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202204890
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202204890
ADMA202204890
Genre article
GrantInformation_xml – fundername: HP Inc. and Northrop Grumman Corporation
– fundername: National Science Foundation
  funderid: ECCS‐1542174; CMMI‐2145601; CMMI‐2142789
– fundername: AFOSR
  funderid: FA 9550‐20‐1‐0306
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3500-d1df817b22f0665a665d50945a97aa872c67e65eb340139069e059a09f1027563
IEDL.DBID DRFUL
ISICitedReferencesCount 122
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:32:53 EDT 2025
Fri Jul 25 06:04:33 EDT 2025
Tue Nov 18 20:55:32 EST 2025
Sat Nov 29 07:20:27 EST 2025
Wed Jan 22 16:23:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3500-d1df817b22f0665a665d50945a97aa872c67e65eb340139069e059a09f1027563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3212-5284
0000-0001-6654-3831
PQID 2718461421
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2702183416
proquest_journals_2718461421
crossref_primary_10_1002_adma_202204890
crossref_citationtrail_10_1002_adma_202204890
wiley_primary_10_1002_adma_202204890_ADMA202204890
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013 2014 2016 2018; 103 23 6 10
2021 2020; 13 2
1979 1990 2016; 19 41 5
2015; 5
2021; 3
2015 2017 2018 2020 2021 2021 2021 2017 2018; 27 13 29 6 34 32 7 13 27
2019 2019; 53
1993
2020; 12
2020; 11
2020; 32
2017 2019; 29 29
2018; 39
2017 2019; 12 30
2014 2016; 114 9
2022; 4
2017 2018 2018 2018 2019 2019 2019; 9 561 30 27 4 29 11
2020 2022; 32 34
2017 2021 2021 2019; 3 32 29
2015 2018; 349 19
2016 2020 2019; 15 12 11
2021 2020; 372 36
2016; 113
2021 2020; 33 59
2021 2014; 41 50
2022; 32
2022; 54
2017 2014; 2 32
2021; 40
2017 2020 2019; 7 5 31
2014 2016 2021; 344 529 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_7_4
e_1_2_8_9_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_20_3
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_13_4
Le T. (e_1_2_8_13_2) 2021
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_21_4
e_1_2_8_21_5
e_1_2_8_25_1
e_1_2_8_21_6
e_1_2_8_21_7
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_21_3
e_1_2_8_23_1
e_1_2_8_10_8
e_1_2_8_10_9
e_1_2_8_18_1
e_1_2_8_10_4
e_1_2_8_12_2
e_1_2_8_10_5
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_10_6
e_1_2_8_14_2
e_1_2_8_10_7
e_1_2_8_16_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_10_3
e_1_2_8_12_1
e_1_2_8_31_3
References_xml – volume: 29 29
  year: 2017 2019
  publication-title: Adv. Mater. Addit. Manuf.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3462
  year: 2020
  publication-title: Nat. Commun.
– volume: 54
  year: 2022
  publication-title: Addit. Manuf.
– volume: 114 9
  start-page: 557 108
  year: 2014 2016
  publication-title: Chem. Rev. Extreme Mech. Lett.
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 124 7
  year: 2019 2019
  publication-title: J. Manuf. Syst.
– volume: 33 59
  start-page: 4778
  year: 2021 2020
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 9 561 30 27 4 29 11
  start-page: 226
  year: 2017 2018 2018 2018 2019 2019 2019
  publication-title: ACS Appl. Mater. Interfaces Nature Adv. Mater. Smart Mater. Struct. Sci. Rob. Adv. Funct. Mater. ACS Appl. Mater. Interfaces
– volume: 13 2
  year: 2021 2020
  publication-title: ACS Appl. Mater. Interfaces Adv. Intell. Syst.
– volume: 19 41 5
  start-page: 338 1997 955
  year: 1979 1990 2016
  publication-title: Phys. Rev. A Phys. Rev. A ACS Macro Lett.
– volume: 41 50
  start-page: 18 171
  year: 2021 2014
  publication-title: J. Eur. Ceram. Soc. J. Fluids Struct.
– volume: 103 23 6 10
  start-page: 7381
  year: 2013 2014 2016 2018
  publication-title: Appl. Phys. Lett. Smart Mater. Struct. Sci. Rep. ACS Appl. Mater. Interfaces
– volume: 3 32 29
  start-page: 732
  year: 2017 2021 2021 2019
  end-page: 747
  publication-title: Sci. Adv. Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 32 34
  year: 2020 2022
  publication-title: Adv. Mater. Adv. Mater.
– volume: 15 12 11
  start-page: 413 363
  year: 2016 2020 2019
  publication-title: Nat. Mater. Nat. Chem. ACS Appl. Mater. Interfaces
– volume: 113
  start-page: 6137
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  year: 2021
  publication-title: Adv. Intell. Syst.
– volume: 4
  year: 2022
  publication-title: Adv. Intell. Syst.
– volume: 344 529 8
  start-page: 70 509
  year: 2014 2016 2021
  publication-title: Science Nature Adv. Sci.
– volume: 2 32
  start-page: 105 773
  year: 2017 2014
  publication-title: Curr. Opin. Biomed. Eng. Nat. Biotechnol.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 40
  year: 2021
  publication-title: Addit. Manuf.
– volume: 349 19
  start-page: 161 243
  year: 2015 2018
  publication-title: Science Sci. Technol. Adv. Mater.
– volume: 27 13 29 6 34 32 7 13 27
  start-page: 3883 5558 5558
  year: 2015 2017 2018 2020 2021 2021 2021 2017 2018
  publication-title: Adv. Mater. Soft Matter Adv. Funct. Mater. Sci. Adv. Adv. Mater. Adv. Funct. Mater. Sci. Adv. Soft Matter Smart Mater. Struct.
– volume: 372 36
  year: 2021 2020
  publication-title: Science Addit. Manuf.
– volume: 7 5 31
  start-page: 3511
  year: 2017 2020 2019
  publication-title: Sci. Rep. Sci. Rob. Adv. Mater.
– year: 1993
– volume: 12 30
  start-page: 261
  year: 2017 2019
  publication-title: Virtual Phys. Prototyping Addit. Manuf.
– ident: e_1_2_8_7_1
  doi: 10.1063/1.4819837
– ident: e_1_2_8_14_2
  doi: 10.1002/anie.201915694
– ident: e_1_2_8_10_4
  doi: 10.1126/sciadv.abc0034
– ident: e_1_2_8_2_2
  doi: 10.1016/j.addma.2020.101582
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201703817
– ident: e_1_2_8_32_1
  doi: 10.1002/aisy.202100107
– ident: e_1_2_8_21_1
  doi: 10.1021/acsami.7b11851
– ident: e_1_2_8_2_1
  doi: 10.1126/science.abg1487
– ident: e_1_2_8_4_2
  doi: 10.1016/j.addma.2019.100819
– ident: e_1_2_8_20_3
  doi: 10.1021/acsmacrolett.6b00475
– ident: e_1_2_8_8_1
  doi: 10.1038/nmat4544
– ident: e_1_2_8_21_3
  doi: 10.1002/adma.201706164
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202201766
– ident: e_1_2_8_19_1
  doi: 10.1039/C5RA01039J
– ident: e_1_2_8_20_2
  doi: 10.1103/PhysRevA.41.1997
– ident: e_1_2_8_21_7
  doi: 10.1021/acsami.9b18037
– ident: e_1_2_8_1_2
  doi: 10.1016/B978-0-12-814062-8.00002-9
– ident: e_1_2_8_3_1
  doi: 10.1080/17452759.2017.1326724
– ident: e_1_2_8_12_1
  doi: 10.1126/science.1250169
– ident: e_1_2_8_28_1
  doi: 10.1016/j.addma.2022.102727
– ident: e_1_2_8_9_2
  doi: 10.1002/aisy.202000060
– ident: e_1_2_8_10_7
  doi: 10.1126/sciadv.abg3677
– ident: e_1_2_8_17_1
  doi: 10.1093/oso/9780198520245.001.0001
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-020-17251-z
– ident: e_1_2_8_6_2
  doi: 10.1080/14686996.2018.1431862
– ident: e_1_2_8_29_1
  doi: 10.1021/cr3005197
– ident: e_1_2_8_7_4
  doi: 10.1021/acsami.7b18265
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201905682
– ident: e_1_2_8_8_3
  doi: 10.1021/acsami.9b06081
– ident: e_1_2_8_13_1
  doi: 10.1126/sciadv.1602890
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201501446
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202000797
– ident: e_1_2_8_21_2
  doi: 10.1038/s41586-018-0474-7
– ident: e_1_2_8_31_3
  doi: 10.1002/adma.201806849
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jeurceramsoc.2021.08.031
– ident: e_1_2_8_1_1
  doi: 10.1016/j.jmsy.2019.08.005
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.1525131113
– ident: e_1_2_8_21_5
  doi: 10.1126/scirobotics.aax7044
– start-page: 732
  volume-title: Annu. Computer Security Applications Conf.
  year: 2021
  ident: e_1_2_8_13_2
– ident: e_1_2_8_21_4
  doi: 10.1088/1361-665X/aae96f
– ident: e_1_2_8_29_2
  doi: 10.1016/j.eml.2016.05.012
– ident: e_1_2_8_18_1
  doi: 10.1002/aisy.202100065
– ident: e_1_2_8_24_2
  doi: 10.1002/adma.202200272
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevA.19.338
– ident: e_1_2_8_8_2
  doi: 10.1038/s41557-020-0444-1
– ident: e_1_2_8_7_3
  doi: 10.1038/srep31110
– ident: e_1_2_8_10_3
  doi: 10.1002/adfm.201806412
– ident: e_1_2_8_21_6
  doi: 10.1002/adfm.201806412
– ident: e_1_2_8_9_1
  doi: 10.1021/acsami.0c13863
– ident: e_1_2_8_7_2
  doi: 10.1088/0964-1726/23/9/094007
– ident: e_1_2_8_10_9
  doi: 10.1088/1361-665X/aae96f
– ident: e_1_2_8_10_8
  doi: 10.1039/C7SM00759K
– ident: e_1_2_8_10_5
  doi: 10.1002/adma.202104390
– ident: e_1_2_8_30_2
  doi: 10.1016/j.jfluidstructs.2014.05.014
– ident: e_1_2_8_6_1
  doi: 10.1126/science.aab0129
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cobme.2017.05.006
– ident: e_1_2_8_13_4
  doi: 10.1002/adfm.201805290
– ident: e_1_2_8_5_2
  doi: 10.1038/nbt.2958
– ident: e_1_2_8_13_3
  doi: 10.1002/adfm.202109805
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.0c00027
– ident: e_1_2_8_3_2
  doi: 10.1016/j.addma.2019.100894
– ident: e_1_2_8_11_1
  doi: 10.1002/marc.201700710
– ident: e_1_2_8_12_3
  doi: 10.1002/advs.202100411
– ident: e_1_2_8_10_6
  doi: 10.1002/adfm.202110360
– ident: e_1_2_8_31_2
  doi: 10.1126/scirobotics.aay9024
– ident: e_1_2_8_10_2
  doi: 10.1039/C7SM00759K
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.202106175
– ident: e_1_2_8_31_1
  doi: 10.1038/s41598-017-03412-6
– ident: e_1_2_8_12_2
  doi: 10.1038/nature16521
– ident: e_1_2_8_22_1
  doi: 10.1016/j.addma.2021.101911
– ident: e_1_2_8_27_1
  doi: 10.1016/j.addma.2021.101921
SSID ssj0009606
Score 2.671285
Snippet Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2204890
SubjectTerms 4D printing
Actuation
Actuators
Automation
Elastomers
hybrid 3D printing
Lattices
liquid crystal elastomers
Liquid crystals
Manufacturing engineering
Materials science
Metamaterials
multimaterial 3D printing
Printing
Robotics
Smart structures
soft robots
Supports
Tensegrity
Wearable technology
Title 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204890
https://www.proquest.com/docview/2718461421
https://www.proquest.com/docview/2702183416
Volume 34
WOSCitedRecordID wos000846856100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4t7R7YA7APRFlAXmmlPUUkjmPHx6ql4gAIrRZtb9E0tqVKKIU-kPj363HStBxWSHCI5CQTJ7I98TcezzcAP0vBuUEUkcszEQleumgSG7JaJ9pYbUUuXUg2oW5u8vFY325F8df8EO2CG2lG-F-TguNkcb4hDUUTeIM4Mc9qb7R3uR-8WQe6w9-ju6sN8a4M-TXJ3xdpKfI1cWPMz1_W8HJi2qDNbcwaJp3R_vs_9wD2GsDJ-vUI-QwfbPUFPm3REH6Fv2LIbn2RdkCzmWOjubXreBd2NX1cTQ0bzJ_9pXt24dH2ckaL3expiuzymSK-WN-YsAeJXWO1oliJEPz4De5GF38Gl1GTcCEq0yyOI5MYlydqwrkjjwz6wxDBXoZaIeaKl1JZmXn7m6wyHUttPTrDWLuEvJ8yPYRONavsETDlRVLExDqjROZSNNYqUaaoEaWScQ-idWsXZcNGTkkx7ouaR5kX1GBF22A9-NXKP9Q8HP-VPFl3XtHo46LgfgoWHonwpAc_2ttek8g9gpWdrUgm4EWPUHvAQ1e-8qaiP7zut2fHb3noO-xSud60dgKd5XxlT-Fj-bScLuZnsKPG-Vkzov8B-vPzxw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5GW9j60HXdStN2mwqFPZnasixZj6FpyFgSSmlZ38zFkiBQnDZNCv3vq5Mdp30Yg7EHgy2ffyDfWd9Jd98BnJaCc4MoIpdnIhK8dNEkNuS1TrSx2opculBsQo3H-e2tvmyiCSkXpuaHaCfcyDLC_5oMnCakz9asoWgCcRAn6lntvfZN4XXJK_lm76p_M1wz78pQYJMW_CItRb5iboz52ds7vB2Z1nDzNWgNo07_4394313YaSAn69Y68gne2WoPtl8REX6G36LHLv0uxUCzmWP9ubWrjBc2nD4sp4adz5990x278Hh7MaPpbvY0RTZ4ppwv1jUmRCGxEVZLypYI6Y9f4KZ_cX0-iJqSC1GZZnEcmcS4PFETzh2tyaDfDFHsZagVYq54KZWVmffAyS_TsdTW4zOMtUto_VOm-7BRzSp7AEx5kRQxsc4okbkUjbVKlClqRKlk3IFo1d1F2fCRU1mMu6JmUuYFdVjRdlgHfrTy9zUTxx8lj1dfr2gs8rHgfhAWHovwpAMn7WlvS7RAgpWdLUkmIEaPUTvAw7f8y5OKbm_UbY8O_-Wi7_B-cD0aFsOf419H8IHa6xC2Y9hYzJf2K2yVT4vp4_xbo9gv5gT2zw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GOsr60O6rLG23qTDYk6kty5L1GJqajqUhjJb1zVwsCQLF6dKk0P--Otlx2ocyGHsw2PL5A8ln_U539zuAb5Xg3CCKyOWZiASvXDSNDVmtU22stiKXLhSbUONxfn2tJ200IeXCNPwQ3YIbaUb4X5OC21vjTjasoWgCcRAn6lntrfYtQZVkerA1_FVcjTbMuzIU2CSHX6SlyNfMjTE_eX6H5zPTBm4-Ba1h1in2_sP7voXdFnKyQfONvINXtn4PO0-ICD_AbzFkE79LMdBs7lixsHad8cJGsz-rmWGniwffdMPOPN5ezmm5m93PkJ0_UM4XGxgTopDYBdYrypYI6Y8f4ao4uzw9j9qSC1GVZnEcmcS4PFFTzh35ZNBvhij2MtQKMVe8ksrKzFvgZJfpWGrr8RnG2iXk_5TpPvTqeW0_AVNeJEVMrDNKZC5FY60SVYoaUSoZ9yFad3dZtXzkVBbjpmyYlHlJHVZ2HdaH7538bcPE8aLk0Xr0ylYj70ruJ2HhsQhP-nDcnfa6RA4SrO18RTIBMXqM2gcexvIvTyoHw4tBd3TwLxd9he3JsChHP8Y_D-ENNTcRbEfQWy5W9jO8ru6Xs7vFl_a7fgR8QfZK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D+Printing+of+Freestanding+Liquid+Crystal+Elastomers+via+Hybrid+Additive+Manufacturing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Peng%2C+Xirui&rft.au=Wu%2C+Shuai&rft.au=Sun%2C+Xiaohao&rft.au=Yue%2C+Liang&rft.date=2022-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=39&rft.spage=e2204890&rft_id=info:doi/10.1002%2Fadma.202204890&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon