The approximation property for spaces of holomorphic functions on infinite dimensional spaces III

Let denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E , with the Nachbin compact-ported topology. Let denote the vector space of all complex-valued holomorphic germs on a compact subset K of E , with its natural inductive limit topology. Let...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Ročník 106; číslo 2; s. 457 - 469
Hlavní autori: Dineen, Seán, Mujica, Jorge
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Milan Springer Milan 01.09.2012
Springer Nature B.V
Predmet:
ISSN:1578-7303, 1579-1505
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E , with the Nachbin compact-ported topology. Let denote the vector space of all complex-valued holomorphic germs on a compact subset K of E , with its natural inductive limit topology. Let denote the Banach space of all continuous complex-valued m -homogeneous polynomials on E . When E has a Schauder basis, we show that has the approximation property for every compact subset K of E if and only if has the approximation property for every . When E has an unconditional Schauder basis, we show that has the approximation property for every pseudoconvex open subset U of E if and only if has the approximation property for every . These theorems apply in particular to the classical Banach spaces and , and to the original Tsirelson space .
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-012-0065-7